JPH0140568B2 - - Google Patents

Info

Publication number
JPH0140568B2
JPH0140568B2 JP56056970A JP5697081A JPH0140568B2 JP H0140568 B2 JPH0140568 B2 JP H0140568B2 JP 56056970 A JP56056970 A JP 56056970A JP 5697081 A JP5697081 A JP 5697081A JP H0140568 B2 JPH0140568 B2 JP H0140568B2
Authority
JP
Japan
Prior art keywords
cable
contact
charging
electrical equipment
sealed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56056970A
Other languages
Japanese (ja)
Other versions
JPS57173308A (en
Inventor
Tadayoshi Iida
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP56056970A priority Critical patent/JPS57173308A/en
Publication of JPS57173308A publication Critical patent/JPS57173308A/en
Publication of JPH0140568B2 publication Critical patent/JPH0140568B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Testing Relating To Insulation (AREA)
  • Housings And Mounting Of Transformers (AREA)
  • Gas-Insulated Switchgears (AREA)

Description

【発明の詳細な説明】 本発明はガス絶縁または油絶縁方式の密閉形電
気機器(以下、密閉形電気機器という)に関し、
特に現地における機器の耐電圧試験および機器の
事故時のバイパス回路の構成を容易で信頼度が高
く、かつ経済的に行ない得るようにしたものであ
る。 近年、都市中心部およびその周辺地域では電力
需要が増大するのに反し、変電所用地の確保が困
難となつてきている。これに対する一つの方法と
して絶縁ガスや絶縁油等の絶縁媒体が充填された
密閉容器内にしや断器、断路器、あるいは接地装
置などの高圧回路を収納した密閉形電気機器を使
用して気中絶縁方式のものに比較して小形でかつ
充填部が露出しないように構成することが行なわ
れている。そして充電部が露出しないという長所
をさらに生かすためにケーブル受電で構成される
ことが多い。ところで該密閉形電気機器は法令や
JEC規格(電気学会電気規格調査会標準規格)、
その他の関連規格などにより耐電圧試験を実施す
ることが義務づけられているが、特に電気設備技
術基準(通商産業省令第61号)第14条により設置
時のいわゆる現地耐電圧試験を実施することが必
要であり、この現地耐電圧試験は前記ゲーブルも
含めて実施しなければならない。しかるに接続さ
れるケーブルが長大な場合には前記現地耐電圧試
験は、試験用変圧器の容量による制約のためケー
ブルの交流耐電圧試験が一般に実施不可能であ
り、このため密閉形電気機器の交流耐電圧試験お
よびケーブルの直流耐電圧試験の二つに分離して
行なうことが前記電気設備技術基準によつて認め
られている。この場合、通常上記の如く密閉形電
気機器は露出された充電部がないため前記耐電圧
試験は一般に次の手順によつて実施される。すな
わち、密閉形電気機器のケーブルヘツドに試験用
ケーブルを装着し、該密閉形電気機器本体の交流
耐電圧試験を行なう。次にこの試験用ケーブルを
取り外してそのかわりに製品ケーブルを装着し、
密閉形電気機器の引込口の断路器を開路する。そ
して該密閉形電気機器の絶縁媒体を回収した後こ
の密閉形電気機器を開いて充電部を露出させ直流
電源装置を接続する。その後真空引きをして再び
絶縁媒体を充填し、製品ケーブルの直流耐電圧試
験を行なう。製品ケーブルの直流耐電圧試験を行
なつた後は、上記作業と全く逆の作業を行なつて
密閉形電気機器をもとの状態に復元する。なお、
上記製品ケーブルの直流耐電圧試験の作業手順の
一例をSF6ガス絶縁機器の場合について第1図に
示す。なお、油絶縁方式の場合も絶縁媒体の種類
が異なるほかは略々同一の手順となる。このよう
に密閉形電気機器における現地耐電圧試験は非常
に煩難な作業となり長時間を要する上非常に不経
済であるばかりでなく、該密閉形電気機器は塵埃
や水分を極端に嫌うので現地における上記作業は
これらの侵入防止に最大限の注意を払う必要があ
る。また前記ケーブルヘツドへの試験用ケーブル
あるいは製品ケーブルの装着作業は、従来密閉容
器を開けて接続作業を行なつた後、再び密封、真
空引き、絶縁媒体の充填等の作業を行なつていた
が、近時密閉容器を開くことなくケーブルの着脱
が可能ないわゆるスリツプオン方式の要請が高ま
つている。かかるスリツプオン方式の場合には接
合面の信頼度保全のために上記の如き試験用ケー
ブルあるいは製品ケーブルの煩繁な着脱作業は避
けることが必要であるばかりでなく、折角密閉容
器を開くことなくケーブルの着脱が可能となつて
も耐電圧試験のために密閉容器を開かなければな
らないので、この結果スリツプオン方式にした効
果は著しく減殺されたものとならざるを得ない。 次に当該密閉形電気機器またはこれと接続され
る他の密閉形電気機器もしくは変圧器等のいずれ
かに故障が生じた場合、代わりの機器をすぐ用意
したり、あるいは取替るということが実際にはな
かなか困難であるので、それまでの一時的な措置
として故障機器のみを切り離しバイパス回路を利
用し送電だけは確保することが行なわれる。この
場合も充電部が気中に露出していないためあらか
じめ緊急用ケーブルの接続部を設けておくことが
行なわれている。この場合緊急用ケーブルの着脱
作業は上記耐電圧試験時のケーブル着脱作業と
略々同じ手順を必要とするため、前記同様の欠点
があり迅速な作業は期し難かつた。またスリツプ
オン方式を採用すれば作業の煩雑さから解放され
るが、スリツプオンケーブル着脱用のケーブルヘ
ツドをあらかじめ密閉形電気機器に設けておく必
要があり、機器の大形化と経済性を損なうという
欠点がある。 そこで本発明はケーブルヘツドに製品ケーブル
を装着したままで容易で信頼度が高くかつ経済的
に密閉形電気機器の耐電圧試験、およびバイパス
回路の構成ができるようにすることを目的とす
る。この目的は密閉容器を貫通して気密にかつ摺
動自在に配設されて高圧回路に接離する課電用接
触子と、内部にこの課電用接触子に接続される導
体を有するとともに外部が絶縁支持体で形成さ
れ、かつ該課電用接触子に着脱自在に構成された
課電用ブツシングとから構成することによつて達
成される。 以下本発明の実施例を第2図〜第6図に基づい
て詳細に説明する。第2図は密閉形電気機器の一
例を示す断面図、第3図はその単線結線図を示し
ており、変圧器(図示せず)はブツシング(図示
せず)により気中に充電部を露出することなくこ
の密閉形電気機器に直結されている。接地された
密閉容器1内にはSF6ガスもしくは絶縁油等の絶
縁媒体2が充填されている。この密閉容器1の引
込口側にはケーブルヘツド3が装着されるととも
に該密閉容器1内にしや断器4a、断路器4b、
接地装置4c等の高圧回路が収納されている。
5は前記ケーブルヘツド3に接続されたケーブル
である。さらに前記密閉容器1の引込口側、すな
わち第2図におけるA部には課電用接触子6が装
着されている。この課電用接触子6は第4図にそ
の詳細を示すように密閉容器1を貫通し、その先
端部が前記高圧回路に接離可能な様に摺動自在
でかつOリング等のシール部材7,7aによつて
気密に装着されている。なお、該課電用接触子6
は適宜な抜け止め(図示せず)によつて密閉容器
1内に脱落しないようになつている。一方、この
課電用接触子6の基端部に螺合等の方法により着
脱自在に形成される課電用ブツシングは第5図
に示すように、内部に該課電用接触子6に接続さ
れる導体9を有するとともにその外部は絶縁支持
体10で構成されており、かつ密閉容器1内に貫
装される側は課電用接触子6と同一外径になつて
いる。 次に上記装置を用いた密閉形電気機器の耐電圧
試験について説明する。今この密閉形電気機器本
体の交流耐電圧試験を行なうには課電用ブツシン
の導体9を課電用接触子6に装着し、この課
電用接触子6を摺動させてその先端部を高圧回路
4に接続させる。この状態を第6図に示す。この
際密閉容器1と課電用接触子6あるいは課電用ブ
ツシングの絶縁支持体10とはシール部材7,
7aによつてシールされているので、この密閉容
器1内の絶縁媒体2が外部に漏れることはない。
なお着脱時に課電用接触子6と課電用ブツシング
8の継ぎ目からの絶縁媒体の漏れを防止するため
にシールは少くともシール部材7、および7aの
2列にすることが望ましく、また絶縁支持体0と
金属である密閉容器1の熱膨張係数の差にもとづ
くシールの不安定さをカバーすべく絶縁支持体1
0と密閉容器1との接合面にもシール部材7bを
設けるとか絶縁支持体10と密閉容器1とのはめ
あい部分を金属にするとかの方法を構ればより確
実である。この後、課電用ブツシングの導体9
の基端部に試験用交流電源装置を接続して課電す
れば密閉形電気機器本体の交流耐電圧試験を行な
うことができる。なお高圧回路と課電用接触子
6の相対位置が配置上制約され適当を欠く場合に
は課電用接触子6および課電用ブツシングをと
もに回転させることにより高圧回路に接離させ
てもよい。 一方、ケーブル5の直流耐電圧試験を行なうに
は、高圧回路の断路器4bを開路すれば課電用
ブツシングの導体9、課電用接触子6、高圧回
、ケーブルヘツド3を介してケーブル5に至
る回路が形成される。従つて課電用ブツシング
の導体9の基端部に直流電源装置を接続して課電
すればケーブル5の直流耐電圧試験を行なうこと
ができる。なお、ケーブル5の長さが短かい場合
にはケーブル5の直流耐電圧試験を行なわず、密
閉形電気機器本体およびケーブル5の交流耐電圧
試験を一度に行なうことができ、また工場試験も
上記と全く同一の方法により行なうことができる
ことは言うまでもない。 次にバイパス回路を構成する場合について、変
圧器に故障が発生し移動用変圧器に接続する場合
を例にとり説明する。この場合は課電用接触子6
を密閉形電気機器の負荷側、すなわち第2図にお
ける容器1のB部に装着しておく。この場合にも
上記耐電圧試験と全く同様に課電用ブツシング
を課電用接触子6に装着すれば、変圧器をバイパ
スして移動用変圧器から送電可能となる。なおこ
の場合は課電用接触子6および課電用ブツシング
8とも電流通電容量を有することが必要であり、
課電用接触子6と高圧回路のチユーリツプコン
タクトのように通電容量をもつたものにすること
が必要である。 以上実施例とともに詳述したように本発明によ
れば、露出した充電部が全くない密閉形電気機器
においても密閉容器を開けることなく耐電圧試
験、およびバイパス回路の構成ができるので、従
来の如く充電部を露出させるための絶縁媒体の回
収、真空引き、あるいは再充填等の作業が全く不
要となり、その操作が容易で信頼度の高い作業を
行なうことができ、かつ非常に経済的となる。ま
た従来の如くケーブルヘツドへの試験用ケーブ
ル、あるいは製品ケーブルの脱着が全くなく製品
ケーブルを装着したままで密閉形電気機器本体の
交流耐電圧試験および製品ケーブルの直流耐電試
験を行なうことができるので、スリツプオン方式
の場合においてもケーブルヘツドの接合面を損傷
する危惧もない。さらに課電用接触子は大地に接
地された密閉容器に直接装置されているので浮遊
電極とはならず安全である上、密閉容器からほと
んど外部に突出することなく非常に簡単な構造で
コンパクトであり縮小形機器としての長所を何ら
損なうことなくかつ極めて経済的である。さらに
この課電用ブツシングは試験装置または事故時等
の緊急用部品であり、製品価格には含まれず複数
の密閉形電気機器に使用できるので非常に経済的
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to gas-insulated or oil-insulated sealed electrical equipment (hereinafter referred to as sealed electrical equipment).
In particular, it is designed to make it easy, highly reliable, and economical to conduct on-site withstand voltage tests of equipment and to configure bypass circuits in the event of equipment failures. In recent years, as the demand for electricity has increased in urban centers and surrounding areas, it has become difficult to secure land for substations. One way to deal with this is to use sealed electrical equipment that houses high-voltage circuits, such as disconnectors, disconnectors, or grounding devices, in a sealed container filled with an insulating medium such as insulating gas or insulating oil. Compared to the insulation type, the structure is smaller and the filling part is not exposed. In order to take advantage of the fact that the live parts are not exposed, they are often configured with cable power receiving. By the way, the sealed electrical equipment is not subject to laws and regulations.
JEC standards (IEEJ Electrical Standards Committee Standards),
Other related standards require that a withstand voltage test be conducted, but in particular Article 14 of the Electrical Equipment Technical Standards (Ordinance No. 61 of the Ministry of International Trade and Industry) requires that a so-called on-site withstand voltage test be conducted at the time of installation. This is necessary, and this on-site withstand voltage test must be conducted including the gable. However, when the cable to be connected is long, it is generally impossible to perform the on-site withstand voltage test due to the limitations imposed by the capacity of the test transformer. The above-mentioned electrical equipment technical standards permit the electrical equipment technical standards to conduct the withstand voltage test and the DC withstand voltage test of the cable separately. In this case, as mentioned above, since sealed electrical equipment usually does not have exposed live parts, the withstand voltage test is generally carried out according to the following procedure. That is, a test cable is attached to the cable head of a sealed electrical device, and an alternating current withstand voltage test is performed on the main body of the sealed electrical device. Next, remove this test cable and install the product cable in its place.
Open the disconnect switch at the entrance of the sealed electrical equipment. After recovering the insulating medium of the sealed electrical device, the sealed electrical device is opened to expose the charging portion and connected to a DC power supply. After that, it is evacuated, filled with insulating medium again, and the product cable is tested for DC withstand voltage. After performing a DC withstand voltage test on the product cable, the sealed electrical equipment is restored to its original state by performing the exact opposite of the above procedure. In addition,
An example of the procedure for DC withstand voltage testing of the product cables mentioned above is shown in Figure 1 for SF 6 gas insulated equipment. In addition, in the case of the oil insulation method, the procedure is almost the same except that the type of insulating medium is different. In this way, on-site withstand voltage tests for sealed electrical equipment are not only extremely troublesome and time-consuming, but also very uneconomical. The above work requires the utmost care to prevent these intrusions. In addition, conventionally, when attaching a test cable or product cable to the cable head, the sealed container was opened and connections were made, followed by sealing, vacuuming, filling with insulating medium, etc. Recently, there has been an increasing demand for the so-called slip-on method, which allows cables to be attached and detached without opening the sealed container. In the case of such a slip-on method, it is not only necessary to avoid the troublesome work of attaching and detaching the test cable or product cable as described above in order to maintain the reliability of the joint surface, but also to avoid the troublesome work of attaching and detaching the test cable or product cable as described above. Even if it becomes possible to attach and detach the cap, the sealed container must be opened for the withstand voltage test, and as a result, the effectiveness of the slip-on method is significantly diminished. Next, if a failure occurs in the sealed electrical equipment or any other sealed electrical equipment or transformer connected to it, it is practical to prepare a replacement equipment immediately or to replace it. Since it is quite difficult to do so, as a temporary measure until then, only the failed equipment is disconnected and a bypass circuit is used to ensure power transmission. In this case as well, since the live part is not exposed to the air, a connection part for the emergency cable is provided in advance. In this case, the procedure for attaching and detaching the emergency cable requires almost the same procedure as that for attaching and detaching the cable during the above-mentioned withstand voltage test, so there are the same drawbacks as described above, and it is difficult to expect a quick operation. In addition, if the slip-on method is adopted, the complexity of the work will be relieved, but it is necessary to install a cable head for attaching and detaching the slip-on cable in the sealed electrical equipment in advance, which increases the size of the equipment and impairs economic efficiency. There are drawbacks. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to enable easy, highly reliable, and economical withstand voltage testing of sealed electrical equipment and configuration of a bypass circuit while a product cable is attached to a cable head. The purpose of this is to have a energizing contact that penetrates the airtight container and is slidably and airtightly arranged to make contact with and disconnect from the high voltage circuit, and a conductor that is connected to the energizing contact inside and an external conductor. This is achieved by comprising a charging bushing made of an insulating support and detachably attached to the charging contact. Embodiments of the present invention will be described in detail below with reference to FIGS. 2 to 6. Figure 2 is a cross-sectional view showing an example of a sealed electrical device, and Figure 3 is a single-line diagram of the same, with the transformer (not shown) exposing live parts to the atmosphere through bushings (not shown). It is directly connected to this sealed electrical equipment without any need to do so. A grounded closed container 1 is filled with an insulating medium 2 such as SF 6 gas or insulating oil. A cable head 3 is attached to the inlet side of the hermetic container 1, and a sheath disconnector 4a, a disconnector 4b,
A high voltage circuit 4 such as a grounding device 4c is housed.
5 is a cable connected to the cable head 3. Further, a charging contact 6 is attached to the inlet side of the closed container 1, that is, to the section A in FIG. As shown in detail in FIG. 4, this charging contact 6 penetrates the closed container 1, and its tip is slidable so that it can come into contact with and separate from the high voltage circuit 4 , and is sealed with an O-ring or the like. It is airtightly attached by members 7 and 7a. In addition, the charging contact 6
is prevented from falling into the closed container 1 by a suitable stopper (not shown). On the other hand, as shown in FIG. 5, a charging bushing 8 , which is detachably formed on the base end of the charging contact 6 by a method such as screwing, has a charging contact 6 attached therein. It has a conductor 9 to be connected, and the outside thereof is constituted by an insulating support 10, and the side penetrated into the closed container 1 has the same outer diameter as the energizing contact 6. Next, a withstand voltage test of a sealed electrical device using the above device will be explained. Now, in order to perform an AC withstanding voltage test on the main body of this sealed electrical equipment, attach the conductor 9 of the energizing bushing 8 to the energizing contact 6, and slide the energizing contact 6 so that its tip is connected to the high voltage circuit 4. This state is shown in FIG. At this time, the sealed container 1 and the insulating support 10 of the charging contact 6 or the charging bushing 8 are the sealing member 7,
Since it is sealed by 7a, the insulating medium 2 inside this closed container 1 will not leak to the outside.
In order to prevent the insulating medium from leaking from the joint between the energizing contact 6 and the energizing bushing 8 during attachment and detachment, it is desirable to have at least two rows of seals, the seal members 7 and 7a. The insulating support 1 is used to cover the instability of the seal due to the difference in thermal expansion coefficient between the body 0 and the metal sealed container 1.
It is more reliable if the sealing member 7b is also provided on the joint surface between the insulating support 10 and the hermetic container 1, or the fitting part between the insulating support 10 and the hermetic container 1 is made of metal. After this, the conductor 9 of the energizing bushing 8
By connecting a testing AC power supply device to the base end of the AC power supply and applying power, an AC withstanding voltage test of the main body of the sealed electrical equipment can be performed. If the relative positions of the high-voltage circuit 4 and the energizing contact 6 are not appropriate due to restrictions in their arrangement, the energizing contact 6 and the energizing bushing 8 may be rotated together to bring them into contact with and separate from the high-voltage circuit 4 . It's okay. On the other hand, in order to perform a DC withstand voltage test on the cable 5, if the disconnector 4b of the high voltage circuit 4 is opened, the voltage will pass through the conductor 9 of the energizing bushing 8 , the energizing contact 6, the high voltage circuit 4 , and the cable head 3. A circuit leading to the cable 5 is formed. Therefore, the charging bushing 8
By connecting a DC power supply to the base end of the conductor 9 and applying power, the cable 5 can be tested for DC withstand voltage. In addition, if the length of the cable 5 is short, the DC withstanding voltage test of the cable 5 is not performed, and the AC withstanding voltage test of the sealed electrical equipment and the cable 5 can be performed at the same time. It goes without saying that this can be done using exactly the same method. Next, a case in which a bypass circuit is configured will be described, taking as an example a case where a failure occurs in a transformer and the bypass circuit is connected to a mobile transformer. In this case, the charging contact 6
is attached to the load side of the sealed electrical equipment, that is, to the B part of the container 1 in FIG. In this case as well, the charging bushing 8
If it is attached to the charging contact 6, it becomes possible to bypass the transformer and transmit power from the mobile transformer. In this case , it is necessary that both the charging contact 6 and the charging bushing 8 have a current carrying capacity.
It is necessary that the charging contact 6 and the tulip contact of the high voltage circuit 4 have a current carrying capacity. As described above in detail together with the embodiments, according to the present invention, even in a sealed electrical device with no exposed live parts, withstanding voltage tests and bypass circuit configuration can be performed without opening the sealed container. There is no need for any work such as collecting the insulating medium to expose the live parts, evacuation, or refilling, making the operation easy and highly reliable, and very economical. In addition, there is no need to attach or detach the test cable or product cable to the cable head as in the past, and AC withstand voltage tests on sealed electrical equipment and DC withstand tests on product cables can be performed with the product cables attached. Even in the case of the slip-on method, there is no risk of damaging the joint surface of the cable head. Furthermore, since the energizing contact is directly connected to the grounded sealed container, it does not become a floating electrode and is safe. In addition, it has a very simple structure and is compact, with almost no protrusion from the sealed container. It is extremely economical without sacrificing any of its advantages as a miniature device. Furthermore, this energizing bushing is an emergency component for test equipment or accidents, and is not included in the product price and can be used for multiple sealed electrical devices, making it very economical.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の密閉形電気機器のケーブルの直
流性電圧試験の手順をすフローチヤート図、第2
図は本発明の一実施例を示す断面図、第3図は第
2図の単線結線図、第4図は第2図におけるA部
またはB部の詳細を示す拡大断面図、第5図は課
電用ブツシングの断面図、第6図は耐電圧試験時
の態様を示す断面図である。 1〜密閉容器、2〜絶縁媒体、3〜ケーブルヘ
ツド、〜高圧回路、5〜ケーブル、6〜課電用
接触子、7,7a,7b〜シール部材、〜課電
用ブツシング、9〜導体、10〜絶縁支持体。
Figure 1 is a flowchart showing the procedure for conventional DC voltage testing of cables for sealed electrical equipment;
3 is a single line diagram of FIG. 2, FIG. 4 is an enlarged sectional view showing details of section A or B in FIG. 2, and FIG. 5 is a sectional view showing an embodiment of the present invention. A cross-sectional view of the energizing bushing, FIG. 6 is a cross-sectional view showing an aspect during a withstand voltage test. 1 - Airtight container, 2 - Insulating medium, 3 - Cable head, 4 - High voltage circuit, 5 - Cable, 6 - Contactor for charging, 7, 7a, 7b - Seal member, 8 - Bushing for charging, 9 - conductor, 10 to insulating support;

Claims (1)

【特許請求の範囲】[Claims] 1 絶縁媒体が充填された密閉容器内に高圧回路
が収納されるものにおいて、前記密閉容器を貫通
して気密にかつ摺動自在に配設されて前記高圧回
路に接離する課電用接触子と、内部に該課電用接
触子と接続される導体を有し少くとも前記密閉容
器に貫装される側の外径が該課電用接触子の外径
と同一である絶縁支持体で形成されるとともに該
課電用接触子と着脱自在に構成された課電用ブツ
シングとから成ることを特徴とする密閉形電気機
器。
1. In a device in which a high voltage circuit is housed in a closed container filled with an insulating medium, an energizing contact that penetrates the closed container and is slidably and airtightly disposed to connect to and separate from the high voltage circuit. and an insulating support that has a conductor connected to the energizing contact inside, and at least the outer diameter of the side penetrated by the airtight container is the same as the outer diameter of the energizing contact. What is claimed is: 1. A sealed electric device comprising: a charging contact; and a charging bushing configured to be detachable;
JP56056970A 1981-04-17 1981-04-17 Enclosed electric device Granted JPS57173308A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56056970A JPS57173308A (en) 1981-04-17 1981-04-17 Enclosed electric device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56056970A JPS57173308A (en) 1981-04-17 1981-04-17 Enclosed electric device

Publications (2)

Publication Number Publication Date
JPS57173308A JPS57173308A (en) 1982-10-25
JPH0140568B2 true JPH0140568B2 (en) 1989-08-30

Family

ID=13042375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56056970A Granted JPS57173308A (en) 1981-04-17 1981-04-17 Enclosed electric device

Country Status (1)

Country Link
JP (1) JPS57173308A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0295277A (en) * 1988-09-30 1990-04-06 Showa Electric Wire & Cable Co Ltd Power applying method for closed type electric equipment
JP2011159647A (en) * 2010-01-29 2011-08-18 Daihen Corp Transformer device having tap changer

Also Published As

Publication number Publication date
JPS57173308A (en) 1982-10-25

Similar Documents

Publication Publication Date Title
CN108152693A (en) Three support insulator fault simulating test platform of GIL equipment and simulation experiment method
JP3349275B2 (en) Elephant for cable head
JPH0140568B2 (en)
CN107727989A (en) The test method of oil-gas casing structure transformer
JP3397918B2 (en) Withstand voltage test method for power cable lines
JPH08122401A (en) Withstand voltage test method for long distance power cable line
JPS6341784Y2 (en)
JPH0521923Y2 (en)
JPH0117832Y2 (en)
JP2518115B2 (en) Switchgear
JPH08233885A (en) Testing apparatus
JP2596153Y2 (en) Gas insulated switchgear
JPH0436166Y2 (en)
JP2568613Y2 (en) Gas insulated switchgear
KR20240030739A (en) Socket for test terminal of gas insulated switchgear(gis)
JP2585034B2 (en) Cable testing equipment
JP3031698B2 (en) Instrument transformer
JPH0130801Y2 (en)
JPH09184868A (en) Connection device for withstand voltage test in combination of three phases
JPH0533612U (en) Gas insulated switchgear
JPH0742173Y2 (en) Gas insulated switchgear
JP2955105B2 (en) Cable head for device connection
JPH09252511A (en) Gas-insulated switchgear
JPH089524A (en) Gas-insulated switchgear
JPH0237208Y2 (en)