JPH0140108B2 - - Google Patents

Info

Publication number
JPH0140108B2
JPH0140108B2 JP61122698A JP12269886A JPH0140108B2 JP H0140108 B2 JPH0140108 B2 JP H0140108B2 JP 61122698 A JP61122698 A JP 61122698A JP 12269886 A JP12269886 A JP 12269886A JP H0140108 B2 JPH0140108 B2 JP H0140108B2
Authority
JP
Japan
Prior art keywords
water
corrosion
molybdate
present
soluble silicate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP61122698A
Other languages
Japanese (ja)
Other versions
JPS62280381A (en
Inventor
Kunyuki Takahashi
Tomoyasu Imai
Shinji Ano
Takeshi Konya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP12269886A priority Critical patent/JPS62280381A/en
Publication of JPS62280381A publication Critical patent/JPS62280381A/en
Publication of JPH0140108B2 publication Critical patent/JPH0140108B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F11/00Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent
    • C23F11/08Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids
    • C23F11/18Inhibiting corrosion of metallic material by applying inhibitors to the surface in danger of corrosion or adding them to the corrosive agent in other liquids using inorganic inhibitors
    • C23F11/187Mixtures of inorganic inhibitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は防食方法に係り、特に毒性や閉鎖性水
域における富栄養化等の環境汚染問題を発生させ
ることなく、水と接触する金属、特に鋼材の腐食
を効果的に制御する方法に関するものである。 [従来の技術] 開放循環式冷却水系等の水系では、熱交換器、
配管等の基材に、主として炭素鋼等の鋼材が使用
されている。冷却水中に浸漬されている鋼材は、
水中の溶存酸素や塩素イオン、硫酸イオン等によ
り腐食され、孔食を発生させる。しかして、この
ような孔食は、銅、銅合金やステンレス鋼等の耐
食材料においても起こる。 そこで、従来より、このような水系と接する金
属材の腐食を抑制するために防食剤が用いられて
いる。冷却水系で使用される防食剤は、それ自身
は水に可溶性であるが、金属の表面に酸化皮膜又
は水に不溶性あるいは難溶性の皮膜を形成して、
金属イオンの溶出あるいは溶存酸素の還元反応を
妨げることによつて腐食反応を制御する。 防食剤としては、一般にクロム酸塩や亜鉛塩等
の重金属塩や(ポリ)リン酸塩、有機リン化合物
等が用いられている。 更に、クエン酸、酒石酸等のオキシカルボン酸
が提案されている。 [発明が解決しようとする問題点] これらの従来使用されている防食剤のうち、ク
ロム酸塩は優れた防食効果を奏する反面、低濃度
で使用すると局部腐食が発生しやすい欠点があ
る。また、クロム酸塩は毒性が強く、その排出が
厳しく規制されており、排水処理、回収処理が不
可欠である。亜鉛塩は防食効果の面で若干問題が
あり、かつ排水として流れると規制上問題があ
る。 更に、リン酸塩は赤潮発生の原因となることな
どから、最近では、閉鎖性水域における富栄養化
防止の観点から、リンの排出が規制されている。 このため、現在、毒性や富栄養化等の環境汚染
問題を発生させることなく、水系と接する鋼材等
の金属の腐食を抑制することができる方法の出現
が強く要望されている。 一方、オキシカルボン酸も規制物質を含まない
ものであるが、これは微生物により容易に分解さ
れ、防食効果を持続できないという欠点を有して
いる。 [問題点を解決するための手段] 本発明は上記実情に鑑み、環境汚染問題を惹き
起こすことなく、水系と接する金属の腐食を効果
的に防止ないし制御する方法を提供するべくなさ
れたものであつて、 カルシウム硬度が25〜250mg/の水系に、モ
リブデン酸及び/又はその塩と水溶性ケイ酸塩と
を、各々、Mo換算:SiO2換算の重量割合で11:
1〜1:1となるように存在させることを特徴と
する防食方法、 を要旨とするものである。 従来、水系の金属腐食抑制剤として、モリブデ
ン酸塩又は水溶性ケイ酸塩を用いることは知られ
ている(特公昭57−44753号、特公昭52−34574号
等)。しかしながら、モリブデン酸塩は、良好な
防食効果を有するが、比較的高価であることか
ら、その実用化にも限度がある。これに対し、水
溶性ケイ酸塩は、比較的安価であるが、防食効果
が弱く、実用濃度においては、十分な防食効果は
得られず、良好な防食剤とはいえなかつた。 本発明者らは、このようなモリブデン酸塩と水
溶性ケイ酸塩の特性について鋭意検討を重ねた結
果、特定のカルシウム硬度の水系において、モリ
ブデン酸又はその塩と水溶性ケイ酸塩との特定量
の存在下で、特異的な相乗効果が奏され、優れた
防食効果を得ることができることを見出し、本発
明を完成させた。 以下に本発明を詳細に説明する。 本発明の方法は、開放冷却水系や密閉冷却水
系、ブライン水系等の処理対象水系に、防食剤と
してモリブデン酸及び/又はモリブデン酸塩と水
溶性ケイ酸塩を添加するものであるが、この処理
対象水系のカルシウム硬度は25〜250mg/、好
ましくは50〜150mg/とする。水系のカルシウ
ム硬度が25mg/未満であると、モリブデン酸カ
ルシウムの良好な防食皮膜が金属表面に形成され
ない可能性があり、逆にカルシウム硬度が250
mg/を超えると水中でモリブデン酸カルシウム
の沈殿が析出し、効率的ではない。 このようなカルシウム硬度25〜250mg/とい
う値は、冷却水の場合、工業用水中に存在するカ
ルシウム濃度がそのままこの範囲に入る場合もあ
り、濃縮運転によりこの範囲となることもある。
処理対象水系のカルシウム硬度が上記範囲をはず
れるような水質であつた場合には、必要に応じ
て、予めあるいは本発明に係る有効成分の添加と
同時に、CaCl2等の適当な成分を添加することに
より水質を調整する。 本発明においては、このような水系にモリブデ
ン酸及び/又はモリブデン酸塩と水溶性ケイ酸塩
を添加するが、これらの成分のうち、モリブデン
酸塩としては、モリブデン酸塩の、ナトリウム
塩、カリウム塩、アンモニウム塩等の公知の水溶
性塩が挙げられる。 また、水溶性ケイ酸塩としては、ケイ酸のアル
カリ金属塩が挙げられ、アルカリ金属としては、
経済性、毒性の点から、ナトリウム、カリウムが
好ましい。ケイ酸ナトリウムを用いる場合、その
Na2O/SiO2(重量比)は、4/1〜1/4が好
ましく、特に1/1〜1/4が好ましい。 これらのモリブデン酸及び/又はモリブデン酸
塩と水溶性ケイ酸塩との割合は、モリブデン酸及
び/又はモリブデン酸塩中のMoと水溶性ケイ酸
塩中のSiO2との重量比でMo:SiO2=11:1〜
1:1、好ましくはMo:SiO2=3:1〜1:1
とする。このような配合割合とした場合に、極め
て良好な相乗効果により、著しく高い防食効果が
得られる。 本発明においては、処理対象水系にモリブデン
酸及び/又はモリブデン酸塩と水溶性ケイ酸塩と
を、上記配合割合となるように存在させるもので
あつて、その添加形態は特に制限されず、これら
の有効成分を予め所定割合に混合したものを水系
に添加しても、また、各々別個に添加して、水系
中で混合するようにしても良い。なお、水溶性ケ
イ酸塩が水系に予め所定量存在するときには、モ
リブデン酸又はその塩のみを添加すれば良い。 これらの有効成分の使用濃度は、処理対象水系
の性状やその腐食環境の程度に応じて決定される
が、一般には、水系内のモリブデン酸及び/又は
モリブデン酸塩と水溶性ケイ酸塩との合計濃度が
500〜5000mg/、特に100〜2000mg/となるよ
うに添加するのが好ましい。 なお、本発明においては、上記有効成分により
十分な防食効果が得られるが、必要に応じて、他
の防食剤、例えば、メルカプトベンゾチアゾール
等のチアゾール類;ベンゾトリアゾール等のアゾ
ール類;、ヒドラジン類;シクロヘキシルアミ
ン、アルキルアミン、アルカノールアミン、ポリ
アミン等の水溶性アミン類;エチレンイミン、ピ
ロリジン、ピペリジン、ピペラジン、ケチミン等
のイミン類;ホルムヒドロキサム酸、アセトヒド
ロキサム酸、ベンズヒドロキサム酸等のヒドロキ
サム酸類;カテコール類;タンニン類;リグニン
類;ホスホン酸類;オキシカルボン酸類等の有機
化合物や亜硝酸塩、各種リン酸塩、ホウ酸塩、亜
鉛塩、ニツケル塩、アルミニウム塩、アルミン酸
塩、タングステン塩、バナジウム塩等の無機塩類
等、その他、スケール防止剤、スライム除去剤等
を併用しても良い。 [作用] 本発明における、カルシム硬度25〜250mg/
の水系に、モリブデン酸及び/又はモリブデン酸
塩と水溶性ケイ酸塩とを共存させることによる著
しく優れた防食果のメカニズムについては、次の
ようなことが考えられる。 即ち、モリブデン酸塩や水溶性ケイ酸塩はそれ
ぞれアノード防食剤としての作用を有するが、更
にカルシウム硬度が25〜250mg/の水系におい
ては、モリブデン酸又はモリブデン酸塩はモリブ
デン酸カルシウムの良好な防食皮膜を金属等の被
防食体表面に形成する(カソード防食)。 一方、水溶性ケイ酸塩もまたケイ酸カルシウム
となり、これは上記モリブデン酸カルシウムの防
食皮膜の膜間をシールする作用効果がある。 このようなことから、本発明においては、モリ
ブデン酸及び/又はモリブデン酸と水溶性ケイ酸
塩との併用により、極めて堅固な防食皮膜が形成
されることとなり、著しく優れた相乗効果が得ら
れると推定される。 [実施例] 以下に本発明を実施例及び比較例を挙げて更に
具体的に説明するが、本発明はその要旨を超えな
い限り、以下の実施例に限定されるものではな
い。 実施例1〜4、比較例1〜6 純水に、塩化カルシウム溶液で50mg/(as
CaCO3)、炭酸水素ナトリウム溶液で50mg/
(as CaCO3)、炭酸マグネシウム溶液で30mg/
(as CaCO3)、塩化ナトリウム溶液で50mg/
(as Cl-)及び硫酸ナトリウム溶液で50mg/
(as SO4 2-)を添加して試験液とした。得られた
試験液を1ビーカーに1採り、第1表に示す
各種薬剤を添加し(比較例1においては無添加)、
この液中に軟鋼試験片を各々1枚浸漬し、30℃で
5日間160r.p.m.で回転腐食試験を行ない、その
腐食速度を調べた。 結果を第1表に併記する。 第1表より、本発明に従つて、モリブデン酸塩
と水溶性ケイ酸塩とを併用することにより、各薬
剤を単独で添加した場合の添加濃度よりも低い添
加濃度で、極めて優れた防食作用の相乗効果が得
られることが明らかである。
[Industrial Application Field] The present invention relates to a corrosion prevention method that effectively prevents corrosion of metals, especially steel materials, that come into contact with water, without causing environmental pollution problems such as toxicity and eutrophication in closed water bodies. It concerns a method of control. [Prior art] In water systems such as open circulation cooling water systems, heat exchangers,
Steel materials such as carbon steel are mainly used as base materials for piping and the like. Steel materials immersed in cooling water are
It is corroded by dissolved oxygen, chlorine ions, sulfate ions, etc. in water, causing pitting corrosion. However, such pitting corrosion also occurs in corrosion-resistant materials such as copper, copper alloys, and stainless steel. Therefore, anticorrosive agents have conventionally been used to suppress corrosion of metal materials that come into contact with water systems. Corrosion inhibitors used in cooling water systems are soluble in water themselves, but they form an oxide film or a film that is insoluble or poorly soluble in water on the surface of the metal.
Corrosion reactions are controlled by preventing the elution of metal ions or the reduction reaction of dissolved oxygen. As anticorrosive agents, heavy metal salts such as chromates and zinc salts, (poly)phosphates, organic phosphorus compounds, and the like are generally used. Furthermore, oxycarboxylic acids such as citric acid and tartaric acid have been proposed. [Problems to be Solved by the Invention] Among these conventionally used anticorrosive agents, chromate has an excellent anticorrosive effect, but has the disadvantage that local corrosion tends to occur when used in low concentrations. Furthermore, chromate is highly toxic, and its discharge is strictly regulated, making wastewater treatment and recovery treatment essential. Zinc salts have some problems in terms of anti-corrosion effects, and there are regulatory problems if they are discharged as wastewater. Furthermore, since phosphates are a cause of red tide, the discharge of phosphorus has recently been regulated from the perspective of preventing eutrophication in closed bodies of water. For this reason, there is currently a strong demand for a method that can suppress corrosion of metals such as steel materials that come into contact with water systems without causing environmental pollution problems such as toxicity and eutrophication. On the other hand, although oxycarboxylic acid does not contain any regulated substances, it has the disadvantage that it is easily decomposed by microorganisms and cannot maintain its anticorrosion effect. [Means for Solving the Problems] In view of the above circumstances, the present invention has been made to provide a method for effectively preventing or controlling corrosion of metals in contact with water systems without causing environmental pollution problems. Then, in an aqueous system with a calcium hardness of 25 to 250 mg/molybdic acid and/or its salt and a water-soluble silicate, each was added at a weight ratio of 11: Mo equivalent: SiO 2 equivalent:
The gist of the present invention is to provide a method for preventing corrosion, characterized in that the ratio is 1 to 1:1. Conventionally, it has been known to use molybdates or water-soluble silicates as water-based metal corrosion inhibitors (Japanese Patent Publication No. 57-44753, Japanese Patent Publication No. 52-34574, etc.). However, although molybdate has a good anti-corrosion effect, it is relatively expensive, which limits its practical use. On the other hand, although water-soluble silicates are relatively inexpensive, they have a weak anticorrosion effect, and cannot be said to be good anticorrosive agents at practical concentrations. As a result of intensive studies on the characteristics of such molybdates and water-soluble silicates, the present inventors have determined that molybdic acid or its salts and water-soluble silicates can be identified in an aqueous system with a specific calcium hardness. The present inventors have completed the present invention by discovering that in the presence of a certain amount, a specific synergistic effect is produced and an excellent anticorrosion effect can be obtained. The present invention will be explained in detail below. The method of the present invention involves adding molybdic acid and/or molybdate and a water-soluble silicate as anticorrosive agents to a water system to be treated, such as an open cooling water system, a closed cooling water system, or a brine water system. The calcium hardness of the target water system is 25 to 250 mg/, preferably 50 to 150 mg/. If the calcium hardness of the water system is less than 25mg, a good anticorrosive film of calcium molybdate may not be formed on the metal surface, and conversely, if the calcium hardness is less than 25mg/
If it exceeds mg/, calcium molybdate precipitates in water, which is not efficient. In the case of cooling water, the calcium hardness value of 25 to 250 mg/ is sometimes within this range due to the calcium concentration present in industrial water, and may also be within this range due to concentration operation.
If the water quality of the water system to be treated is such that the calcium hardness is outside the above range, an appropriate ingredient such as CaCl 2 may be added as necessary, either in advance or at the same time as the addition of the active ingredient according to the present invention. Adjust the water quality by In the present invention, molybdic acid and/or a molybdate salt and a water-soluble silicate are added to such an aqueous system. Known water-soluble salts such as salts and ammonium salts can be mentioned. In addition, examples of water-soluble silicates include alkali metal salts of silicic acid, and examples of alkali metals include:
From the viewpoint of economy and toxicity, sodium and potassium are preferred. When using sodium silicate, its
Na2O / SiO2 (weight ratio) is preferably 4/1 to 1/4, particularly preferably 1/1 to 1/4. The ratio of molybdic acid and/or molybdate to water-soluble silicate is the weight ratio of Mo in the molybdic acid and/or molybdate to SiO2 in the water-soluble silicate.Mo:SiO 2 = 11:1~
1:1, preferably Mo: SiO2 = 3:1 to 1:1
shall be. When such a blending ratio is used, an extremely high anticorrosive effect can be obtained due to an extremely good synergistic effect. In the present invention, molybdic acid and/or molybdate and water-soluble silicate are present in the water system to be treated at the above-mentioned mixing ratio, and the form of addition is not particularly limited. The active ingredients may be mixed in advance at a predetermined ratio and added to the aqueous system, or each may be added separately and mixed in the aqueous system. Note that when a predetermined amount of water-soluble silicate is present in the aqueous system, only molybdic acid or a salt thereof may be added. The concentration of these active ingredients used is determined depending on the properties of the water system to be treated and the degree of its corrosive environment, but in general, the concentration of molybdic acid and/or molybdate and water-soluble silicate in the water system is determined. The total concentration is
It is preferably added in an amount of 500 to 5000 mg/, particularly 100 to 2000 mg/. In the present invention, a sufficient anticorrosive effect can be obtained with the above-mentioned active ingredients, but if necessary, other anticorrosive agents such as thiazoles such as mercaptobenzothiazole; azoles such as benzotriazole; and hydrazines may be used. ; Water-soluble amines such as cyclohexylamine, alkylamine, alkanolamine, and polyamine; Imines such as ethyleneimine, pyrrolidine, piperidine, piperazine, and ketimine; Hydroxamic acids such as formhydroxamic acid, acetohydroxamic acid, and benzhydroxamic acid; Catechol Tannins; Lignins; Phosphonic acids; Organic compounds such as oxycarboxylic acids, nitrites, various phosphates, borates, zinc salts, nickel salts, aluminum salts, aluminates, tungsten salts, vanadium salts, etc. Other inorganic salts, scale inhibitors, slime removers, etc. may be used in combination. [Function] In the present invention, calcium hardness of 25 to 250 mg/
The following is thought to be the mechanism for the extremely excellent anti-corrosion effect achieved by coexisting molybdic acid and/or molybdate and water-soluble silicate in the aqueous system. In other words, molybdate and water-soluble silicate each have an action as an anode anticorrosive agent, but furthermore, in an aqueous system with a calcium hardness of 25 to 250 mg/molybdate, molybdate or molybdate has a good anticorrosive effect on calcium molybdate. A film is formed on the surface of the object to be protected, such as metal (cathode protection). On the other hand, the water-soluble silicate also becomes calcium silicate, which has the effect of sealing between the anticorrosive coatings of calcium molybdate. Therefore, in the present invention, by using molybdic acid and/or molybdic acid in combination with a water-soluble silicate, an extremely strong anti-corrosion film is formed, and an extremely excellent synergistic effect can be obtained. Presumed. [Examples] The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples unless it exceeds the gist thereof. Examples 1 to 4, Comparative Examples 1 to 6 Add calcium chloride solution to pure water at 50 mg/(as
CaCO 3 ), 50 mg/sodium bicarbonate solution
(as CaCO 3 ), 30 mg/magnesium carbonate solution
(as CaCO 3 ), 50 mg/sodium chloride solution
(as Cl - ) and 50mg/in sodium sulfate solution
(as SO 4 2- ) was added to prepare a test solution. The obtained test solution was placed in one beaker, and various chemicals shown in Table 1 were added (no addition was made in Comparative Example 1).
One mild steel test piece was immersed in this solution, and a rotary corrosion test was conducted at 30° C. and 160 rpm for 5 days to examine the corrosion rate. The results are also listed in Table 1. From Table 1, according to the present invention, by using molybdate and water-soluble silicate in combination, extremely excellent anticorrosion effect can be achieved at a lower additive concentration than when each agent is added alone. It is clear that a synergistic effect can be obtained.

【表】【table】

【表】 実施例5〜12、比較例7〜10 純水に1級エチレングリールを30体積%の割合
で溶解したものを使用し、塩化カルシウム溶液で
50mg/(as CaCO3)、炭酸水素ナトリウム溶
液で82mg/(as CaCO3)、塩化ナトリウム溶
液で、500mg/(as Cl-)、硫酸ナトリウム溶液
で500mg/(as SO4 2-)を添加して試験液とし
た。 この試験液に、薬剤無添加で、30℃で3日間軟
鋼試験片(spcc、31cm2)を浸漬して予め既発錆面
を作成し、次いで第2表に示す各種薬剤を添加し
(比較例7は無添加)、PHを7に調整した後、10℃
で7日間180r.p.mで回転腐食試験を行ない、腐食
減量を調べた。 結果を第2表に示す。なお、薬剤無添加の状態
で3日間既発錆面の形成を行なつた際の腐食減量
は82.8mgであつた。
[Table] Examples 5 to 12, Comparative Examples 7 to 10 Using a solution of primary ethylene glycol dissolved in pure water at a ratio of 30% by volume, it was dissolved in calcium chloride solution.
50 mg/(as CaCO 3 ), 82 mg/(as CaCO 3 ) in sodium bicarbonate solution, 500 mg/(as Cl - ) in sodium chloride solution, 500 mg/(as SO 4 2- ) in sodium sulfate solution. This was used as the test solution. A mild steel test piece (SPCC, 31 cm 2 ) was immersed in this test solution for 3 days at 30°C without the addition of any chemicals to prepare an already rusted surface, and then various chemicals shown in Table 2 were added (comparison). Example 7 is without additives), after adjusting the pH to 7, at 10℃
A rotary corrosion test was conducted at 180 rpm for 7 days to examine the corrosion weight loss. The results are shown in Table 2. The corrosion weight loss when the rusted surface was formed for 3 days without the addition of chemicals was 82.8 mg.

【表】【table】

【表】 第2表より、本発明のモリブデン酸塩と水溶性
ケイ酸塩との併用により、既発錆面に対しても、
各薬剤の単独添加では得られなかつた優れた防食
効果が得られることが明らかである。 実施例13〜17、比較例11、12 実施例8において、塩化カルシウム溶液の添加
量を変えて、試験液のカルシウム硬度を第3表に
示すように変更したこと以外は同様にして腐食試
験を行ない、腐食減量を調べた。 結果を第3表に示す。 第3表より、カルシウム硬度25〜250mg/の
範囲において、モリブデン酸塩と水溶性ケイ酸塩
とによる良好な防食効果が得られることが明らか
である。
[Table] From Table 2, it can be seen that the combined use of the molybdate of the present invention and water-soluble silicate can also be used on already rusted surfaces.
It is clear that an excellent anticorrosive effect that could not be obtained by adding each agent alone can be obtained. Examples 13 to 17, Comparative Examples 11 and 12 Corrosion tests were conducted in the same manner as in Example 8, except that the amount of calcium chloride solution added was changed and the calcium hardness of the test solution was changed as shown in Table 3. The corrosion weight loss was investigated. The results are shown in Table 3. From Table 3, it is clear that a good anticorrosion effect can be obtained by molybdate and water-soluble silicate in the calcium hardness range of 25 to 250 mg/.

【表】 [発明の効果] 以上詳述した通り、本発明の防食方法は、カル
シウム硬度が25〜250mg/の水系に、特定割合
のモリブデン酸及び/又はモリブデン酸塩と水溶
性ケイ酸塩とを存在させるものとであつて、2つ
の有効成分による優れた相乗効果により、著しく
高い防食効果が得られ、水と接触する鋼材等の金
属に対して優れた防食抑制ないし防止効果を奏す
る。 本発明によれば、少ない薬剤使用量で十分な効
果が得られることから、防食処理コストの低減が
図れ、しかも既発錆面に対しても優れた防食効果
を奏する。更に排水中に、重金属塩が含まれない
ので毒性の問題がなく、またリンを含まず低
CODであるので富栄養化の問題もない。 このため、本発明によれば環境汚染問題を生起
させることなく、金属の腐食を有効に防止し得
る。
[Table] [Effects of the Invention] As detailed above, the corrosion prevention method of the present invention involves adding a specific proportion of molybdic acid and/or molybdate and a water-soluble silicate to an aqueous system having a calcium hardness of 25 to 250 mg/. Due to the excellent synergistic effect of the two active ingredients, an extremely high anticorrosive effect can be obtained, and an excellent anticorrosion suppressing or preventing effect is achieved on metals such as steel materials that come into contact with water. According to the present invention, a sufficient effect can be obtained with a small amount of the chemical used, so the cost of anticorrosion treatment can be reduced, and furthermore, an excellent anticorrosion effect can be achieved even on already rusted surfaces. In addition, the wastewater does not contain heavy metal salts, so there is no toxicity problem, and it does not contain phosphorus.
Since it is COD, there is no problem of eutrophication. Therefore, according to the present invention, metal corrosion can be effectively prevented without causing environmental pollution problems.

Claims (1)

【特許請求の範囲】 1 カルシウム硬度が25〜250mg/の水系に、
モリブデン酸及び/又はその塩と水溶性ケイ酸塩
とを、各々、Mo換算:SiO2換算の重量割合で
11:1〜1:2となるように存在させることを特
徴とする防食方法。 2 水系のカルシウム硬度が50〜150mg/であ
ることを特徴とする特許請求の範囲第1項に記載
の方法。 3 モリブデン酸及び/又はその塩と水溶性ケイ
酸塩とを、各々、Mo換算:SiO2換算の重量割合
で3:1〜1:1.4となるように存在させること
を特徴とする特許請求の範囲第1項又は第2項に
記載の方法。 4 モリブデン酸塩は、モリブデン酸のナトリウ
ム塩、カリウム塩又はアンモニウム塩であること
を特徴とする特許請求の範囲第1項ないし第3項
のいずれか1項に記載の方法。 5 水溶性ケイ酸塩は、ケイ酸のアルカリ金属塩
であることを特徴とする特許請求の範囲第1項な
いし第4項のいずれか1項に記載の方法。
[Claims] 1. In an aqueous system with a calcium hardness of 25 to 250 mg/
Molybdic acid and/or its salt and water-soluble silicate, respectively, in the weight ratio of Mo equivalent: SiO 2 equivalent
A corrosion prevention method characterized in that the ratio is 11:1 to 1:2. 2. The method according to claim 1, wherein the calcium hardness of the aqueous system is 50 to 150 mg/. 3. A patent claim characterized in that molybdic acid and/or its salt and a water-soluble silicate are present in a weight ratio of 3:1 to 1:1.4 in terms of Mo: SiO2 , respectively. The method according to scope 1 or 2. 4. The method according to any one of claims 1 to 3, wherein the molybdate is a sodium salt, potassium salt, or ammonium salt of molybdic acid. 5. The method according to any one of claims 1 to 4, wherein the water-soluble silicate is an alkali metal salt of silicic acid.
JP12269886A 1986-05-28 1986-05-28 Corrosion protecting method Granted JPS62280381A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12269886A JPS62280381A (en) 1986-05-28 1986-05-28 Corrosion protecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12269886A JPS62280381A (en) 1986-05-28 1986-05-28 Corrosion protecting method

Publications (2)

Publication Number Publication Date
JPS62280381A JPS62280381A (en) 1987-12-05
JPH0140108B2 true JPH0140108B2 (en) 1989-08-25

Family

ID=14842398

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12269886A Granted JPS62280381A (en) 1986-05-28 1986-05-28 Corrosion protecting method

Country Status (1)

Country Link
JP (1) JPS62280381A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0807695A1 (en) * 1996-05-15 1997-11-19 Nalco Chemical Company A non-phosphorus corrosion inhibitor for industrial cooling water systems and airwasher systems
AU2002348177A2 (en) * 2001-11-06 2003-05-19 Water Solutionz International, Inc. Coolant treatment formulation

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893554A (en) * 1972-03-10 1973-12-04
JPS5268835A (en) * 1975-12-05 1977-06-08 Katayama Chemical Works Co Anticorrosive for condensed water in circulation system
JPS5343376A (en) * 1976-09-28 1978-04-19 Masaji Hayashi Method and device for separating articles queuing
JPS5375139A (en) * 1976-12-14 1978-07-04 Takayasu Kyoteru Anticorrosive method of metal or alloy
US4440721A (en) * 1981-10-26 1984-04-03 Basf Wyandotte Corporation Aqueous liquids containing metal cavitation-erosion corrosion inhibitors

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4893554A (en) * 1972-03-10 1973-12-04
JPS5268835A (en) * 1975-12-05 1977-06-08 Katayama Chemical Works Co Anticorrosive for condensed water in circulation system
JPS5343376A (en) * 1976-09-28 1978-04-19 Masaji Hayashi Method and device for separating articles queuing
JPS5375139A (en) * 1976-12-14 1978-07-04 Takayasu Kyoteru Anticorrosive method of metal or alloy
US4440721A (en) * 1981-10-26 1984-04-03 Basf Wyandotte Corporation Aqueous liquids containing metal cavitation-erosion corrosion inhibitors

Also Published As

Publication number Publication date
JPS62280381A (en) 1987-12-05

Similar Documents

Publication Publication Date Title
US4108790A (en) Corrosion inhibitor
US4409121A (en) Corrosion inhibitors
AU2009316522B2 (en) Composition and method for controlling copper discharge and erosion of copper alloys in industrial systems
JPH06306652A (en) Corrosion inhibitor for metal and corrosion inhibiting method for metal
JPH0140108B2 (en)
JP3925296B2 (en) Anticorrosion method
KR900003981B1 (en) Method for corrosion inhibition of metals
JP5559629B2 (en) Water-based metal anticorrosion method
JP2575740B2 (en) Anticorrosive for soft water boiler
JPS589157B2 (en) Kinzokuno Fushiyokuboushisoseibutsu
JP3838610B2 (en) Water-based anticorrosive and anticorrosion method
JPS58224180A (en) Corrosion inhibitor
JP3838612B2 (en) Water-based anticorrosion method
JPH0125825B2 (en)
JP2708082B2 (en) One-part type water treatment agent
JPS5834550B2 (en) Method for suppressing corrosion of metals in contact with calcium chloride aqueous solution
JPS60169575A (en) Anticorrosive for copper
JP4237853B2 (en) Corrosion inhibitor and corrosion prevention method for ferrous metals in cooling water system
JP6932409B1 (en) Anticorrosive agents and anticorrosive methods in water systems
JP6589959B2 (en) Corrosion prevention method
TR2023006219A2 (en) A COMPOSITION THAT PREVENTS CALCULATION AND CORROSION WITH BIOCIDE FEATURES ON METALLIC SURFACES
JP2010173994A (en) Multifunctional water treatment agent
JPH10195681A (en) Corrosion preventing agent and corrosion preventing method
JP2004339611A (en) Water-based anticorrosive
JPS62287085A (en) Anticorrosive for brine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term