JPH0140092B2 - - Google Patents

Info

Publication number
JPH0140092B2
JPH0140092B2 JP60288923A JP28892385A JPH0140092B2 JP H0140092 B2 JPH0140092 B2 JP H0140092B2 JP 60288923 A JP60288923 A JP 60288923A JP 28892385 A JP28892385 A JP 28892385A JP H0140092 B2 JPH0140092 B2 JP H0140092B2
Authority
JP
Japan
Prior art keywords
less
alloy
heating
corrosion
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP60288923A
Other languages
Japanese (ja)
Other versions
JPS61179816A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP28892385A priority Critical patent/JPS61179816A/en
Publication of JPS61179816A publication Critical patent/JPS61179816A/en
Publication of JPH0140092B2 publication Critical patent/JPH0140092B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/005Modifying the physical properties by deformation combined with, or followed by, heat treatment of ferrous alloys

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は高吸振性および高耐食性鉄基合金に関
するものである。 従来船舶用プロペラ、各種撹拌用プロペラ、イ
ンペラーなどの素材にはステンレス鋳鋼、マンガ
ン青銅、アルミニウム青銅などの耐食性鋳造合金
が使用されている。これらのうちのステンレス鋼
としては25Cr−6Ni系(JIS−SCS11)あるいは
20Cr−10Ni系(JIS−SCS13)合金が代表的であ
るが、これらの合金は製品の安定性、耐食性(特
にすき間ふ食)、機械的強度および減衰能に問題
があるので、さらにその改善が要求されるように
なつてきた。 本発明の目的は上述の性質を改善してさらにす
ぐれた吸振性、耐食性および機械的性質を有する
合金を提供することにある。このため、本発明者
等は幾多の研究の結果重量比にてクロム20.1〜35
%、コバルト1.2〜19%、銅0.01〜3%および残
部鉄からなる四元合金に副成分としてモリブデ
ン、タングステン10%以下、ニオビウム5%以
下、アルミニウム、チタン3%以下、バナジウ
ム、タンタル2%以下、マンガン、ジルコン1.5
%以下、燐、鉛1%以下のうち1種または2種以
上の全量0.01〜40%を含有する合金がその目的に
かなうことがわかつた。 本発明の合金の製造法は、重量比にてクロム
20.1〜35%、コバルト1.2〜19%、銅0.01〜3%お
よび残部鉄よりなる合金に副成分としてモリブデ
ン、タングステン10%以下、ニオビウム5%以
下、アルミニウム、チタン3%以下、バナジウ
ム、タンタル2%以下、ジルコン、マンガン1.5
%以下、燐、鉛、硫黄1%以下の1種または2種
以上の全量0.01〜40%を含有する合金の成形体
に、 (A) 均質溶体化処理のためその合金の融点以下
500℃以上の高温で1分間以上100時間以下加熱
した後、冷却する工程と、 (B) 上記の冷却後冷間工程を行う工程と、 (C) 上述の冷間加工後、900℃以下で1分間以上
100時間以下加熱し、ついで1℃/秒ないし1
℃/時の速度で徐冷する工程と、 よりなる熱処理を施し、Q-1が5×10-3以上の減
衰能と、少くとも300mV以上の孔食電位に耐え
腐食しない合金を得ることを特徴とする。 本発明の合金の製造法において、溶体化処理は
合金の組織を均質にするために磁気変態点である
約500℃の温度以上融点以下の温度で1分間ない
し100時間以下で加熱するもので、研究室規模の
質量の小さいものおよび融点に近い高温加熱の場
合は1分間以上の加熱でよく、質量が大きくなり
500℃近くの比較的低い温度で加熱するときは100
時間以下の長時間加熱を必要とする。 この均質溶体化処理後の冷却は急冷(毎秒1
℃/秒/以上で急冷)でも徐冷(1℃/秒〜1
℃/時の速度)で冷却してもよい。500℃以上融
点以下の温度に加熱された合金の成形体を徐冷す
ると、組織に歪が生じないため減衰能は向上し、
耐食性が向上するが機械的特性は若干下る。これ
に対し均質溶体化処理した合金の成形体を高温状
態より急冷すると、減衰能および耐食性が若干下
つても機械的特性が向上する。 次に(A)の熱処理のうち徐冷をしたものに(B)の冷
間加工を施すと機械的特性が著しく向上する。 又(A)の熱処理のうち急冷をしたものに(B)の冷間
加工を施すと機械的特性が更に向上する。 次に(A)の熱処理により得られた合金の成形体の
機械的特性を改善するために、(B)の冷間加工を施
すと、組織に若干歪が生じ、耐食性が若干悪くな
り減衰能が若干下り、加工性が若干悪くなる。こ
のために(C)の再熱処理をするため、900℃以下の
温度で1分ないし100時間以下加熱し、毎秒1℃
以下毎時1℃以上の速度で徐冷し、組織を再度均
質化すると減衰能が向上し、耐食性も高く、かつ
機械的特性(抗張力その他)が向上し、かつ加工
性も良くなり減衰能Q-1が5×10-3以上の高い減
衰能と少くとも300mV以上の孔食電位に耐える
腐食しないものが得られるのである。 従つて、一般的には高温で溶体化処理したもの
を急冷し、冷間加工し、かつ低温加熱してテンパ
ーをすると上記の特性のものを得ることが容易と
なる。 次に本発明合金の製造方法についてさらに詳細
に説明する。 本発明においては、まず上記合金の組成範囲に
おいて適量の鉄、コバルトおよびクロム、銅を主
成分としてさらに副成分を加え、空気中もしくは
不活性ガス中または真空中において通常の溶解炉
によつて溶解した後、マンガン、珪素、チタン、
アルミニウム、ジルコン、ミツシユメタル、カル
シウムなど少量(約1%以下)を添加し有害な不
純物を除き、充分に撹拌して組成的に均一な溶融
合金(約1%以下の添加元素はいずれも鋳塊中に
残存しない程度の量とする)を造り、用途に適合
する形状に鋳込むか、または鋳塊を常温あるいは
融点以下の温度において鍛造圧延あるいはスエー
ジングなどを施して素材を成形し、これらの鋳物
または形成体につぎのごとき(A)、(B)及び(C)よりな
る熱処理を施すものである。 (A) 溶体化処理のためその合金の融点以下、500
℃以上の高温で100時間以下加熱した後、急冷
或いは徐冷して冷却を行う。 (B) 上記の冷却後冷間加工を行う。 (C) (B)の冷間加工後、900℃以下で1分間以上100
時間以下加熱し、ついで毎秒1℃以下の速度で
徐冷する。 以上のように溶体化処理の前段即ち合金の溶解
の工程で、雰囲気を不活性ガス又は真空中で行う
のは金属の溶解の過程で不純物が溶体中に混入す
るのを防ぐためであり、更にこれに始めより溶体
中に介在していた不純物を除去する目的でマンガ
ン、チタン、アルミニウム、ジルコン、ミツシユ
メタル、カルシウムの何れか1種又は2種以上を
1%以下の少量添加して脱酸し、主として酸化物
形態の有害な不純物介在物を除去することが高減
衰能、高耐食性鉄基合金を得るのに好ましい。 但し、これらの脱酸剤は脱酸の目的で添加する
ので1%以下の極く少量添加すれば足り最終製品
にはこれ等の成分が残留しないようにした方がよ
り好結果が得られる。 つぎに本発明の実施例について説明する。 第1表に示す組成の鉄、クロム、銅およびコバ
ルトの全量約1Kgをアルミナ坩堝中で高周波誘導
電気炉により溶解した後、溶湯をよく撹拌し、鉄
型に鋳込んで35mm×35mmの角型鋳塊を得た。つぎ
にこれを1000℃でで1時間加熱し、100℃/hrの
速度で冷却した後、さらに95%冷間加工して直径
約8mmの丸棒とし、耐食テストに用い、また一部
を鍛造によつて直径5mmφとしてから、冷間引抜
きにより直径2mmφならびに0.55mmφの丸線と
し、それから適当な長さに切りとつてそれぞれ冷
間加工状態に引張テストおよび減衰能テストに用
いた。またさらにこれらを900℃で1時間加熱し
た後、100℃/hrの速度で冷却して再焼鈍状態の
テストに用いた。 耐食テストは陽分極腐食テスト法とすきま腐食
テスト法により行い、減衰能テストはねじれ振動
法により最大剪断歪み振幅0.8×10-4で行い、第
1表〜第4表および第1図に示す結果を得た。
The present invention relates to a highly vibration-absorbing and highly corrosion-resistant iron-based alloy. Conventionally, corrosion-resistant cast alloys such as stainless steel, manganese bronze, and aluminum bronze have been used for materials such as marine propellers, various stirring propellers, and impellers. Among these stainless steels, 25Cr-6Ni series (JIS-SCS11) or
20Cr-10Ni (JIS-SCS13) alloys are typical, but these alloys have problems with product stability, corrosion resistance (especially crevice corrosion), mechanical strength, and damping ability, so further improvements are needed. It has become required. It is an object of the present invention to improve the above-mentioned properties and provide an alloy having even better vibration absorption, corrosion resistance and mechanical properties. Therefore, as a result of numerous studies, the present inventors determined that the weight ratio of chromium 20.1 to 35
%, cobalt 1.2 to 19%, copper 0.01 to 3%, and the balance iron, as subcomponents of molybdenum, tungsten 10% or less, niobium 5% or less, aluminum, titanium 3% or less, vanadium, tantalum 2% or less , manganese, zircon 1.5
It has been found that an alloy containing 0.01 to 40% of one or more of phosphorus and lead of 1% or less is suitable for this purpose. The method for producing the alloy of the present invention is based on the weight ratio of chromium
An alloy consisting of 20.1-35%, cobalt 1.2-19%, copper 0.01-3% and the balance iron, with sub-components of molybdenum, tungsten 10% or less, niobium 5% or less, aluminum, titanium 3% or less, vanadium, tantalum 2%. Below, zircon, manganese 1.5
(A) Homogeneous solution treatment to a temperature below the melting point of the alloy due to homogeneous solution treatment.
A process of heating at a high temperature of 500℃ or higher for 1 minute or more and 100 hours or less, and then cooling it; (B) A process of performing the above-mentioned cold processing after cooling; (C) A process of performing the above-mentioned cold processing at a temperature of 900℃ or below. 1 minute or more
Heating for 100 hours or less, then heating at 1°C/sec to 1
By performing a slow cooling process at a rate of ℃/hour and heat treatment, we obtained an alloy with a damping capacity of Q -1 of 5 × 10 -3 or more and a corrosion-free alloy that can withstand a pitting potential of at least 300 mV or more. Features. In the method for producing the alloy of the present invention, the solution treatment is heating at a temperature above the magnetic transformation point of approximately 500°C and below the melting point for 1 minute to 100 hours in order to homogenize the structure of the alloy. In the case of laboratory scale items with small mass and high temperature heating close to the melting point, heating for 1 minute or more is sufficient;
100 when heating at a relatively low temperature near 500℃
Requires long-term heating of less than 1 hour. Cooling after this homogeneous solution treatment is rapid cooling (1/sec
Rapid cooling at ℃/sec/or more) or gradual cooling (1℃/sec to 1
℃/hour). When an alloy molded body heated to a temperature above 500℃ and below the melting point is slowly cooled, the damping capacity improves because no strain occurs in the structure.
Corrosion resistance improves, but mechanical properties deteriorate slightly. On the other hand, when a molded body of an alloy subjected to homogeneous solution treatment is rapidly cooled from a high temperature state, the mechanical properties are improved even if the damping capacity and corrosion resistance are slightly decreased. Next, when the cold working of (B) is applied to the slowly cooled material of the heat treatment of (A), the mechanical properties are significantly improved. Moreover, when the cold working of (B) is applied to the heat treated material of (A) which has been rapidly cooled, the mechanical properties are further improved. Next, in order to improve the mechanical properties of the alloy compact obtained by the heat treatment in (A), cold working in (B) is applied, which causes some distortion in the structure, slightly deteriorates the corrosion resistance, and reduces the damping capacity. is slightly lower, and workability is slightly worse. For this purpose, in order to perform reheat treatment (C), heat at a temperature of 900°C or less for 1 minute to 100 hours or less, at 1°C per second.
When the structure is homogenized again by slow cooling at a rate of 1°C or more per hour, the damping capacity is improved, corrosion resistance is high, mechanical properties (tensile strength etc.) are improved, and workability is also improved, damping capacity Q - This makes it possible to obtain a material with a high attenuation capacity of 5 x 10 -3 or more and a corrosion-free material that can withstand a pitting potential of at least 300 mV or more. Therefore, generally, the above characteristics can be easily obtained by rapidly cooling a material that has been solution-treated at a high temperature, cold working it, and then tempering it by heating it at a low temperature. Next, the method for producing the alloy of the present invention will be explained in more detail. In the present invention, first, appropriate amounts of iron, cobalt, chromium, and copper are added as main components in the above alloy composition range, and additional subcomponents are added, and then melted in an ordinary melting furnace in air, inert gas, or vacuum. After that, manganese, silicon, titanium,
A small amount (approximately 1% or less) of aluminum, zircon, Mitsushi metal, calcium, etc. is added, harmful impurities are removed, and the molten alloy is thoroughly stirred to create a compositionally uniform molten alloy (all added elements of approximately 1% or less are in the ingot). These castings can be produced by casting the ingot into a shape suitable for the intended use, or by forging and rolling or swaging the ingot at room temperature or at a temperature below the melting point to form the material. Alternatively, the formed body is subjected to heat treatment consisting of the following (A), (B) and (C). (A) Below the melting point of the alloy due to solution treatment, 500
After heating at a high temperature of ℃ or higher for 100 hours or less, cooling is performed by rapid cooling or slow cooling. (B) Perform cold working after cooling as described above. (C) After cold working of (B), 100°C for more than 1 minute at 900℃ or less
The mixture is heated for up to an hour and then slowly cooled at a rate of up to 1°C per second. As mentioned above, the reason for performing the preliminary stage of solution treatment, that is, the process of melting the alloy, in an inert gas or vacuum atmosphere is to prevent impurities from entering the solution during the metal melting process. In order to remove impurities that were present in the solution from the beginning, one or more of manganese, titanium, aluminum, zircon, Mitsushimetal, and calcium is added in a small amount of 1% or less to deoxidize. It is preferable to remove harmful impurity inclusions, mainly in the form of oxides, to obtain a high damping capacity, high corrosion resistance iron-based alloy. However, since these deoxidizing agents are added for the purpose of deoxidizing, it is sufficient to add a very small amount of 1% or less, and better results can be obtained by ensuring that these components do not remain in the final product. Next, embodiments of the present invention will be described. After melting approximately 1 kg of iron, chromium, copper, and cobalt having the composition shown in Table 1 in an alumina crucible in a high-frequency induction electric furnace, the molten metal was thoroughly stirred and cast into an iron mold to form a 35 mm x 35 mm square shape. Obtained an ingot. Next, this was heated at 1000℃ for 1 hour, cooled at a rate of 100℃/hr, and then further cold-worked by 95% to form a round bar with a diameter of approximately 8mm, which was used for corrosion resistance tests, and a portion was forged. The wires were made into diameters of 5 mmφ by cold drawing, and round wires with diameters of 2 mmφ and 0.55 mmφ were obtained by cold drawing.The wires were then cut to appropriate lengths and used in cold working conditions for tensile tests and damping capacity tests. Furthermore, after heating these at 900°C for 1 hour, they were cooled at a rate of 100°C/hr and used for a re-annealing state test. The corrosion resistance test was conducted using the anodic polarization corrosion test method and the crevice corrosion test method, and the damping capacity test was conducted using the torsional vibration method at a maximum shear strain amplitude of 0.8×10 -4.The results are shown in Tables 1 to 4 and Figure 1. I got it.

【表】【table】

【表】【table】

【表】【table】

【表】 これらの表から明らかなように、本発明の四元
〜六元合金は耐食性、機械的性質およ減衰能特性
が非常によく、25Cr−6Niあるいは20Cr−10Ni
ステンレス鋼に比し格段に優秀である。 従つて本発明合金はせんばく用プロペラ、各種
撹拌用プロペラ、インペラーその他種々の高い耐
食性、高い吸振性および機械的強度を要する機器
の素材として非常に好適である。 最後に本発明合金の組成を限定した理由につい
て述べる。 まず、Fe−Cr−Co−Cu四元合金において
Cr20.1〜35%、Co1.2〜19%、Cu0.01〜3%およ
び鉄残部と限定したのは、その組成範囲外では本
発明の目的とする高減衰能、高耐食性が得られな
いばかりでなく加工性が悪くなるからである。 本発明のFe−Cr−Co−Cu四元合金の組成中、
鉄、クロム、コバルト及び銅の一部をモリブデ
ン、タングステン10%以下、ニオビウム5%以
下、アルミニウム、チタン3%以下、バナジウ
ム、タンタル2%以下、マンガン、ジルコニウム
1.5%以下の1種または2種以上の全量0.01〜40
%で置換しても所望の目的とする特性が得られ
る。 Fe−Cr−Co−Cu−Mo、Fe−Cr−Co−Cu−
W、Fe−Cr−Co−Cu−Nb系の五元合金におい
てモリブデン、タングステンを各10%以下、ニオ
ビウム5%以下としたのはそれ以上では本発明の
目的とする減衰能特性が得られないばかりでな
く、加工性が悪くなるからである。 Fe−Cr−Co−Cu−Al、Fe−Cr−Co−Cu−Ti
系の五元合金においてアルミニウム、チタンを各
3%以下としたのはそれ以上では本発明の目的と
する減衰能特性が得られないばかりでなく、耐食
性および加工性が悪くなるからである。 Fe−Cr−Co−Cu−V、Fe−Cr−Co−Cu−
Ta、Fe−Cr−Co−Cu−Zrの五元合金において
バナジウム、タンタルを各2%以下、ジルコニウ
ム1.5%以下としたのはそれ以上では本発明の目
的とする減衰能特性が得られないばかりてなく、
機械的強度および加工性が悪くなるからである。 Fe−Cr−Co−Cu−Mn、Fe−Cr−Co−Cu−
P、Fe−Cr−Co−Cu−Pb、Fe−Cr−Co−Cu−
S系の五元合金においてマンガン1.5%以下、燐、
鉛、炭素を各1%以下としたのは、それ以上で
は、本発明の目的とする減衰能特性が得られない
ばかりでなく加工性ならびに耐食性が悪くなるか
らである。 本発明合金の各成分の特性の一般的傾向を表示
すると次のとおりである。
[Table] As is clear from these tables, the quaternary to six-element alloys of the present invention have very good corrosion resistance, mechanical properties, and damping capacity characteristics, and are superior to 25Cr-6Ni or 20Cr-10Ni.
Much superior to stainless steel. Therefore, the alloy of the present invention is very suitable as a material for propellers for rice crackers, various stirring propellers, impellers, and various other devices that require high corrosion resistance, high vibration absorption, and mechanical strength. Finally, the reason for limiting the composition of the alloy of the present invention will be described. First, in the Fe-Cr-Co-Cu quaternary alloy
The reason why the composition is limited to 20.1 to 35% Cr, 1.2 to 19% Co, 0.01 to 3% Cu, and iron balance is that the high damping capacity and high corrosion resistance that are the objectives of the present invention cannot be obtained outside of these composition ranges. Not only that, but also the workability deteriorates. In the composition of the Fe-Cr-Co-Cu quaternary alloy of the present invention,
Part of iron, chromium, cobalt and copper is replaced with molybdenum, tungsten 10% or less, niobium 5% or less, aluminum, titanium 3% or less, vanadium, tantalum 2% or less, manganese, zirconium
Total amount of one or more types of 1.5% or less 0.01-40
Even if the substitution is made by %, the desired target properties can be obtained. Fe−Cr−Co−Cu−Mo, Fe−Cr−Co−Cu−
In the W, Fe-Cr-Co-Cu-Nb based quinary alloy, molybdenum and tungsten are each kept at 10% or less and niobium at 5% or less because if the content is higher than this, the damping performance characteristics aimed at by the present invention cannot be obtained. Not only that, but also the workability deteriorates. Fe−Cr−Co−Cu−Al, Fe−Cr−Co−Cu−Ti
The reason why the content of aluminum and titanium in the five-element alloy is set to be 3% or less each is because if the content is more than 3%, not only will the damping properties that are the object of the present invention not be obtained, but also the corrosion resistance and workability will deteriorate. Fe-Cr-Co-Cu-V, Fe-Cr-Co-Cu-
In the five-component alloy of Ta, Fe-Cr-Co-Cu-Zr, vanadium and tantalum are each less than 2% and zirconium is less than 1.5%.If the content is more than that, the damping characteristics aimed at by the present invention cannot be obtained. Not,
This is because mechanical strength and workability deteriorate. Fe−Cr−Co−Cu−Mn, Fe−Cr−Co−Cu−
P, Fe-Cr-Co-Cu-Pb, Fe-Cr-Co-Cu-
In S-based quinary alloys, manganese is 1.5% or less, phosphorus,
The reason why the content of lead and carbon is set at 1% or less is that if the content exceeds 1%, not only the damping performance characteristics targeted by the present invention cannot be obtained, but also the workability and corrosion resistance deteriorate. The general tendency of the properties of each component of the alloy of the present invention is as follows.

【表】 ×…不良
第1図は本発明のFe−Cr−Co−Cu系吸振性耐
食性合金と従来の25Cr−6Ni系ステンレス鋼、
20Cr−10Ni系ステンレス鋼の孔食電位と電流と
の比較曲線図であり、第1図より明らかなよう
に、従来の高クロムステンレス鋼は(A)(20%Cr
−10%Niステンレス鋼)および(B)(25%Cr−6
%Niステンレス鋼)に見られるように、3%
NaCl溶融中で200〜300mV迄の孔食電位に耐え
るにすぎないが、本発明の合金は(C)(69%Fe−
25%Cr−4%Co−2%Cu)の曲線に見られるよ
うに3%NaCl溶液中で600〜1300mVの孔食電位
に耐え高耐食性を示すことが明らかとなつた。 第2図は本発明のFe−Cr−Co−Cu系合金の減
衰能と組成との関係を示す特性曲線図であり、減
衰能はクロム20.1〜35%の範囲でQ-1=(5〜20)
×10-3と大きくなつており、この範囲が上記の孔
食腐食試験に合格する範囲である。 なお、クロム20.1%以下の範囲にも減衰能Q-1
=(5〜40)×10-3の個所があるが、この範囲は耐
食性が悪く、本発明の目的とする高吸振性および
高耐食性の2つの条件を満足するものでないので
本発明より除外した。
[Table] ×...Poor Figure 1 shows the Fe-Cr-Co-Cu vibration-absorbing corrosion-resistant alloy of the present invention and the conventional 25Cr-6Ni stainless steel.
This is a comparison curve diagram of the pitting corrosion potential and current of 20Cr-10Ni stainless steel.As is clear from Figure 1, conventional high chromium stainless steel is (A) (20%Cr
-10% Ni stainless steel) and (B) (25% Cr-6
%Ni stainless steel), 3%
The alloy of the present invention (C) (69% Fe−
As seen in the curve of 25% Cr - 4% Co - 2% Cu), it has been revealed that it can withstand a pitting corrosion potential of 600 to 1300 mV in a 3% NaCl solution and exhibits high corrosion resistance. Figure 2 is a characteristic curve diagram showing the relationship between the damping capacity and the composition of the Fe- Cr -Co-Cu alloy of the present invention. 20)
×10 -3 , and this range is the range that passes the pitting corrosion test described above. In addition, the attenuation capacity Q -1 also exists in the range of 20.1% or less chromium.
= (5 to 40) x 10 -3 , but this range is excluded from the present invention because it has poor corrosion resistance and does not satisfy the two conditions of high vibration absorption and high corrosion resistance that are the objectives of the present invention. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明のFe−Cr−Co−Cu合金と従来
の25Cr−6Ni、20Cr−10Niステンレス鋼の孔食
電位と電流との比較曲線図、第2図は本発明の
Fe−Cr−Co−Cu系合金の減衰能と組成との関係
を示す曲線図である。
Fig. 1 is a comparison curve of the pitting corrosion potential and current of the Fe-Cr-Co-Cu alloy of the present invention and conventional 25Cr-6Ni, 20Cr-10Ni stainless steel, and Fig.
FIG. 2 is a curve diagram showing the relationship between the damping capacity and composition of a Fe-Cr-Co-Cu alloy.

Claims (1)

【特許請求の範囲】 1 重量比にてクロム20.1〜35%、コバルト1.2
〜19%、銅0.01〜3%および残部鉄よりなる合金
に、副成分としてモリブデン、タングステン10%
以下、ニオビウム5%以下、アルミニウム、チタ
ン3%以下、バナジウム、タンタル2%以下、ジ
ルコン、マンガン1.5%以下、燐、鉛、硫黄1%
以下の1種又は2種以上の全量0.01〜40%を含有
する合金の成形体に、 (A) 溶体化処理のためその合金の融点以下500℃
以上の高温で1分間以上100時間以下加熱した
後、冷却を行う工程と、 (B) 上記の冷却後冷間加工を行う工程と、 (C) 上述の冷間加工後、900℃以下で1分間以上
100時間以下加熱し、ついで1℃/秒ないし1
℃/時の速度で徐冷する工程と、 よりなる熱処理を施し、Q-1が5×10-3以上の減
衰能と、少くとも300mV以上の孔食電位に耐え
腐食しない合金を得ることを特徴とする高吸振
性、高耐食性鉄基合金の製造方法。
[Claims] 1. Chromium 20.1-35%, cobalt 1.2% by weight
~19% copper, 0.01~3% copper and the balance iron, with molybdenum and tungsten 10% as subcomponents.
The following: Niobium 5% or less, aluminum, titanium 3% or less, vanadium, tantalum 2% or less, zircon, manganese 1.5% or less, phosphorus, lead, sulfur 1%
A molded body of an alloy containing 0.01 to 40% of one or more of the following in a total amount: (A) A temperature of 500°C below the melting point of the alloy for solution treatment.
(B) A step of performing cold working after cooling as described above; (C) A step of heating at a temperature of 900°C or less after the above cold working; Minutes or more
Heating for 100 hours or less, then heating at 1°C/sec to 1
By performing a slow cooling process at a rate of ℃/hour and heat treatment, we obtained an alloy with a damping capacity of Q -1 of 5 × 10 -3 or more and a corrosion-free alloy that can withstand a pitting potential of at least 300 mV or more. A manufacturing method for a highly vibration-absorbing, highly corrosion-resistant iron-based alloy.
JP28892385A 1985-12-21 1985-12-21 Production of high oscillation absorptive and high corrosion resistant ferrous alloy Granted JPS61179816A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28892385A JPS61179816A (en) 1985-12-21 1985-12-21 Production of high oscillation absorptive and high corrosion resistant ferrous alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28892385A JPS61179816A (en) 1985-12-21 1985-12-21 Production of high oscillation absorptive and high corrosion resistant ferrous alloy

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP15297477A Division JPS5485115A (en) 1977-12-21 1977-12-21 Iron base alloy with excellent vibration dampening property and corrosion resistance

Publications (2)

Publication Number Publication Date
JPS61179816A JPS61179816A (en) 1986-08-12
JPH0140092B2 true JPH0140092B2 (en) 1989-08-25

Family

ID=17736547

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28892385A Granted JPS61179816A (en) 1985-12-21 1985-12-21 Production of high oscillation absorptive and high corrosion resistant ferrous alloy

Country Status (1)

Country Link
JP (1) JPS61179816A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19961040A1 (en) * 1999-12-16 2001-06-21 Basf Ag Thermoplastic molding compounds with improved processing behavior based on polyarylene ether sulfones and polyamides

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134308A (en) * 1975-05-19 1976-11-20 Res Inst Electric Magnetic Alloys Silent alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134308A (en) * 1975-05-19 1976-11-20 Res Inst Electric Magnetic Alloys Silent alloy

Also Published As

Publication number Publication date
JPS61179816A (en) 1986-08-12

Similar Documents

Publication Publication Date Title
JP4431815B2 (en) Ultra-strength precipitation hardened stainless steel and long strip made from the same steel
KR0175075B1 (en) Potor for steam turbine and manufacturing method thereof
JP3227468B2 (en) High strength, notch ductility, precipitation hardened stainless steel alloy
US2850380A (en) Stainless steel
JP2009503257A (en) Corrosion resistance, cold formability, machinability high strength martensitic stainless steel
JP2001512787A (en) High strength notched ductile precipitation hardened stainless steel alloy
US4036640A (en) Alloy steel
JPH09165655A (en) Austenitic stainless steel for high temperature apparatus and is production
US20020164261A1 (en) Cast shaped article made from high strength, precipitation-hardenable stainless steel and a process for making same
US4204888A (en) High damping capacity alloy
JPH0121845B2 (en)
JPH0140092B2 (en)
JP2970432B2 (en) High temperature stainless steel and its manufacturing method
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JPH05113106A (en) High purity heat resistant steel and manufacture of high and low pressure integrated type turbine rotor made of high purity heat resistant steel
JP3172848B2 (en) High Cr ferritic steel with excellent creep strength
JPS6144936B2 (en)
JPS6326192B2 (en)
JP4103513B2 (en) Extremely low carbon steel wire rod with excellent cold workability and magnetic properties
JPS59126760A (en) Special cast steel for casting strain inducing body of load cell
JPS60221555A (en) Extremely high-tension steel having superior resistance to melt fracture due to al
JP3451771B2 (en) High strength low thermal expansion alloy wire rod and method of manufacturing the same
JPS63241113A (en) Production of non heattreated tellurium free cutting steel having high ductility in high temperature
JP3379760B2 (en) Manufacturing method of high strength and high permeability steel
JPS60258444A (en) Heat resistant alloy