JPS60221555A - Extremely high-tension steel having superior resistance to melt fracture due to al - Google Patents

Extremely high-tension steel having superior resistance to melt fracture due to al

Info

Publication number
JPS60221555A
JPS60221555A JP6984184A JP6984184A JPS60221555A JP S60221555 A JPS60221555 A JP S60221555A JP 6984184 A JP6984184 A JP 6984184A JP 6984184 A JP6984184 A JP 6984184A JP S60221555 A JPS60221555 A JP S60221555A
Authority
JP
Japan
Prior art keywords
steel
strength
resistance
melt fracture
fracture due
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6984184A
Other languages
Japanese (ja)
Other versions
JPS645102B2 (en
Inventor
Hironaga Tsutsumi
堤 汪永
Masakazu Nakao
中尾 正和
Yoshiro Ashida
芦田 善郎
Noriyoshi Sagara
相良 法良
Hiroyuki Morimoto
森本 啓之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP6984184A priority Critical patent/JPS60221555A/en
Publication of JPS60221555A publication Critical patent/JPS60221555A/en
Publication of JPS645102B2 publication Critical patent/JPS645102B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a steel having superior resistance to melt fracture due to molten Al by adding specified amounts of Ni, Cr, Mo and Ti to a low carbon steel or further adding Co. CONSTITUTION:An alloy steel contg., by weight, <0.05% C, 0.1-1.0% Al, 10- 20% Ni, 1-7% Cr, 3-7% Mo and 0.5-3% Ti or further contg. 3-30% Co is used as an extremely high tension steel having superior resistance to melt fracture due to molten Al and suitable for use as the material of dies for die-casting Al or a welding rod for repairing the dies. The steel causes hardly melt fracture due to molten Al and has superior thermal fatigue resistance.

Description

【発明の詳細な説明】 本発明は耐Ag溶損性のすぐれた超高張力鋼に関し、詳
しくは、例えば、Aβダイキャスト金型及びAIlグイ
キャスト金型補修用溶接棒として好適に用いることがで
きる超高張力鋼に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an ultra-high tensile strength steel with excellent Ag erosion resistance, and more specifically, it can be suitably used as a welding rod for repairing Aβ die-cast molds and AIl die-cast molds. Regarding ultra-high tensile strength steel.

AA’グイキャスト金型は、従来、主として5KD6鋼
や5KD61鋼のような熱間工具鋼、或いは18%Ni
マルエージング鋼から製作されている。前者の熱間工具
鋼を用いる場合は、素材鋼を焼鈍し、荒彫りし、焼入れ
し、焼戻しした後、仕上彫りして製作されているが、熱
間工具鋼はC含有量が高く、質量効果が大きいために製
作過程における熱処理変形や寸法変化か著しく、従って
、熱処理及び型彫りが容易ではないので、製作工程が複
雑である。そのうえ、このようにして得られるAAダイ
キャスト金型は、特に、溶融Al中での溶損が著しく、
また、耐熱疲労特性に劣る。更に、超高強度レベルでの
靭性、高温での強度及び靭性のほか、溶接性が十分では
ない。
Traditionally, AA' Guicast molds are mainly made of hot work tool steel such as 5KD6 steel or 5KD61 steel, or 18%Ni steel.
Manufactured from maraging steel. When using the former hot work tool steel, the material steel is annealed, rough carved, quenched, tempered, and then finished carved. However, hot work tool steel has a high C content and a low mass. Since the effect is large, heat treatment deformation and dimensional change during the manufacturing process are significant, and therefore, heat treatment and die carving are not easy, so the manufacturing process is complicated. Moreover, the AA die-cast mold obtained in this way suffers from significant melting loss, especially in molten Al.
It also has poor thermal fatigue resistance. Furthermore, in addition to the toughness at an ultra-high strength level, the strength and toughness at high temperatures, the weldability is insufficient.

、 一方、超高強度レベルでの靭性にすぐれた鋼として
、18%Niマルエージング鋼が知られており、この鋼
を用いる場合は、溶体化処理し、型彫りした後、時効処
理をして、Alダイキャスト金型が製作される。従って
、18%Niマルエージング鋼による場合は、荒彫り及
び仕上彫りの2回の型彫りが不必要であり、また、時効
処理を行なうところから、焼戻し操作が1回分省略でき
るので、製作工程が比較的簡単である。しかし、このよ
うにして得られるAj2グイキャスト金型も、前記と同
様に尚、耐Al溶損性に劣ると共に、高温強度が低く、
特に、400℃以上では急激に低くなるほか、過時効時
の軟化抵抗が小さい。
On the other hand, 18% Ni maraging steel is known as a steel with excellent toughness at an ultra-high strength level, and when using this steel, it must be solution treated, die carved, and then aged. , an Al die-casting mold is manufactured. Therefore, when using 18% Ni maraging steel, two die-cutting steps, rough-cutting and finishing-cutting, are unnecessary, and one tempering operation can be omitted from the aging treatment, so the manufacturing process can be simplified. It's relatively easy. However, the Aj2 Gui cast mold obtained in this way also has poor Al corrosion resistance and low high temperature strength, as described above.
In particular, at temperatures above 400°C, the resistance to softening during over-aging is low, as well as sharply decreasing.

また、Alダイキャスト金型の補修は、従来、通常は、
金型に生したクラックを削り、18%Niマルエージン
グ鋼にて溶接することにより行われているが、18%N
iマルエージング鋼は前記したように耐Al溶損性及び
高温強度に劣る。
In addition, conventionally, repair of Al die-cast molds is usually done by
This is done by scraping the cracks that have formed in the mold and welding with 18%Ni maraging steel, but 18%N
As mentioned above, maraging steel is inferior in Al corrosion resistance and high temperature strength.

本発明は上記に鑑みてなされたものであって、超高強度
レベルでの靭性と高温強度にすぐれるのみならず、特に
、耐Al溶損性及び耐熱疲労特性にすぐれ、従って、A
Ilダイキャスト金型及びその補修用溶接棒として好適
に用いることができる超高張力鋼を提供することを目的
とする。
The present invention has been made in view of the above, and has not only excellent toughness at an ultra-high strength level and high-temperature strength, but also particularly excellent aluminum corrosion resistance and thermal fatigue resistance.
It is an object of the present invention to provide an ultra-high tensile strength steel that can be suitably used as an Il die-cast mold and a welding rod for repairing the same.

本発明による耐A1溶損性のすくれた超高張力鋼は、重
量%で CO,05%以下に規制し、 ANo、1〜1.0%、 Ni 10〜20%、 Cr 1〜5%、 Mo3〜7%、 Ti0.5〜3%、 残部鉄及び不可避的不純物からなることを特徴とする。
The ultra-high tensile strength steel with A1 erosion resistance according to the present invention is regulated to 0.05% or less of CO, ANo. 1 to 1.0%, Ni 10 to 20%, Cr 1 to 5% by weight. , Mo3-7%, Ti0.5-3%, the balance being iron and inevitable impurities.

即ち、本発明鋼によれば、先ず、C含有量を極力低減せ
しめると共に、Ni及びCrの含有量を所定範囲として
、溶体化処理後の冷却によって常温で高強度高靭性のマ
ルテンサイト母相の単一組織を形成させ、一方、Niと
共にMOlTi及びAnを所定量含有させて、時効処理
後に母相マルテンサイト相中に金属間化合物を析出させ
ることによってその強度及び靭性を高め、かくして、前
記18%Niマルエージング鋼と同様のすぐれた型彫り
性、熱処理性及び高強度高靭性を付与する。
That is, according to the steel of the present invention, first, the C content is reduced as much as possible, and the Ni and Cr contents are set within a predetermined range, and a martensitic matrix having high strength and high toughness is formed at room temperature by cooling after solution treatment. A single structure is formed, while a predetermined amount of MOLTi and An is contained together with Ni to precipitate an intermetallic compound in the matrix martensite phase after aging treatment, thereby increasing its strength and toughness. %Ni Provides excellent moldability, heat treatability, and high strength and toughness similar to maraging steel.

更に、本発明鋼においては、上記合金元素及び好ましく
はCoの所定量の添加によって、As点を上昇させ、時
効硬化の最大条件を高温側にずらせることによって、耐
熱疲労特性、即ち、高温での強度、靭性及び耐軟化抵抗
を改善し、更に、Crの添加によってその耐A1溶損性
を著しく向上させることに成功したものである。
Furthermore, in the steel of the present invention, by adding a predetermined amount of the above-mentioned alloying elements and preferably Co, the As point is increased and the maximum condition for age hardening is shifted to the high temperature side, thereby improving the thermal fatigue resistance, that is, at high temperatures. The strength, toughness, and softening resistance of the steel were improved, and furthermore, the addition of Cr succeeded in significantly improving the A1 melting resistance.

次に、本発明による高張力鋼における化学成分の限定理
由について詳細に説明する。
Next, the reason for limiting the chemical composition in the high-strength steel according to the present invention will be explained in detail.

Cは、一般に鋼の強度を高める作用を有することはよく
知られているが、反面、C含有量が多いときは、前記し
た熱間工具鋼にみられる欠点を有するようになるので、
本発明においては、Cを不純物元素としてみなし、0.
05%以下とする。
It is well known that C generally has the effect of increasing the strength of steel, but on the other hand, when the C content is high, it comes to have the drawbacks seen in the hot work tool steel described above.
In the present invention, C is regarded as an impurity element, and 0.
0.5% or less.

Si、、Mn、P及びSも不純物元素であるので、でき
る限り少ない方がよく、本発明においては、Siは1.
0%以下、Mnは0.1%以下、Pはo、01%以下、
Sは0.01%以下とする。また、○やNは非金属介在
物を形成し、加工時に割れの起点となるので、その含有
量は50ppm以下に抑えることが好ましい。
Since Si, Mn, P, and S are also impurity elements, it is better to reduce them as much as possible, and in the present invention, Si is 1.
0% or less, Mn is 0.1% or less, P is o, 01% or less,
S shall be 0.01% or less. Moreover, since O and N form nonmetallic inclusions and become starting points for cracks during processing, it is preferable to suppress their content to 50 ppm or less.

Niは、本発明鋼においては、Crと共に、マルテンサ
イト母相を形成させるために必須の元素であり、靭性の
すぐれた高強度ラスマルテンサイト相を生成させるため
に10%以上のNiを添加することが必要である。しか
し、20%を越えて多量に添加するときは、残留オース
テナイト相が安定化し、室温に冷却したときに、マルテ
ンサイト単一組を形成しない。従って、本発明鋼におい
ては、Niの添加量は10〜20%の範囲とする。
In the steel of the present invention, Ni is an essential element for forming a martensitic matrix together with Cr, and 10% or more of Ni is added to form a high-strength lath martensitic phase with excellent toughness. It is necessary. However, when added in a large amount exceeding 20%, the retained austenite phase is stabilized and no single martensite group is formed when cooled to room temperature. Therefore, in the steel of the present invention, the amount of Ni added is in the range of 10 to 20%.

また、Niは、時効処理によってN13Mo、Ni3T
i、N15AIのような金属間化合物を析出し、強度を
上昇させる。
In addition, Ni can be changed to N13Mo, Ni3T by aging treatment.
i. Intermetallic compounds such as N15AI are precipitated to increase strength.

Moは、PやSによる粒界偏析を防止し、また、時効温
度を高温側にずらして、過時効を防止するために3%以
上を添加することが必要である。
Mo needs to be added in an amount of 3% or more in order to prevent grain boundary segregation due to P and S, and to shift the aging temperature to a higher temperature side to prevent over-aging.

MOはまた、時効処理によってN 13 M oや) 
82M oとして析出し、鋼の強化に寄与するが、過多
に添加しても、経済性に劣るようになるので、上限を7
%とする。
MO can also be converted to N 13 Mo and others by aging treatment.
It precipitates as 82Mo and contributes to the strengthening of steel, but even if it is added in excess, it becomes uneconomical, so the upper limit is set to 7.
%.

Tiは、本発明鋼の強度を支配する重要な元素であり、
時効処理によってNi3Tiを析出して鋼1を強化する
と共に、As点を上昇させ、最大時効条件を高温長時間
側に移行させ、軟化抵抗を大きくする。このような効果
を有効に発現させるためには、少なくとも0.1%の添
加が必要であるが、過多に添加するときは、鋼の脆化を
引き起こすため、上限を3%とする。
Ti is an important element that controls the strength of the steel of the present invention,
Through the aging treatment, Ni3Ti is precipitated to strengthen the steel 1, and at the same time, the As point is raised, the maximum aging condition is shifted to the high temperature and long time side, and the softening resistance is increased. In order to effectively exhibit such an effect, it is necessary to add at least 0.1%, but adding too much causes embrittlement of the steel, so the upper limit is set at 3%.

AI2は、Tiと同様に鋼を強化する元素であり。AI2, like Ti, is an element that strengthens steel.

時効処理によってN i3A 1を析出して強化に寄与
し、また、高温耐酸化性をも向上させるが、多量に添加
すると、鋼の脆化を引き起こすので、添加量は0.1〜
1.0%の範囲とする。
Through aging treatment, Ni3A1 precipitates and contributes to strengthening, and also improves high-temperature oxidation resistance, but if added in a large amount, it causes embrittlement of the steel, so the addition amount should be 0.1~
The range is 1.0%.

Crは、Niと共に、靭性のすぐれたマルテンサイト相
を形成させると共に、特に、鋼の耐An溶損性及び高温
耐酸化性を確保するために、本発明鋼において必須の元
素であり、かかる効果を有効に発現させるために、本発
明鋼においては少なくとも1.0%の添加を必要する。
Cr is an essential element in the steel of the present invention, in order to form a martensitic phase with excellent toughness together with Ni, and in particular to ensure the An corrosion resistance and high temperature oxidation resistance of the steel. In order to effectively express the above, it is necessary to add at least 1.0% to the steel of the present invention.

しかし、過多に添加するときは、残留オーステナイト相
を安定化させるので、その添加量を1〜7%の範囲とす
る。
However, when added in excess, the residual austenite phase is stabilized, so the amount added is in the range of 1 to 7%.

本発明鋼においては、溶体化処理後、空冷によって常温
における綱の組織をマルテンサイトの単−相とするため
に、Ni+Crを19%以下とすることが好ましい。鋼
組織が残留オーステナイトを含む二相組織となるときは
、強度が不足するようになるからである。
In the steel of the present invention, it is preferable that Ni+Cr be 19% or less in order to make the steel structure at room temperature a single phase of martensite by air cooling after solution treatment. This is because when the steel structure becomes a two-phase structure containing retained austenite, the strength becomes insufficient.

本発明鋼においては、その耐熱疲労特性を一層高めるた
めに、Coを3%以上含有させるのが好ましい。即ち、
Coは、Moの固溶度を低下させ、Ni3M0等の析出
を促進し、また、時効温度を高温側にずらして高温強度
を高め、かくして、耐熱疲労特性を著しく向上させるの
である。しかし、添加量を過多とすることは、経済性の
観点から好ましくないので、上限を30%とする。
In the steel of the present invention, in order to further enhance its thermal fatigue resistance, it is preferable to contain Co in an amount of 3% or more. That is,
Co reduces the solid solubility of Mo, promotes the precipitation of Ni3M0, etc., shifts the aging temperature to a higher temperature side, increases high temperature strength, and thus significantly improves thermal fatigue resistance. However, since adding too much is not preferable from an economic point of view, the upper limit is set at 30%.

本発明鋼によれば、例えば、AI!、グイキャスト金型
は、所定の化学成分を有する鋼を真空溶解し、インゴッ
トとした後、ソーキング処理し、次いで、溶体化処理し
た後、型彫りし、時効処理することによって製造される
。また、溶接棒(フィラー・ワイヤー)の場合は、ソー
キング処理後、熱間圧延により径10〜15i+aの線
材とし、溶体化処理を施し、次いで、冷間伸線によって
適宜径の線材とし、これを再び溶体化処理することによ
って溶接棒(フィラー・ワイヤー)を得ることができる
According to the steel of the present invention, for example, AI! A guicast mold is manufactured by vacuum melting steel having a predetermined chemical composition to form an ingot, followed by soaking treatment, solution treatment, die carving, and aging treatment. In the case of welding rods (filler wires), after soaking treatment, hot rolling is performed to form a wire rod with a diameter of 10 to 15i+a, solution treatment is applied, and then cold wire drawing is performed to form a wire rod of an appropriate diameter. A welding rod (filler wire) can be obtained by solution treatment again.

以上のように、本発明鋼は、C量を0.05%以下に抑
え、前記した合金元素の添加によって、高強度高靭性の
マルテンサイトからなる単一母相を形成させ、ここに時
効処理によって金属間化合物を析出させることによって
その強度を悶めると共に、時効硬化の最大条件を高温側
にずらせることによって、高温での強度、靭性及び耐軟
化抵抗を改善して耐熱疲労特性を高め、更に、Crの添
加によってその耐An溶損性を著しく向上させたもので
あり、A1ダイキャスト金型用超高張力鋼として有用で
ある。勿論、他の金型、例えば、プラスチックやゴム成
形のための金型にも好適に使用することができる。更に
、本発明鋼によれば、補修後の熱処理を要しないAAダ
イキャスト金型の補修用溶接棒としても有用である。
As described above, the steel of the present invention suppresses the C content to 0.05% or less and forms a single parent phase consisting of high strength and high toughness martensite by adding the above-mentioned alloying elements, which is then subjected to aging treatment. By precipitating intermetallic compounds, the strength is weakened, and by shifting the maximum condition for age hardening to higher temperatures, the strength, toughness, and softening resistance at high temperatures are improved, increasing thermal fatigue resistance. Furthermore, by adding Cr, its An corrosion resistance has been significantly improved, making it useful as an ultra-high tensile strength steel for A1 die-casting molds. Of course, it can also be suitably used in other molds, such as molds for plastic or rubber molding. Further, the steel of the present invention is useful as a welding rod for repairing AA die-cast molds that does not require heat treatment after repair.

以下に本発明の実施例を挙げるが、本発明はこれら実施
例に限定されるものではない。
Examples of the present invention are listed below, but the present invention is not limited to these Examples.

実施例 真空溶解法によって第1表鋼番号1〜4に示す化学組成
の綱を調製してインゴットとし、ソーキング処理後、イ
ンゴットを皮削りした。1150〜1200℃での素鍛
造を経て、径20龍鋼に仕上鍛造し、850℃で1時間
加熱して溶体化処理し、空冷後、試験片加工し、550
°Cで3時間加熱、冷却して時効処理を施した。
EXAMPLE Steels having chemical compositions shown in Table 1 Steel Nos. 1 to 4 were prepared by vacuum melting method and made into ingots. After soaking treatment, the ingots were skinned. After bare forging at 1150-1200℃, finish forging to diameter 20 dragon steel, solution treatment by heating at 850℃ for 1 hour, after air cooling, test piece processing, 550℃
Aging treatment was performed by heating at °C for 3 hours and cooling.

第2表に鍛造品の室温強度、600℃での機械的性質、
及び600℃で3時間の時効処理を施したときのHRC
を示す。また、第3表には変態温度、耐熱疲労特性及び
AI!溶損試験の結果を示す。
Table 2 shows the room temperature strength of the forged product, the mechanical properties at 600℃,
and HRC after aging treatment at 600°C for 3 hours
shows. Table 3 also shows transformation temperature, thermal fatigue resistance, and AI! The results of the erosion test are shown.

また、比較のために、5KD61鋼、18%NiのCo
無添加マルエージング鋼及び18%Ni300ksiマ
ルエージング鋼の化学組成を比較鋼として第1表に示し
、また、本発明鋼と同様の性質を第2表及び第3表に示
す。
Also, for comparison, 5KD61 steel, 18% Ni Co
The chemical compositions of additive-free maraging steel and 18% Ni 300ksi maraging steel are shown in Table 1 as comparative steels, and properties similar to those of the steel of the present invention are shown in Tables 2 and 3.

本発明鋼によれば、比較鋼5に比べて常温強度及び高温
度に著しくすぐれていると共に、耐A1溶損性にすぐれ
、また、従来のマルエージング鋼 ゛に比べて、高温強
度及び耐A1溶損性に著しくすぐれていることが明らか
である。
According to the steel of the present invention, it has significantly better room temperature strength and high temperature strength than Comparative Steel 5, and has excellent A1 erosion resistance, and also has better high temperature strength and A1 resistance than conventional maraging steel. It is clear that the corrosion resistance is extremely good.

Claims (2)

【特許請求の範囲】[Claims] (1)重量%で G O,05%以下に規制し、 八n O,l〜1.0%。 Ni 10〜20%、 Cr 1〜7%、 Mo3〜7%、 TiO,5〜3%。 残部鉄及び不可避的不純物からなることを特徴とする耐
Ag溶損性のすぐれた超高張ノJ flint。
(1) In terms of weight percent, GO is regulated to 0.05% or less, and 80.0% to 1.0%. Ni 10-20%, Cr 1-7%, Mo 3-7%, TiO, 5-3%. An ultra-high tensile J flint with excellent Ag erosion resistance, characterized in that the remainder consists of iron and unavoidable impurities.
(2)重量%で CO,05%以下に規制し、 Δk 0.1〜1.0%、 N110〜20%、 Cr 1〜7%、 Mo3〜7%、 Co 3〜30%、 TiO,5〜3%、 残部鉄及び不可避的不純物からなることを特徴とする耐
Ag溶損性のすく・れた超高張力鋼。
(2) Regulate CO,05% or less in weight%, Δk 0.1-1.0%, N110-20%, Cr 1-7%, Mo3-7%, Co 3-30%, TiO,5 ~3%, the balance being iron and unavoidable impurities.
JP6984184A 1984-04-06 1984-04-06 Extremely high-tension steel having superior resistance to melt fracture due to al Granted JPS60221555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6984184A JPS60221555A (en) 1984-04-06 1984-04-06 Extremely high-tension steel having superior resistance to melt fracture due to al

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6984184A JPS60221555A (en) 1984-04-06 1984-04-06 Extremely high-tension steel having superior resistance to melt fracture due to al

Publications (2)

Publication Number Publication Date
JPS60221555A true JPS60221555A (en) 1985-11-06
JPS645102B2 JPS645102B2 (en) 1989-01-27

Family

ID=13414428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6984184A Granted JPS60221555A (en) 1984-04-06 1984-04-06 Extremely high-tension steel having superior resistance to melt fracture due to al

Country Status (1)

Country Link
JP (1) JPS60221555A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102619A (en) * 1989-06-06 1992-04-07 Latrobe Steel Company Ferrous alloys having enhanced fracture toughness and method of manufacturing thereof
US6080359A (en) * 1998-01-23 2000-06-27 Imphy Ugine Precision Maraging steel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5102619A (en) * 1989-06-06 1992-04-07 Latrobe Steel Company Ferrous alloys having enhanced fracture toughness and method of manufacturing thereof
US6080359A (en) * 1998-01-23 2000-06-27 Imphy Ugine Precision Maraging steel

Also Published As

Publication number Publication date
JPS645102B2 (en) 1989-01-27

Similar Documents

Publication Publication Date Title
KR950009223B1 (en) Austenite stainless steel
KR100910193B1 (en) Ultra-high-strength precipitation-hardenable stainless steel and elongated strip made therefrom
WO2011037210A1 (en) High-strength high-toughness cast steel material and manufacturing method therefor
US6743305B2 (en) High-strength high-toughness precipitation-hardened steel
JP2001512787A (en) High strength notched ductile precipitation hardened stainless steel alloy
US3132937A (en) Cast steel
US3661658A (en) High-strength and high-toughness cast steel for propellers and method for making propellers of said cast steel
EP3168319A1 (en) Microalloyed steel for heat-forming high-resistance and high-yield-strength parts, and method for producing components made of said steel
US5972130A (en) High impact and thermal shock resistant die steel, dies, dies blocks and method of manufacture thereof
US20020164261A1 (en) Cast shaped article made from high strength, precipitation-hardenable stainless steel and a process for making same
US3994754A (en) High elastic-limit, weldable low alloy steel
TWI390043B (en) Hot working die steel for aluminum die-casting
JP3570712B2 (en) Pre-hardened steel for die casting mold
JPH04231438A (en) Deposition-hardened tool steel
JP2000273570A (en) Cast steel for pressure vessel and production of pressure vessel using the same
JPS60221555A (en) Extremely high-tension steel having superior resistance to melt fracture due to al
US2967770A (en) Transformable stainless steel
US4127427A (en) Super mild steel having excellent workability and non-aging properties
JPH11117019A (en) Production of heat resistant parts
JP3504835B2 (en) Low alloy heat resistant cast steel and cast steel parts for steam turbines
JPS63134648A (en) Precipitation hardening-type high tensile steel excellent in corrosion resistance
JP2003055743A (en) Steel for cold die having excellent machinability
JPH06248389A (en) Maraging steel for die casting die
US4619692A (en) Process for the production of metallic semi-finished products
JPH07243002A (en) Maraging steel excellent in high temperature strength and heat check resistance