JPH0140058B2 - - Google Patents

Info

Publication number
JPH0140058B2
JPH0140058B2 JP55185757A JP18575780A JPH0140058B2 JP H0140058 B2 JPH0140058 B2 JP H0140058B2 JP 55185757 A JP55185757 A JP 55185757A JP 18575780 A JP18575780 A JP 18575780A JP H0140058 B2 JPH0140058 B2 JP H0140058B2
Authority
JP
Japan
Prior art keywords
lining
wear
weight
parts
iron plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55185757A
Other languages
Japanese (ja)
Other versions
JPS57109855A (en
Inventor
Masaharu Yamana
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Tire Corp
Original Assignee
Toyo Tire and Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Tire and Rubber Co Ltd filed Critical Toyo Tire and Rubber Co Ltd
Priority to JP55185757A priority Critical patent/JPS57109855A/en
Publication of JPS57109855A publication Critical patent/JPS57109855A/en
Publication of JPH0140058B2 publication Critical patent/JPH0140058B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、腐食性材料の粉体製造工程のよう
な、腐食と粉体による摩耗が同時に加わる条件下
で使用される金属等の容器や配管類を保護する目
的で使用されるライニング材に関するものであ
る。 従来、このような目的のライニング材として
は、FRPライニング、エポキシ樹脂ライニング
等が行われてきた。又最近では、エポキシ樹脂に
フレークガラスを配合したフレークライニングも
行われ始めている。しかしながら、これらのライ
ニング方法においては、いずれも耐食性には優れ
るが、耐摩耗性に劣る難点があつた。 この耐摩耗性を向上させる試みとして、エポキ
シ樹脂や不飽和ポリエステル樹脂に二硫化モリブ
デンを配合する処方が知られているが、二硫化モ
リブデンの添加により、確かにすべり摩耗に対す
る耐久性は向上するが、本発明の目的とする粉体
の衝撃によつて起る摩耗に対しては余り効果が認
められていない。 耐摩耗性のみを向上させるのであれば、ナイロ
ンやテフロンのような熱可塑性樹脂を用いてもよ
いが、これらの樹脂は金属に対する接着性が悪
く、ライニング施工に際しては、流動浸漬法や溶
射法を採用する必要が生じ、大型タンク内壁のラ
イニングのような大面積の場合適用し難い欠点が
ある。又、粉体製造工程において生ずる摩耗は、
単純なすべり摩耗や衝撃摩耗だけでなく、これが
複合されると共に粉体による摩擦熱や、泥、塵埃
等の介在を伴つた摩擦等も加つた複雑な諸条件の
からみ合いによつて起るものであつて、公知の耐
摩性改良剤の添加によつても所期の目的を達成し
得ないため、このような目的に使用し得るライニ
ング材の出現が待たれていた。 この発明は、不飽和ポリエステルやエポキシの
ような熱硬化性樹脂に特定のセラミツクスと硬化
剤とを配合するだけですべり摩耗や衝撃摩耗に対
して優れた耐久性を有し、しかも耐食性、耐熱
性、施工性に富むライニング材料を得ることに成
功したものである。 本発明で用いられる熱硬化性樹脂としては、特
に施工性を考慮した場合、不飽和ポリエステル又
はエポキシ樹脂が好適である。 不飽和ポリエステル樹脂としては、オルソフタ
ル酸系、イソフタル酸系、ビスフエノール系、ヘ
ツト酸系及びビニルエステル系等公知のものはす
べて用いることができる。また、硬化剤として
は、ナフテン酸コバルトのような硬化促進剤の存
在下で有機パーオキサイド化合物により、常温で
比較的短時間に硬化させることができる。 又エポキシ樹脂としては、ビスフエノール系が
主として用いられるが、その他公知のものはすべ
て使用可能であり、また、これに用いられる硬化
剤もトリエチレンテトラミン、ジメチルアミノメ
チル等公知の有機アミン類が用いられる。 本発明で用いられるセラミツクス成分として
は、炭化珪素、アルミナが好適で、その平均粒度
は500ミクロン以下が望ましい。これ以上粗くな
ると、樹脂中に分散させた時、沈降し易くなり、
均一なライニング層が得られ難くなつてくる。又
セラミツクス成分の混合割合は、樹脂分100重量
部に対して10〜150重量部が好適で、10重量部未
満では耐摩耗性に乏しく、150重量部を越えると
材料粘度が高くなりすぎて、施工性が悪くなる。 施工法としてスプレー法を採用する場合は、セ
ラミツクスの平均粒度は150ミクロン以下、混合
割合は10〜100重量部の範囲が望ましい。 被ライニング物の材質は、鋼、ステンレス、ア
ルミニウムの如き金属の他、コンクリートや木材
等にも適用可能である。 本発明の耐摩耗性ライニング材を金属母材表面
にライニングする場合には、予め金属表面をサン
ドブラストもしくはシヨツトブラスト等の方法に
より、スエーデン規格(SIS規格)のSa2 1/2
(肉眼でみて5%以下の残滓がある程度)迄仕上
げておくことが望ましい。 所定の配合を行われた材料のライニング方法と
しては、スプレー法が最も施工速度が早く好適で
あるが、必要に応じ、刷毛塗り、ロールコート等
公知の方法を用いることもできる。 ライニング厚みは、対象物により適宜選択すれ
ばよく、通常0.5〜3mm程度であるが、必要に応
じ塗り重ねて、更に厚くすることもできる。 一般に従来のFRPライニングやエポキシ樹脂
ライニングに比べ、格段の耐久性を発揮するの
で、これらのライニング厚みより薄く仕上げるこ
とも可能である。 更に本発明の特徴は、セラミツクス成分の粒度
を粗め、例えば100〜500ミクロンの範囲を選択す
れば、防滑性をも容易に付与できるので、セラミ
ツクス成分の場合による耐圧強度の向上とも相挨
つて、各種工場の作業場床面特に、化学薬品等の
腐食性材料を取扱う作業場の床面、或はフオーク
リフト等の車両の通過頻度が高い床面の耐摩塗料
としても使用することができる。 その他、港湾付近の建築物や構築物、船舶の甲
板、ステツプのような塩分等による腐食の激しい
箇所や、モノレールの走行面等耐摩耗性の要求さ
れる部分の塗装にも好適な常温硬化できるライニ
ング材料である。 次に、本発明を実施例により更に詳細に説明す
る。 実施例 1 ビスフエノールA系エポキシ樹脂100重量部に
対し、平均粒度50ミクロンの炭化珪素50重量部及
び、硬化剤としてトリエチレンテトラミン14重量
部を加えて混合し、加圧式エアースプレー装置に
より、予め、サンドブラストにて表面処理された
厚さ1.6mmの鉄板の片面にスプレー塗布し、膜厚
約1mmのライニング鉄板を得た。 塗膜は常温で約3時間で指触乾燥状態となつ
た。得られたライニング鉄板を更に常温で4日間
放置した後、第1図に示すようなブラスト装置を
用いて、アルミナ吹付けによる衝撃摩耗テストを
行つた。尚アルミナ吹付条件としては、空気圧3
Kg/cm2、ブラストノズル径6mmφ、アルミナ吹付
量600g/min、アルミナ粒度150〜250μ、ノズル
先端からライニング鉄板との距離70mmとし、約1
分間ブラストしてライニング鉄板の単位時間当り
の摩耗減量を算出した。その結果は第1表に吹付
け摩耗減量として示した。 次に、同一条件で作成された別のライニング鉄
板を用いて、JIS K 7204に規定されているテー
バー式摩耗試験法により、すべり摩耗係数を求め
た。尚用いた摩耗輪はCS−17で、荷重は1000g
で行つた。その結果は第1表においてすべり摩耗
係数として示した。 比較例 1 実施例1の炭化珪素50重量部のみを削除したエ
ポキシ樹脂配合液について全く同様にして、ライ
ニング鉄板を得、吹付け摩耗減量及びすべり摩耗
係数を測定し、その結果も第1表に併記した。 比較例 2 比較例1と同様炭化珪素のみを削除したエポキ
シ樹脂配合液を表面サンドブラスト処理された鉄
板の上に、500g/m2の割合でハンドロールを用
いて塗布し、次いで450g/m2の市販のチヨツプ
トストランドマツトを載せ、更にその上に500
g/m2の割合のエポキシ樹脂配合液をロール塗布
し、十分マツト中の残留空気を追い出し、予めワ
ツクス系離型剤を塗布した鉄板で1mmの間隔を設
けて加圧し、常温で約4日間放置した後、加圧鉄
板を取り除き、約1mm厚みのFRPライニング鉄
板を得た。このFRPライニング鉄板についても
実施例1と同様にして、吹付け摩耗減量及びすべ
り摩耗係数を測定し、第1表に併記した。 実施例 2 ビニルエステル系不飽和ポリエステル100重量
部に対し、平均粒度100μの炭化珪素20重量部混
合し、硬化剤としてメチルエチルケトンパーオキ
サイド1重量部及び6%ナフテン酸コバルト液
0.5重量部を加えて撹拌した不飽和ポリエステル
樹脂を用い、実施例1と同様にして、塗膜厚約1
mmのライニング鉄板を作成し、各摩耗テストを行
つた。 実施例 3 実施例2の炭化珪素の配合量を100重量部とし
た以外全く同様にしてライニング鉄板を作成し、
摩耗テストを行つた。 上記実施例2〜3の摩耗テスト結果も第1表に
列記した。 次に本発明によつて得られた耐摩性ライニング
材の鉄板との接着力を、耐摩性に優れているとい
われているナイロン11と対比するために以下の比
較試験を行つた。 比較試験 比較試験 1 ナイロン11 100重量部に対し、平均粒度100μ
の炭化珪素20重量部を混合し、厚さ6mm、巾25
mm、長さ60mmの鉄板に流動浸漬法により約0.6mm
のライニング層を形成させ、先端約12mmを重ね合
わせて試片とし、JIS K 6850の記載の方法に準
拠して剪断引張り接着力を測定した。 比較試験 2 実施例2に示したビニルエステル系不飽和ポリ
エステル樹脂を比較試験と同じ寸法の鉄板に約1
mm厚みのライニング層を形成させ比較試験1の場
合と同様の試片を作成して剪断引張り接着力を測
定した。 比較試験1及び2の結果は第2表に示した通り
で、本発明のライニング材は金属との接着性にお
いても優れた性能を有するものであることがわか
る。
The present invention relates to a lining material used for the purpose of protecting metal containers and piping used under conditions where corrosion and powder abrasion occur simultaneously, such as in powder manufacturing processes of corrosive materials. It is. Conventionally, FRP linings, epoxy resin linings, etc. have been used as lining materials for this purpose. Recently, flake lining, which is a mixture of epoxy resin and flake glass, has also begun to be used. However, these lining methods all have excellent corrosion resistance, but have the disadvantage of poor abrasion resistance. As an attempt to improve this wear resistance, it is known to mix molybdenum disulfide with epoxy resin or unsaturated polyester resin, but adding molybdenum disulfide certainly improves the durability against sliding wear. However, it has not been found to be very effective against wear caused by powder impact, which is the object of the present invention. If only the abrasion resistance is to be improved, thermoplastic resins such as nylon or Teflon may be used, but these resins have poor adhesion to metals, so fluid dipping or thermal spraying methods are not recommended for lining construction. However, it has the disadvantage that it is difficult to apply to large areas such as lining the inner walls of large tanks. In addition, the wear that occurs during the powder manufacturing process is
This is caused not only by simple sliding wear and impact wear, but also by a complex intertwining of various conditions, including frictional heat due to powder, friction caused by mud, dust, etc. However, even with the addition of known wear resistance modifiers, the intended purpose cannot be achieved, so the emergence of a lining material that can be used for this purpose has been awaited. This invention has excellent durability against sliding abrasion and impact abrasion by simply blending a thermosetting resin such as unsaturated polyester or epoxy with specific ceramics and a hardening agent, as well as corrosion resistance and heat resistance. , we succeeded in obtaining a lining material with excellent workability. As the thermosetting resin used in the present invention, unsaturated polyester or epoxy resin is suitable, especially when considering workability. As the unsaturated polyester resin, all known ones such as orthophthalic acid type, isophthalic acid type, bisphenol type, hectyl acid type and vinyl ester type can be used. Further, as a curing agent, it can be cured at room temperature in a relatively short time using an organic peroxide compound in the presence of a curing accelerator such as cobalt naphthenate. As the epoxy resin, bisphenol type is mainly used, but all other known ones can be used, and the curing agent used for this can also be known organic amines such as triethylenetetramine and dimethylaminomethyl. It will be done. As the ceramic component used in the present invention, silicon carbide and alumina are suitable, and the average particle size thereof is preferably 500 microns or less. If it becomes coarser than this, it will tend to settle when dispersed in the resin.
It becomes difficult to obtain a uniform lining layer. In addition, the mixing ratio of the ceramic component is preferably 10 to 150 parts by weight per 100 parts by weight of the resin. If it is less than 10 parts by weight, the wear resistance will be poor, and if it exceeds 150 parts by weight, the material viscosity will become too high. Workability deteriorates. When a spray method is used as the construction method, it is desirable that the average particle size of the ceramic be 150 microns or less, and that the mixing ratio be in the range of 10 to 100 parts by weight. The material of the object to be lined can be metals such as steel, stainless steel, and aluminum, as well as concrete, wood, and the like. When lining the surface of a metal base material with the wear-resistant lining material of the present invention, the metal surface must be sandblasted or shot blasted in advance to Sa2 1/2 of the Swedish standard (SIS standard).
It is desirable to finish it to a point where there is less than 5% residue when seen with the naked eye. As a lining method using a material having a predetermined composition, a spray method is preferable because it has the fastest application speed, but if necessary, known methods such as brush coating and roll coating can also be used. The thickness of the lining may be appropriately selected depending on the object and is usually about 0.5 to 3 mm, but it can be made even thicker by overcoating if necessary. In general, it exhibits much greater durability than conventional FRP linings and epoxy resin linings, so it is also possible to make it thinner than these linings. Furthermore, a feature of the present invention is that by coarsening the particle size of the ceramic component, for example, by selecting a range of 100 to 500 microns, anti-slip properties can be easily imparted. It can also be used as an abrasion-resistant paint for the floors of various factories, particularly those of workplaces that handle corrosive materials such as chemicals, or floors that are frequently passed by vehicles such as forklifts. In addition, linings that can be cured at room temperature are suitable for painting areas that are severely corroded by salt, such as buildings and structures near ports, ship decks, and steps, and areas that require wear resistance such as monorail running surfaces. It is the material. Next, the present invention will be explained in more detail with reference to Examples. Example 1 50 parts by weight of silicon carbide with an average particle size of 50 microns and 14 parts by weight of triethylenetetramine as a hardening agent were added and mixed to 100 parts by weight of bisphenol A-based epoxy resin, and the mixture was prepared in advance using a pressurized air spray device. A lining iron plate with a film thickness of about 1 mm was obtained by spray coating one side of a 1.6 mm thick iron plate that had been surface-treated by sandblasting. The coating film became dry to the touch in about 3 hours at room temperature. After the obtained lining iron plate was further left at room temperature for 4 days, an impact abrasion test was performed by spraying alumina using a blasting device as shown in FIG. The alumina spraying conditions are air pressure 3
Kg/cm 2 , blast nozzle diameter 6mmφ, alumina spray amount 600g/min, alumina particle size 150-250μ, distance from nozzle tip to lining iron plate 70mm, approximately 1
The abrasion loss of the lining iron plate per unit time was calculated by blasting for a minute. The results are shown in Table 1 as spray abrasion loss. Next, using another lining iron plate prepared under the same conditions, the sliding wear coefficient was determined by the Taber type abrasion test method specified in JIS K 7204. The wear ring used was CS-17, and the load was 1000g.
I went there. The results are shown in Table 1 as sliding wear coefficients. Comparative Example 1 A lining iron plate was obtained in exactly the same manner as in Example 1, except that only 50 parts by weight of silicon carbide was removed, and the spray abrasion loss and sliding wear coefficient were measured. The results are also shown in Table 1. Also listed. Comparative Example 2 Similar to Comparative Example 1, an epoxy resin mixture with only silicon carbide removed was applied onto an iron plate whose surface had been sandblasted at a rate of 500 g/m 2 using a hand roll, and then at a rate of 450 g/m 2 Place a commercially available chopped strand mat, and then add 500
Roll-coat the epoxy resin mixture at a ratio of g/ m2 , thoroughly drive out the residual air in the mat, pressurize it with an iron plate coated with a wax-based mold release agent at 1 mm intervals, and leave it at room temperature for about 4 days. After being left to stand, the pressurized iron plate was removed to obtain an FRP lining iron plate with a thickness of approximately 1 mm. Regarding this FRP-lined iron plate, the blowing abrasion loss and sliding wear coefficient were measured in the same manner as in Example 1, and are also listed in Table 1. Example 2 20 parts by weight of silicon carbide with an average particle size of 100μ was mixed with 100 parts by weight of vinyl ester unsaturated polyester, and 1 part by weight of methyl ethyl ketone peroxide and 6% cobalt naphthenate solution were added as a curing agent.
Using an unsaturated polyester resin to which 0.5 parts by weight was added and stirred, a coating film thickness of approximately 1 was prepared in the same manner as in Example 1.
A lining steel plate of mm was made and various wear tests were conducted. Example 3 A lining iron plate was prepared in the same manner as in Example 2 except that the amount of silicon carbide was changed to 100 parts by weight,
I did a wear test. The wear test results for Examples 2-3 above are also listed in Table 1. Next, the following comparative test was conducted to compare the adhesive strength of the wear-resistant lining material obtained according to the present invention to an iron plate with that of nylon 11, which is said to have excellent wear resistance. Comparative test Comparative test 1 Average particle size 100μ for 100 parts by weight of nylon 11
20 parts by weight of silicon carbide are mixed, and the thickness is 6 mm and the width is 25 mm.
Approximately 0.6 mm by the fluidized immersion method on a 60 mm long steel plate.
A lining layer was formed, and about 12 mm of the tips were overlapped to form a test piece, and the shear tensile adhesive strength was measured in accordance with the method described in JIS K 6850. Comparative Test 2 The vinyl ester unsaturated polyester resin shown in Example 2 was placed on an iron plate of the same size as in the comparative test.
A specimen similar to that in Comparative Test 1 was prepared by forming a lining layer with a thickness of mm, and the shear tensile adhesive strength was measured. The results of Comparative Tests 1 and 2 are shown in Table 2, and it can be seen that the lining material of the present invention has excellent performance in adhesion to metals as well.

【表】【table】

【表】 以上各実施例及び比較例で示したように、本発
明の防食耐摩耗性ライニング材は、ベース樹脂で
ある、エポキシ樹脂又は不飽和ポリエステル樹脂
の優れた防食性並びに金属等への接着性、スプレ
ー施工性の良さを活かしながら炭化珪素又はアル
ミナの配合により、粉体の製造や輪送時に起る複
雑な摩耗現象に対し、充分耐久性を発揮する画期
的な防食耐摩耗性ライニング材で、特にスプレー
施工性に富むので、大面積の化学装置や、作業場
床面塗装にも施工能率が高く、極めて有用なライ
ニング材である。
[Table] As shown in the Examples and Comparative Examples above, the corrosion-resistant and wear-resistant lining material of the present invention has excellent corrosion resistance of the base resin, epoxy resin or unsaturated polyester resin, and excellent adhesion to metals, etc. A groundbreaking anti-corrosion and wear-resistant lining that takes advantage of its excellent properties in terms of durability and sprayability, while also incorporating silicon carbide or alumina to provide sufficient durability against the complex wear phenomena that occur during powder production and wheel conveyance. It is an extremely useful lining material that can be applied by spraying, and has high application efficiency for large-area chemical equipment and workshop floor coatings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、吹付け摩耗試験装置の概要を示す配
置断面図である。 1……コンプレツサー、2……アルミナ槽、3
……ブラストノズル、4……供試ライニング鉄
板、5……接続管、6,6′……バルブ。
FIG. 1 is a sectional view showing the outline of a spray abrasion test device. 1...Compressor, 2...Alumina tank, 3
... Blast nozzle, 4 ... Test lining steel plate, 5 ... Connection pipe, 6, 6' ... Valve.

Claims (1)

【特許請求の範囲】[Claims] 1 不飽和ポリエステル樹脂又はエポキシ樹脂
100重量部に対し、平均粒度が10〜500ミクロンの
炭化珪素又はアルミナを10〜150重量部及び硬化
剤を配合し、塗装後、常温硬化することを特徴と
する防食耐摩耗性ライニング材。
1 Unsaturated polyester resin or epoxy resin
An anti-corrosion and abrasion resistant lining material characterized by containing 100 parts by weight of silicon carbide or alumina with an average particle size of 10 to 500 microns and a hardening agent, and curing at room temperature after coating.
JP55185757A 1980-12-27 1980-12-27 Anticorrosive abrasion-resistant lining material Granted JPS57109855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55185757A JPS57109855A (en) 1980-12-27 1980-12-27 Anticorrosive abrasion-resistant lining material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55185757A JPS57109855A (en) 1980-12-27 1980-12-27 Anticorrosive abrasion-resistant lining material

Publications (2)

Publication Number Publication Date
JPS57109855A JPS57109855A (en) 1982-07-08
JPH0140058B2 true JPH0140058B2 (en) 1989-08-24

Family

ID=16176327

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55185757A Granted JPS57109855A (en) 1980-12-27 1980-12-27 Anticorrosive abrasion-resistant lining material

Country Status (1)

Country Link
JP (1) JPS57109855A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59125767A (en) * 1983-01-07 1984-07-20 Fuji Xerox Co Ltd Heat fixing roll for electrophotograhic process
JPH06157813A (en) * 1992-11-27 1994-06-07 Daisee Kogyo Kk Resin composition excellent in sliding property and wear resistance
ATA208693A (en) * 1993-10-18 1997-11-15 Ica Innoconsult Ag CORROSION PROTECTION METHOD FOR COMBUSTION PLANTS
US7348370B2 (en) * 2005-04-27 2008-03-25 United Technologies Corporation Metal oxides and hydroxides as corrosion inhibitor pigments for a chromate-free corrosion resistant epoxy primer
CN111763415B (en) * 2020-06-15 2023-02-14 九牧厨卫股份有限公司 Ultrathin anti-cracking toilet accessory and material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139130A (en) * 1974-04-25 1975-11-06
JPS5244569A (en) * 1975-10-07 1977-04-07 Nec Corp Process for production of semiconductor element
JPS5336856A (en) * 1977-09-28 1978-04-05 Hitachi Ltd Elevator signal device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50139130A (en) * 1974-04-25 1975-11-06
JPS5244569A (en) * 1975-10-07 1977-04-07 Nec Corp Process for production of semiconductor element
JPS5336856A (en) * 1977-09-28 1978-04-05 Hitachi Ltd Elevator signal device

Also Published As

Publication number Publication date
JPS57109855A (en) 1982-07-08

Similar Documents

Publication Publication Date Title
US20170144270A1 (en) Method for producing a corrosion-inhibiting or adhesion-promoting coating
US5936022A (en) Compositions and methods for a high performance protective coating
JPH0254422B2 (en)
EP0069418B1 (en) Process for applying a coating composition to a substrate, and the coated substrate thus obtained
JPH0140058B2 (en)
US4514467A (en) Method of obtaining a positive bond between painted articles and concrete
JP3095668B2 (en) Anticorrosion structure and method of manufacturing the same
JPH11291394A (en) High-strength polyurethane heavy-duty corrosionproof coated steel material with protrusions
EP0011351B1 (en) Process for applying a coating to that part of a structure in a marine environment which projects above the surface of a body of water
JP2022511032A (en) Coated substrate with adherent dopant coblasted with particles and dopant
CN207296025U (en) anti-corrosion steel structure
JPS581698B2 (en) Rust and corrosion protection coating composition
JPH0328507B2 (en)
JPH0649176B2 (en) Surface finishing method
JPH11291393A (en) High-strength polyurethane heavy-duty corrosionproof coated steel material
JPH11141054A (en) Covered steel wire excellent in corrosion resistance
RU2735438C1 (en) Method for application of coatings on tubing string
JP3013831U (en) Base material coating structure
Policena et al. Study of polymeric coatings used in the clay ceramic industry: A short review
JP2520812B2 (en) Anti-slip method for steel surface
JP2000167985A (en) Heavy corrosionproof coated steel material having edge part fixing high strength coating
JPH107936A (en) Metal coating composition and its use
JPS5838378B2 (en) Polymer-cement blend composition for steel structures
JP3013826U (en) Base material protective coating structure
JPH05123645A (en) Method for coating outer plate of railway vehicle