JPH0139974B2 - - Google Patents

Info

Publication number
JPH0139974B2
JPH0139974B2 JP56048676A JP4867681A JPH0139974B2 JP H0139974 B2 JPH0139974 B2 JP H0139974B2 JP 56048676 A JP56048676 A JP 56048676A JP 4867681 A JP4867681 A JP 4867681A JP H0139974 B2 JPH0139974 B2 JP H0139974B2
Authority
JP
Japan
Prior art keywords
elution
thin layer
acid
phase separation
extraction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56048676A
Other languages
Japanese (ja)
Other versions
JPS57166331A (en
Inventor
Tsukasa Tanyama
Toshiro Yamada
Niro Nagatomo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP56048676A priority Critical patent/JPS57166331A/en
Publication of JPS57166331A publication Critical patent/JPS57166331A/en
Publication of JPH0139974B2 publication Critical patent/JPH0139974B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/04Glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions
    • C03C13/005Fibre or filament compositions obtained by leaching of a soluble phase and consolidation

Description

【発明の詳細な説明】 本発明は、硼珪酸ガラス中空繊維を素材とし、
無数の細孔を有する薄層表面を内面又は外面に形
成した多孔質ガラス中空繊維の製造法に関するも
のである。
[Detailed description of the invention] The present invention uses borosilicate glass hollow fiber as a material,
The present invention relates to a method for manufacturing a porous glass hollow fiber in which a thin layer surface having countless pores is formed on the inner or outer surface.

多孔質中空ガラス繊維は、一般に硼珪酸ガラス
製の中空繊維を分相させた後、B2O3やNa2Oに富
む部分を酸で溶出させて製造するが、片面側から
溶出処理を行なつて得た繊維の構造については、
第1図に示す様な多孔質構造を有するということ
が、最近の研究によつて明らかにされつつある。
同図は概念図であつて、ガラス本体部(SiO2
ツチ部)1、ガラス透過通路(溶出された部分)
2、及び微孔部(溶出相中に存在していたSiO2
のデポジツト部分)3から構成されるが、今これ
をガス分離に応用し混合ガスをA面側に沿つて流
したとすると、混合ガスを構成する各ガス分子が
この微孔部3に当つて侵入し、ガス透過通路2を
通つてB面側へ放出される。この際微孔部3への
侵入度は小径分子の方が大径分子より高くその侵
入度の差に応じて小径分子ガスの濃縮が行なわれ
ていく。しかるに微孔部3の厚さは、分相度合い
(B2O3やNa2Oの富む部分におけるSiO2の含有量)
や溶出条件によつて異なるものの、かなり厚いも
のであり、ガスの透過抵抗は相当に高い。従つて
ガスの透過総量を高めようとすればA面とB面の
差圧を大きくしなければならず、操業上種々の制
約を受ける。
Porous hollow glass fibers are generally manufactured by phase-separating hollow fibers made of borosilicate glass and then eluting the parts rich in B 2 O 3 and Na 2 O with acid, but elution treatment is performed from one side. Regarding the structure of the fiber obtained through aging,
Recent research has revealed that it has a porous structure as shown in FIG.
The figure is a conceptual diagram, showing the glass main body (SiO 2 rich part) 1, glass transmission passage (eluted part)
2, and micropores (SiO 2 present in the eluted phase)
If we apply this to gas separation and let the mixed gas flow along side A, each gas molecule making up the mixed gas will hit this micropore 3. The gas enters and is emitted to the B side through the gas permeation passage 2. At this time, the degree of penetration of the small-diameter molecules into the micropores 3 is higher than that of the large-diameter molecules, and the small-diameter molecule gas is concentrated in accordance with the difference in the degree of penetration. However, the thickness of the microporous part 3 depends on the degree of phase separation (SiO 2 content in the B 2 O 3 and Na 2 O-rich part).
It is quite thick and has a considerably high gas permeation resistance, although it varies depending on the elution conditions and elution conditions. Therefore, in order to increase the total amount of gas permeation, the differential pressure between the A side and the B side must be increased, which imposes various operational constraints.

本発明はこの様な事情に着目してなされたもの
であつて、ガスの透過抵抗を可及的に軽減して上
述のガス濃縮ひいてはガス分離効率を向上させる
ことのできる多孔質中空ガラス繊維の提供を目的
とするものである。しかして本発明は、硼珪酸ガ
ラス中空繊維の内面又は外面より、B2O3及び
Na2Oを抽出して無数の細孔を有する薄層表面を
形成し、次いで熱処理による分相を行なつて残余
の部分にB2O3及びNa2Oに富む相を形成し、該相
を酸でほぼ完全に溶出させるところに要旨が存在
する。
The present invention has been made in view of these circumstances, and has been developed to provide a porous hollow glass fiber that can reduce gas permeation resistance as much as possible and improve the gas concentration and gas separation efficiency described above. It is intended for the purpose of providing. Therefore, the present invention allows B 2 O 3 and
Na 2 O is extracted to form a thin layer surface with countless pores, then phase separation is performed by heat treatment to form a phase rich in B 2 O 3 and Na 2 O in the remaining part, and the phase The key point lies in the fact that it is almost completely eluted with acid.

まず本発明者等は、分相を十分に行なわせて溶
出処理後のSiO2デポジツト量を可及的に少なく
すること、及び溶出条件を強めてSiO2について
も多く溶出してデポジツト厚さを少なくするとい
うことを考えたが、前者の手段は再現性に乏し
く、又後者の手段では条件の制御を誤まるとデポ
ジツトがなくなつてガス分離目的が達成できなく
なると考え、更に別の手段を求めて検討を進めた
ところ、分相に先立つてガラス繊維表面の
B2O3やNa2Oを直接抜き出す(以下抽出という)
と、硼珪酸ガラス繊維中にほぼ均一に分散されて
いるB2O3及びNa2Oが繊維表面から除去されて表
面全域に無数の細孔を有する薄層が形成され、こ
れが微孔部に比べて極めて薄いこと、またこの
処理の後従来法に準じて分相を行ない、更に
B2O3やNa2Oに富む部分を酸でほぼ完全に溶出除
去すると、上記薄層の下部には微孔部を伴なわな
いガス透過通路が形成され、薄層に形成された細
孔と透過通路が連通する結果、上述のガス通過抵
抗が大幅に少なくなると共にガラス繊維の表面全
域が分離有効面として利用できることになり、混
合ガス中における微小径ガス成分の濃縮や分離が
効率良く進行すること、を確認し、本発明の指針
を得た。
First, the present inventors conducted sufficient phase separation to reduce the amount of SiO 2 deposit after elution treatment as much as possible, and strengthened the elution conditions to elute a large amount of SiO 2 and reduce the deposit thickness. However, we thought that the former method had poor reproducibility, and that if the conditions were incorrectly controlled with the latter method, the deposit would disappear and the purpose of gas separation could not be achieved, so we decided to use another method. As we proceeded with the investigation, we found that the surface of the glass fiber was
Direct extraction of B 2 O 3 and Na 2 O (hereinafter referred to as extraction)
Then, B 2 O 3 and Na 2 O, which are almost uniformly dispersed in the borosilicate glass fiber, are removed from the fiber surface, forming a thin layer with countless pores over the entire surface, and this forms a thin layer in the micropores. In addition, after this treatment, phase separation is performed according to the conventional method, and
When the parts rich in B 2 O 3 and Na 2 O are almost completely eluted and removed with acid, a gas permeation passage without micropores is formed at the bottom of the thin layer, and the pores formed in the thin layer are removed. As a result of the communication between the gas passage and the permeation passage, the gas passage resistance mentioned above is significantly reduced, and the entire surface of the glass fiber can be used as an effective separation surface, allowing efficient concentration and separation of micro-diameter gas components in the mixed gas. It was confirmed that this was the case, and the guideline for the present invention was obtained.

即ち本発明では、硼珪酸ガラス中空繊維を分相
処理する前に、該中空繊維の内面又は外面(以下
外面から処理する場合につき説明するが、内面か
ら処理する場合も同じである)より、B2O3及び
Na2Oの抽出を行なう。そうすると中空繊維中に
均一に分散しているB2O3及びNa2Oが表層部全面
から抽出除去されて無数の細孔が形成され、第2
図に示す如く微細孔を有する薄層4が形成され
る。次にこの中空繊維を熱処理して分相を行な
い、B面側からB2O3及びNa2Oをほぼ完全に溶出
除去すると、第3図に示す様に薄層4の下にガス
透過通路2が形成され、微孔部3は実質上存在し
ない状態が得られる。ここで薄層4に形成される
細孔は、従来の微孔部3に形成される細孔と略等
しい口径(10Å以下)を有しており、且つ薄層4
内で縦横無尽に交錯している。従つて個々の細孔
は何れかのガス透過通路2に連通するから、薄層
表面全域が分離有効面として作用することにな
り、又第1工程で行なつた抽出によるB2O3
Na2Oの除去は繊維の最表面部において進行する
だけであるから、従来の微孔部に比べて極めて薄
く、ガスの透過抵抗が大幅に少なくなつた。
That is, in the present invention, before the borosilicate glass hollow fiber is subjected to phase separation treatment, B is extracted from the inner or outer surface of the hollow fiber (the case where the treatment is performed from the outer surface will be explained below, but the same applies when the treatment is performed from the inner surface). 2 O 3 and
Extract Na 2 O. Then, B 2 O 3 and Na 2 O, which are uniformly dispersed in the hollow fibers, are extracted and removed from the entire surface layer, forming countless pores, and the second
A thin layer 4 having micropores is formed as shown in the figure. Next, this hollow fiber is heat-treated to perform phase separation, and when B 2 O 3 and Na 2 O are almost completely eluted and removed from the B side, a gas permeation passage is formed under the thin layer 4 as shown in Figure 3. 2 are formed, and a state in which the micropores 3 are substantially absent is obtained. The pores formed in the thin layer 4 have approximately the same diameter (10 Å or less) as the pores formed in the conventional microporous part 3, and
They intertwine in every direction within the world. Therefore, since each pore communicates with one of the gas permeation passages 2, the entire surface of the thin layer acts as an effective separation surface, and the B 2 O 3 and
Since the removal of Na 2 O only progresses at the outermost surface of the fiber, it is extremely thin compared to conventional micropores, and gas permeation resistance is significantly reduced.

以下第3図に示した様な多孔質中空ガラス繊維
の製法を詳細に説明する。
The method for producing porous hollow glass fibers as shown in FIG. 3 will be explained in detail below.

まず薄層4の形成は、硼珪酸ガラス中空繊維の
表面(混合ガス供給側)から、B2O3及びNa2Oを
抽出除去することによつて行なわれる。抽出除去
法としてはスチーム処理、真空下での加熱処理、
酸処理、熱水処理等を適用することができる。尚
本発明で形成される薄層4は1000Å前後の極めて
薄い層であることが望まれ、且つ薄い層でも所期
の目的を達成することができるから、比較的短時
間の抽出処理を施こせば十分である。本工程では
B2O3やNa2Oが均一に分散した状態のままで抽出
を行なうので、表面全域に均一な細孔薄層4が形
成される。即ち本発明では、第1工程として行な
われる分相前の抽出処理が極めて重要なポイント
となる。この段階で行なわれる抽出処理条件は特
に限定されないが、スチーム抽出では100〜900℃
で5〜50時間、真空加熱抽出では10〜300mHg、
300〜650℃で1〜50時間、酸抽出では例えば硫酸
の場合0.5〜3N程度の水溶液を使用し常温〜95℃
で1〜50時間、熱水抽出では80〜100℃の熱水を
使用し1〜50時間の処理で十分に目的を達成する
ことができる。尚酸抽出は塩酸や酢酸等で行なう
こともできる。
First, the thin layer 4 is formed by extracting and removing B 2 O 3 and Na 2 O from the surface of the borosilicate glass hollow fiber (mixed gas supply side). Extraction removal methods include steam treatment, heat treatment under vacuum,
Acid treatment, hot water treatment, etc. can be applied. The thin layer 4 formed in the present invention is preferably an extremely thin layer of about 1000 Å, and since the desired purpose can be achieved even with a thin layer, the extraction process can be performed in a relatively short time. It is sufficient. In this process
Since the extraction is performed while B 2 O 3 and Na 2 O are uniformly dispersed, a uniform thin pore layer 4 is formed over the entire surface. That is, in the present invention, the extraction process performed as the first step before phase separation is extremely important. The extraction processing conditions performed at this stage are not particularly limited, but for steam extraction, the temperature is 100 to 900℃.
for 5 to 50 hours, 10 to 300 mHg for vacuum heating extraction,
1 to 50 hours at 300 to 650°C; for acid extraction, for example, in the case of sulfuric acid, use a 0.5 to 3N aqueous solution at room temperature to 95°C.
For hot water extraction, hot water at 80 to 100°C can be used for 1 to 50 hours, and a treatment time of 1 to 50 hours can sufficiently achieve the purpose. Acid extraction can also be performed using hydrochloric acid, acetic acid, or the like.

次に第2工程では、薄層4を形成した中空繊維
を熱処理して分相を行なう。分相温度の上限は、
原ガラスの軟化点以下でなければならないが通常
は500〜650℃程度迄の温度で遂行する。この熱処
理により薄層4より内部の管肉部全体に分散した
B2O3及びNa2Oが分相してこれらの濃縮部ができ
るが、第1段工程で形成された薄層中にはもはや
B2O3やNa2Oは殆んど含まれていないからここで
は分相は起こらない。
Next, in the second step, the hollow fibers with the thin layer 4 formed thereon are heat-treated to perform phase separation. The upper limit of phase separation temperature is
Although the temperature must be below the softening point of the original glass, it is usually carried out at a temperature of about 500 to 650°C. As a result of this heat treatment, the thin layer 4 was dispersed throughout the inner pipe wall.
B 2 O 3 and Na 2 O undergo phase separation to form a concentrated region, but there is no longer any concentration in the thin layer formed in the first step.
Since B 2 O 3 and Na 2 O are hardly included, phase separation does not occur here.

分相が完了すると、次に分相部からのB2O3
びNa2Oの溶出除去が行なわれる。溶出法として
は先に例示した様な溶出方法がすべて適用できる
が、実用性殊に溶出効率を考慮すれば酸処理法が
最も有効である。即ちこの工程では、薄層4を除
く管肉部(通常の肉厚は10〜500μ)を貫通する
ガス透過通路2を形成しなければならずしかも
SiO2のデポジツトが形成されない様にほぼ完全
な溶出を行なう必要があるから溶出効率の低い方
法では溶出処理に長時間を要する。しかしながら
酸溶出法を採用すると比較的短時間の処理で目的
を達成することができる。尚この工程で使用され
る酸としては硫酸が最も一般的であるが、塩酸や
硝酸等他の酸或はこれらの混合物を使用すること
も可能であり、これらは0.5〜3Nの水溶液の形で
使用され、常温〜100℃の温度で行なわれる。溶
出時間は酸の種類、濃度、処理温度等によつて適
当に決めるべきであるが、10〜50時間で溶出は殆
んど完了する。
When the phase separation is completed, B 2 O 3 and Na 2 O are then eluted and removed from the phase separation section. As the elution method, all of the elution methods exemplified above can be applied, but the acid treatment method is the most effective in consideration of practicality, especially elution efficiency. That is, in this step, it is necessary to form a gas permeation passage 2 that penetrates the pipe wall (normal thickness is 10 to 500 μm) except for the thin layer 4.
Since it is necessary to perform almost complete elution to prevent the formation of SiO 2 deposits, methods with low elution efficiency require a long time for elution processing. However, if the acid elution method is employed, the purpose can be achieved in a relatively short time. Although sulfuric acid is the most common acid used in this process, it is also possible to use other acids such as hydrochloric acid and nitric acid, or mixtures thereof, and these can be used in the form of a 0.5-3N aqueous solution. It is used at temperatures ranging from room temperature to 100°C. The elution time should be appropriately determined depending on the type of acid, concentration, treatment temperature, etc., but elution is almost complete in 10 to 50 hours.

尚SiO2のデポジツトを残さない様な溶出条件
としては、分相済みガラスに対して比較的多量の
酸を適用するのが好ましく、例えば1N硫酸(90
℃)を用いて25時間の処理で溶出する場合を例に
とると、0.1/g(ガラス繊維)以上の液量を使
用することが望まれる。但し酸の種類や濃度、処
理温度及び処理時間に応じて液量の調節を行なう
ことは当然である。
As for elution conditions that do not leave SiO 2 deposits, it is preferable to apply a relatively large amount of acid to the phase-separated glass, such as 1N sulfuric acid (90%
For example, in the case of elution in a 25-hour treatment using 0.1 °C), it is desirable to use a liquid amount of 0.1/g (glass fiber) or more. However, it goes without saying that the amount of liquid should be adjusted depending on the type and concentration of acid, treatment temperature, and treatment time.

尚この工程で行なわれる溶出方向としては、薄
層4の形成面側(第3図のA面側)、その反対面
側(同B面側)及び両面側から行なう3通りが可
能であるが、最も好ましいのは薄層4の反対側の
面から溶出する方法である。しかして薄層4の形
成面側から溶出しようと、溶出されるべきB2O3
やNa2O等が薄層4の細孔を通過しなければなら
ずこの部分で溶出性が抑制されるのに対し、反対
面側から溶出を行なうと、裏面側に順次形成され
る比較的太径(50Å以上)のガス透過通路2に添
つて溶出成分がすみやかに除去されるので、短時
間で溶出を完了することができる。しかも多孔質
の薄層4は比較的脆弱であり、溶出成分の通過抵
抗によつて亀裂を起こす恐れがあるが、裏面側か
ら溶出を行なえばこの様な障害を起こす恐れもな
い。但し溶出時間を十分に取りまた酸濃度や処理
温度等の調整或は硼酸や珪酸を含む酸水溶液を使
用することによつて上記亀裂の発生を防止すれば
薄層形成面側から溶出を行なうこともでき、或は
両面側から溶出を行なつてもよく、これらも本発
明の範囲に含まれる。
There are three possible elution directions in this step: from the side on which the thin layer 4 is formed (side A in Figure 3), from the opposite side (side B in Figure 3), and from both sides. The most preferred method is elution from the opposite side of the thin layer 4. However, the B 2 O 3 to be eluted is eluted from the side where the thin layer 4 is formed.
, Na 2 O, etc. have to pass through the pores of the thin layer 4, and their elution is suppressed in this part. On the other hand, when elution is carried out from the opposite side, relatively large particles are formed sequentially on the back side. Since the eluted components are quickly removed along the large diameter (50 Å or more) gas permeation passage 2, the elution can be completed in a short time. Furthermore, the porous thin layer 4 is relatively fragile and may cause cracks due to resistance to passage of eluted components, but if elution is performed from the back side, there is no risk of such problems. However, if the above-mentioned cracks are prevented from occurring by allowing sufficient elution time and adjusting the acid concentration and treatment temperature, or by using an acid aqueous solution containing boric acid or silicic acid, elution can be carried out from the side on which the thin layer is formed. Alternatively, elution may be performed from both sides, and these are also included in the scope of the present invention.

この様に本発明では、第1段の工程でB2O3
Na2O抽出を行なつて多孔質薄層4を形成し、次
いで分相及び酸による溶出を順次行なうのが原則
であるが、簡便法として第1段目の抽出と分相を
同時に行なうことも可能である。即ち分相に要す
る熱処理所要時間は通常1〜3日程度であるのに
対し、第1段目の抽出所要時間は一般に数時間で
ある。従つて分相と抽出を同時に行なつた場合で
も第1段目の抽出が早期に進行して多孔質薄層4
が形成されるから、抽出と分相を個別に順次行な
つたものとの違いは殆んど認められず、第1段目
の抽出所要時間を省くことができるという効果が
得られる。
In this way, in the present invention, B 2 O 3 and
In principle, Na 2 O extraction is performed to form a porous thin layer 4, followed by phase separation and acid elution, but as a simple method, the first stage extraction and phase separation may be performed simultaneously. is also possible. That is, the time required for the heat treatment required for phase separation is usually about 1 to 3 days, whereas the time required for the first stage extraction is generally several hours. Therefore, even when phase separation and extraction are performed simultaneously, the first stage extraction proceeds quickly and forms a porous thin layer 4.
is formed, so there is almost no difference between extraction and phase separation performed separately and sequentially, and the effect is that the time required for the first stage extraction can be saved.

ところで硼珪酸ガラスでは、大気中で長時間放
置しておくだけで表面が変質し種々の障害を起こ
すことが確認されており、この変質がB2O3
Na2Oの揮発によるものであるとする報告もあ
る。例えば古い硼珪酸ガラス成形品を用いて分
相及び酸溶出処理を行なうと、表面の変質層によ
つて溶出性が阻害されて溶出効率が低下し或は該
変質層が崩壊して品質が低下すること、新しい
硼珪酸ガラス成形品を用いた場合でも分相の為の
熱処理工程で表面の変質が起こり、前記と同様
の障害が発生すること等、が確認されている。そ
こで従来ではこの変質に伴なう障害を防止する
為、成形直後の新しい硼珪酸ガラス成形品を使用
し、且つ分相の為の熱処理工程では硼酸蒸気の存
在下で熱処理を行なう等によつて、表面変質を防
止する検討が行なわれていた。
By the way, it has been confirmed that the surface of borosilicate glass changes when left in the atmosphere for a long time, causing various problems .
There are also reports that this is due to the volatilization of Na 2 O. For example, when an old borosilicate glass molded product is subjected to phase separation and acid elution treatment, the elution efficiency is reduced due to a degraded layer on the surface that inhibits elution, or the degraded layer collapses and the quality deteriorates. It has been confirmed that even when new borosilicate glass molded products are used, surface deterioration occurs during the heat treatment process for phase separation, causing the same problems as described above. Conventionally, in order to prevent problems associated with this alteration, new borosilicate glass molded products were used immediately after molding, and heat treatment was performed in the presence of boric acid vapor during the heat treatment process for phase separation. , studies were being conducted to prevent surface deterioration.

これに対し本発明では、上記変質層が極めて微
細な孔を無数に有する多孔質層であることに着目
し、この多孔質層を積極的に形成することにより
分離有効面として利用するものである。即ち本発
明では従来例で重大な欠陥として指摘されており
防止対策に苦慮していた現象を、積極的に活用す
ることによつて目的を達成し得たものであり、こ
の様な着想及びそれによつてもたらされる作用効
果は、この種の分野の従来常識からは到底予測し
得ないものである。
In contrast, the present invention focuses on the fact that the above-mentioned altered layer is a porous layer having countless extremely fine pores, and uses this porous layer as an effective separation surface by actively forming the porous layer. . In other words, the present invention has achieved its purpose by actively utilizing a phenomenon that has been pointed out as a serious defect in the conventional example and for which prevention measures have been difficult. The resulting effects cannot be predicted from conventional wisdom in this field.

本発明における多孔質ガラスの代表例として
は、組成がSiO2:22〜75重量%、Na2O:2〜16
重量%、B2O3:18〜67重量%、Al2O3:0〜5重
量%、ZrO2:0〜5重量%、TiO2:0〜5重量
%の硼珪酸ガラスを原料ガラスとする高珪酸多孔
質ガラスが挙げられる。
A typical example of the porous glass in the present invention has a composition of SiO2 : 22 to 75% by weight, Na2O: 2 to 16% by weight.
Borosilicate glass containing B2O3 : 18-67% by weight, Al2O3 : 0-5% by weight, ZrO2 : 0-5 % by weight, and TiO2 : 0-5% by weight is used as the raw material glass. Examples include high silicate porous glass.

この様にして得られた多孔質ガラスは、10〜
3000Åの細孔径を有し200〜500m2/gの窒素吸着
面積を持つ多孔質体である。尚本発明における繊
維外径は10〜3000μm、中空繊維の(内径/外径)
比は0.2〜0.8である。
The porous glass obtained in this way is
It is a porous body with a pore diameter of 3000 Å and a nitrogen adsorption area of 200 to 500 m 2 /g. In addition, the fiber outer diameter in the present invention is 10 to 3000 μm, and the (inner diameter/outer diameter) of the hollow fiber
The ratio is 0.2-0.8.

本発明は概略以上の様に構成されており、多孔
質ガラス中空繊維の表面全体を極めて薄層の分離
有効面とすることができ、ガス透過抵抗を大幅に
軽減することができ、単位面積当りのガス透過量
が増大された。またその製造に当つては従来の分
相、溶出処理に先立つて比較的短時間の抽出処理
を行なうだけでよく、製造作業が簡単である。殊
に比較的長時間を要する熱処理(分相)工程の初
期に第1段目の抽出を併行実施すれば、従来法と
等しい所要時間で高性能の多孔質ガラス中空繊維
を得ることができる。
The present invention is roughly constructed as described above, and the entire surface of the porous glass hollow fiber can be made into an extremely thin layer of effective separation surface, and gas permeation resistance can be significantly reduced. The amount of gas permeation was increased. In addition, its production is simple, as it only requires a relatively short extraction process prior to the conventional phase separation and elution processes. In particular, if the first stage extraction is carried out in parallel at the beginning of the heat treatment (phase separation) step, which takes a relatively long time, it is possible to obtain high-performance porous glass hollow fibers in the same amount of time as in the conventional method.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法で得た多孔質ガラス中空繊維の
縦断面構造を示す概念図、第2図は本発明の第1
段工程で多孔質薄層を形成した中空繊維の縦断面
概念図、第3図は本発明で得た多孔質ガラス中空
繊維の縦断面構造を例示する概念図である。 1……ガラス本体部、2……ガス透過通路、3
……微孔部、4……多孔質薄層。
Fig. 1 is a conceptual diagram showing the vertical cross-sectional structure of porous glass hollow fiber obtained by the conventional method, and Fig. 2 is a conceptual diagram showing the longitudinal cross-sectional structure of the porous glass hollow fiber obtained by the conventional method.
FIG. 3 is a conceptual diagram illustrating the longitudinal cross-sectional structure of the porous glass hollow fiber obtained in the present invention. 1...Glass main body, 2...Gas permeation passage, 3
... Microporous part, 4... Porous thin layer.

Claims (1)

【特許請求の範囲】[Claims] 1 硼珪酸ガラス中空繊維の内面又は外面より、
B2O3及びNa2Oを抽出して無数の細孔を有する薄
層表面を形成し、次いで熱処理に付して残余の部
分を分相せしめ、更に分相部からB2O3及びNa2O
に富む相を酸でほぼ完全に溶出させることを特徴
とする多孔質ガラス中空繊維の製造法。
1 From the inner or outer surface of the borosilicate glass hollow fiber,
B 2 O 3 and Na 2 O are extracted to form a thin layer surface with countless pores, and then heat treatment is applied to phase separate the remaining portion, and B 2 O 3 and Na are extracted from the phase separated portion. 2 O
A method for producing porous glass hollow fibers, characterized by almost completely eluting a phase rich in ions with an acid.
JP56048676A 1981-03-31 1981-03-31 Preparation of porous hollow fiber of glass Granted JPS57166331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56048676A JPS57166331A (en) 1981-03-31 1981-03-31 Preparation of porous hollow fiber of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56048676A JPS57166331A (en) 1981-03-31 1981-03-31 Preparation of porous hollow fiber of glass

Publications (2)

Publication Number Publication Date
JPS57166331A JPS57166331A (en) 1982-10-13
JPH0139974B2 true JPH0139974B2 (en) 1989-08-24

Family

ID=12809916

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56048676A Granted JPS57166331A (en) 1981-03-31 1981-03-31 Preparation of porous hollow fiber of glass

Country Status (1)

Country Link
JP (1) JPS57166331A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5945946A (en) * 1982-09-06 1984-03-15 Toyota Central Res & Dev Lab Inc Manufacture of porous hollow glass fiber
EP0188811A3 (en) * 1984-12-24 1987-04-29 Ppg Industries, Inc. Silica-rich, porous solid and hollow fibers and method of producing same
EP0248391A3 (en) * 1986-06-06 1988-08-03 Ppg Industries, Inc. Porous siliceous-containing gas enriching material and process of manufacture and use
US5011566A (en) * 1989-03-15 1991-04-30 The United States Of America As Represented By The Secretary Of The Air Force Method of manufacturing microscopic tube material
WO2021095545A1 (en) * 2019-11-11 2021-05-20 日本電気硝子株式会社 Method for producing porous glass member

Also Published As

Publication number Publication date
JPS57166331A (en) 1982-10-13

Similar Documents

Publication Publication Date Title
US2215039A (en) Method of treating borosilicate glasses
US4842620A (en) Process of gas enrichment with porous siliceous-containing material
US4853001A (en) Porous inorganic siliceous-containing gas enriching material and process of manufacture and use
GB2199318A (en) Dealkalised sheet glass and method of producing same
US4080188A (en) Durable substrates having porous antireflection coatings
EP0253427B1 (en) Method for making optical fibres with a core and an envelope from glass using the rod-in-tube method
JPH0139974B2 (en)
IE44144B1 (en) Improvements in or relating to the production of glass articles
US4175942A (en) Method of glass drawing
US4313748A (en) Method for producing a strengthened glass structural member
US5292354A (en) Method of producing dealkalized sheet glass
US4340408A (en) High silica glass
JPS63201025A (en) Production of high-purity transparent glass
JPH0525530B2 (en)
JPS62298420A (en) Porous material for concentrating gas containing silica, manufacture thereof and method of concentrating gas by usingsaid manufacture
US4919699A (en) Process of removing platinum inclusions from laser glass
US4220682A (en) Strengthened glass structural member
EP0885842B1 (en) Process for preparing silica gel and process for producing dehumidifying element
JPS627132B2 (en)
US4661138A (en) Method of strengthening the alkali resistance of a porous glass
JPS6351051B2 (en)
CA1075910A (en) Strengthened glass structural member and method for producing same
JPH0425226B2 (en)
JPS6149256B2 (en)
JPH07223843A (en) Production of chemically tempered glass