JPH0425226B2 - - Google Patents

Info

Publication number
JPH0425226B2
JPH0425226B2 JP16302685A JP16302685A JPH0425226B2 JP H0425226 B2 JPH0425226 B2 JP H0425226B2 JP 16302685 A JP16302685 A JP 16302685A JP 16302685 A JP16302685 A JP 16302685A JP H0425226 B2 JPH0425226 B2 JP H0425226B2
Authority
JP
Japan
Prior art keywords
porous glass
silica
glass membrane
membrane
rich phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16302685A
Other languages
Japanese (ja)
Other versions
JPS6227352A (en
Inventor
Yoichi Matsui
Kuniharu Mori
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP16302685A priority Critical patent/JPS6227352A/en
Publication of JPS6227352A publication Critical patent/JPS6227352A/en
Publication of JPH0425226B2 publication Critical patent/JPH0425226B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

(産業上の利用分野) 本発明は、細孔内にゲル状シリカを含まない多
孔質ガラス膜の製造方法に関するものである。 (従来の技術) 従来、多孔質ガラス膜は硼珪酸塩ガラスを細管
に成形後、硼酸ナトリウムに富んだ相とシリカに
富んだ相に分相させ、硼酸ナトリウムに富んだ相
を酸で溶出される方法によつて製造されていた。
しかしながら、この製造方法では、分相によつて
生じた硼酸ナトリウム相に含有されたシリカ成分
が、酸処理工程でゲル状シリカとなつて多孔質ガ
ラス膜の細孔内に堆積する。このゲル状シリカは
分相構造に由来する多孔質構造を乱すため、多孔
質ガラス膜の細孔特性を精密に制御する必要があ
る場合に大きな障害となつた。 係る欠点を回避するため、特公昭53−44580で
は、酸処理後の多孔質ガラス細管(膜厚5〜
30μm)に対し、水酸化ナトリウム溶液をガラス
100gに対し1使用し0℃で24時間処理して細
孔を26Åから164Åに拡大する方法が記載されて
いる。しかしながら、この方法では、膜厚の厚い
多孔質ガラス膜(例えば膜厚400〜600μm)を処
理した場合、アルカリ溶液処理工程後の多孔質ガ
ラス膜表面に微細な割れを発生することが多く、
多孔質ガラス膜の製造において大きな障害となつ
た。 (発明が解決しようとする問題点) 本発明は、ゲル状シリカを含まない多孔質ガラ
ス膜の製造方法における従来の欠点即ち、アルカ
リ溶液処理工程後の多孔質ガラス膜の表面に微細
な割れが発生するという欠点を解消せんとするも
のである。 (問題点を解決するための手段) そこで、本発明者等は前記従来の欠点を解決す
べく鋭意検討の結果、多孔質ガラス膜の表面に微
細な割れを発生させずに細孔内に堆積したゲル状
シリカを除去する方法を発明した。即ち、本発明
は、硼珪酸塩ガラスを原料ガラスとする多孔質ガ
ラス膜の製造方法において、硼酸ナトリウムに富
んだ相とシリカに富んだ相に分相させ、酸で硼酸
ナトリウムに富んだ相を溶出させた多孔質ガラス
膜を700℃〜800℃で熱処理した後、アルカリ溶液
で処理して細孔内に堆積したゲル状シリカと一部
のシリカ骨格を溶出させることを特徴とする多孔
質ガラス膜の製造方法である。 本発明の方法において、原料ガラスとして例え
ば米国特許2286275号に記載されているような原
料ガラスが使用可能である。この原料ガラスを外
径1〜3mmの細管に成形した後、融着及び変形の
起らない温度範囲で熱処理して硼酸ナトリウムに
富んだ相とシリカに富んだ相に分相させ、硼酸ナ
トリウムに富んだ相を酸で溶出させて多孔質ガラ
ス膜を得る。酸としては硫酸、塩酸、硝酸等が用
いられる。この多孔質ガラスを空気中で熱処理し
て焼結させるが、本発明によれば、熱処理温度は
700℃〜800℃が好ましい。熱処理温が700℃より
低い場合アルカリ溶液処理工程後の多孔質ガラス
膜表面での割れ発生を抑制する効果が小さく、熱
処理温度が800℃より高い場合アルカリ溶液処理
を施した後の多孔質ガラス膜の気体(例えば水素
ガス、一酸化炭素ガス等)の透過性が低下するの
で好ましくない。 前記熱処理を行つた多孔質ガラス膜をアルカリ
溶液で処理して細孔内に堆積したゲル状シリカと
一部のシリカ骨格を溶出させることにより多孔質
ガラス膜を得る。 本発明によれば、アルカリ溶液処理工程で使用
するアルカリ溶液は強アルカリ溶液(例えば水酸
化ナトリウム溶液、水酸化ナトリウム溶液等)が
好ましい。又、ゲル状シリカの堆積量は窒素吸着
法より求めた累積細孔容積曲線の変化より判断す
る。 なお、多孔質ガラス膜の熱安定性を向上させる
必要がある場合、又は多孔質ガラス膜の機械的強
度を増大させる必要がある場合には、アルカリ溶
液処理工程後の多孔質ガラス膜を酸で洗浄した後
に焼成することが好ましい。酸としては硫酸、塩
酸、硝酸等が用いられる。 (実施例) 以下、本発明を実施例にもとづき詳細に説明す
る。 実施例 1 SiO262.5重量%、B2O327.3重量%、Na2O7.2重
量%、Al2D33.0重量%より成る原料ガラスを外径
2mm、内径1mmの細管に成形し、580℃で5時間
熱処理して分相させた後、1規定硫酸をガラス
100gに対し1使用し95℃で24時間処理して多
孔質ガラス膜を得た。この多孔質ガラス膜を空気
中725℃で4時間処理し、0.5規定水酸化ナトリウ
ム溶液をガラス10gに対し1使用し1℃で20時
間処理した後、20℃のイオン交換水で5時間洗浄
して多孔質ガラス膜を得た。窒素吸着法で測定し
た多孔質ガラス膜の細孔特性及び細孔径分布を試
料No.1として表1及び第1図に示す。表1中の平
均細孔径Dは細孔容積V(cm3/g)と細孔比表面
積S(m2/g)を用いてD=4V/Sによつて計算し た値である。 なお、本発明の範囲外であるが、細孔内のゲル
状シリカの堆積量を比較するため、アルカリ溶液
処理工程前の多孔質ガラス膜の細孔特性及び細孔
径分布を試料No.3として表1及び第1図に示す。
又、酸処理後の多孔質ガラス膜に対して上記のア
ルカリ処理を行つた場合、多孔質ガラス膜表面に
微細な割れが発生した。第1図からアルカリ溶液
処理を行つた場合、ゲル状シリカに由来した微細
孔領域で累積細孔容積曲線が増加せず、代つて分
相構造に由来した細孔径領域で累積細孔容積曲線
が増加することにより、細孔内にゲル状シリカを
含まないことが理解できる。 実施例 2 実施例1に記載した鉱酸処理工程後の多孔質ガ
ラス膜を750℃で4時間処理し、0.5規定水酸化ナ
トリウム溶液をガラス1.6gに対し1使用し1
℃で24時間処理した後、20℃のイオン交換水で5
時間洗浄して多孔質ガラス膜を得た。窒素吸着法
で測定した多孔質ガラス膜の細孔特性及び細孔径
分布を試料No.2として表1及び第1図に示す。第
1図から試料No.1と同様に、試料No.2もゲル状シ
リカを含まないことが理解できる。
(Industrial Application Field) The present invention relates to a method for producing a porous glass membrane that does not contain gel-like silica in its pores. (Prior art) Conventionally, porous glass membranes are produced by forming borosilicate glass into a thin tube, separating the phases into a sodium borate-rich phase and a silica-rich phase, and eluting the sodium borate-rich phase with acid. It was manufactured by a method.
However, in this manufacturing method, the silica component contained in the sodium borate phase produced by phase separation becomes gel-like silica in the acid treatment step and is deposited in the pores of the porous glass membrane. Since this gel-like silica disturbs the porous structure derived from the phase separation structure, it has become a major obstacle when it is necessary to precisely control the pore characteristics of a porous glass membrane. In order to avoid such drawbacks, in Japanese Patent Publication No. 53-44580, porous glass tubes (with a film thickness of 5 to
30μm), add sodium hydroxide solution to the glass
A method is described in which the pores are enlarged from 26 Å to 164 Å by using 1 portion per 100 g and treating at 0° C. for 24 hours. However, when using this method to treat a thick porous glass membrane (for example, 400 to 600 μm thick), microscopic cracks often occur on the surface of the porous glass membrane after the alkaline solution treatment step.
This has become a major obstacle in the production of porous glass membranes. (Problems to be Solved by the Invention) The present invention solves the conventional drawbacks in the manufacturing method of porous glass membranes that do not contain gelled silica, namely, the occurrence of minute cracks on the surface of the porous glass membrane after the alkaline solution treatment step. This is an attempt to eliminate the drawbacks that occur. (Means for Solving the Problems) Therefore, as a result of intensive studies in order to solve the above-mentioned conventional drawbacks, the present inventors have found that the present inventors have found that the film can be deposited in the pores without causing minute cracks on the surface of the porous glass membrane. We have invented a method to remove gelled silica. That is, the present invention provides a method for producing a porous glass membrane using borosilicate glass as a raw material glass, in which the phases are separated into a sodium borate-rich phase and a silica-rich phase, and the sodium borate-rich phase is separated with an acid. A porous glass characterized in that the eluted porous glass membrane is heat-treated at 700°C to 800°C and then treated with an alkaline solution to elute gel-like silica and a part of the silica skeleton deposited in the pores. This is a method for manufacturing a membrane. In the method of the present invention, a raw material glass such as that described in US Pat. No. 2,286,275 can be used as the raw material glass. After forming this raw glass into a thin tube with an outer diameter of 1 to 3 mm, it is heat-treated at a temperature range that does not cause fusion or deformation to separate the phases into a sodium borate-rich phase and a silica-rich phase. The rich phase is eluted with acid to obtain a porous glass membrane. As the acid, sulfuric acid, hydrochloric acid, nitric acid, etc. are used. This porous glass is sintered by heat treatment in the air, and according to the present invention, the heat treatment temperature is
700°C to 800°C is preferred. If the heat treatment temperature is lower than 700℃, the effect of suppressing cracking on the surface of the porous glass membrane after the alkaline solution treatment process is small, and if the heat treatment temperature is higher than 800℃, the porous glass membrane after the alkaline solution treatment is This is not preferable because the permeability of gases (for example, hydrogen gas, carbon monoxide gas, etc.) decreases. A porous glass membrane is obtained by treating the heat-treated porous glass membrane with an alkaline solution to elute gel-like silica and part of the silica skeleton deposited in the pores. According to the present invention, the alkaline solution used in the alkaline solution treatment step is preferably a strong alkaline solution (eg, sodium hydroxide solution, sodium hydroxide solution, etc.). Further, the amount of gel-like silica deposited is determined from the change in the cumulative pore volume curve determined by the nitrogen adsorption method. In addition, when it is necessary to improve the thermal stability of the porous glass membrane or when it is necessary to increase the mechanical strength of the porous glass membrane, the porous glass membrane after the alkaline solution treatment step is treated with an acid. It is preferable to bake after cleaning. As the acid, sulfuric acid, hydrochloric acid, nitric acid, etc. are used. (Examples) Hereinafter, the present invention will be described in detail based on Examples. Example 1 A raw material glass consisting of 62.5% by weight of SiO 2 , 27.3% by weight of B 2 O 3 , 7.2% by weight of Na 2 O, and 3.0% by weight of Al 2 D 3 was formed into a thin tube with an outer diameter of 2 mm and an inner diameter of 1 mm. After heat treatment at ℃ for 5 hours to separate the phases, 1N sulfuric acid was added to the glass.
A porous glass membrane was obtained by using 1 portion per 100 g and treating at 95° C. for 24 hours. This porous glass membrane was treated in air at 725°C for 4 hours, treated with 1°C of 0.5N sodium hydroxide solution at 1°C for 20 hours, and then washed with ion-exchanged water at 20°C for 5 hours. A porous glass membrane was obtained. The pore characteristics and pore size distribution of the porous glass membrane measured by the nitrogen adsorption method are shown in Table 1 and FIG. 1 for Sample No. 1. The average pore diameter D in Table 1 is a value calculated by D=4V/S using the pore volume V (cm 3 /g) and the pore specific surface area S (m 2 /g). Although it is outside the scope of the present invention, in order to compare the amount of gel-like silica deposited in the pores, the pore characteristics and pore size distribution of the porous glass membrane before the alkaline solution treatment step were measured as sample No. 3. It is shown in Table 1 and FIG.
Further, when the above-mentioned alkali treatment was performed on the porous glass membrane after the acid treatment, fine cracks were generated on the surface of the porous glass membrane. As shown in Figure 1, when alkaline solution treatment is performed, the cumulative pore volume curve does not increase in the micropore region derived from gel-like silica, and instead increases in the pore diameter region derived from the split phase structure. It can be understood that by increasing the number of particles, no gelled silica is included in the pores. Example 2 A porous glass membrane after the mineral acid treatment step described in Example 1 was treated at 750°C for 4 hours, and a 0.5N sodium hydroxide solution was used at 1 level per 1.6 g of glass.
After 24 hours of treatment at ℃, the
A porous glass membrane was obtained by washing for hours. The pore characteristics and pore size distribution of the porous glass membrane measured by the nitrogen adsorption method are shown in Table 1 and FIG. 1 for Sample No. 2. It can be seen from FIG. 1 that, like sample No. 1, sample No. 2 also does not contain gel-like silica.

【表】 (発明の効果) 本発明によれば、次のような格別優れた効果が
得られる。 (1) ゲル状シリカを含まない多孔質ガラス膜を製
造できる。 (2) アルカリ処理工程後の多孔質ガラス膜の表面
に微細な割れが発生しない。
[Table] (Effects of the Invention) According to the present invention, the following exceptional effects can be obtained. (1) Porous glass membranes that do not contain gel-like silica can be manufactured. (2) No microscopic cracks occur on the surface of the porous glass membrane after the alkali treatment process.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法により得られる多孔質ガラ
ス膜の細孔径分布を示すグラフである。
FIG. 1 is a graph showing the pore size distribution of a porous glass membrane obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】 1 硼珪酸塩ガラスを原料ガラスとする多孔質ガ
ラス膜の製造方法において、硼酸ナトリウムに富
んだ相とシリカに富んだ相に分相させ、酸で硼酸
ナトリウムに富んだ相を溶出させた多孔質ガラス
膜を熱処理した後、アルカリ溶液で処理して細孔
内に堆積したゲル状シリカと一部のシリカ骨格を
溶出させることを特徴とする多孔質ガラス膜の製
造方法。 2 熱処理温が、700℃〜800℃である特許請求の
範囲第1項記載の製造方法。
[Claims] 1. In a method for producing a porous glass membrane using borosilicate glass as a raw material glass, the phase is separated into a sodium borate-rich phase and a silica-rich phase, and the sodium borate-rich phase is separated with an acid. A method for producing a porous glass membrane, which comprises heat-treating the porous glass membrane from which the silica has been eluted, and then treating it with an alkaline solution to elute gel-like silica and part of the silica skeleton deposited in the pores. 2. The manufacturing method according to claim 1, wherein the heat treatment temperature is 700°C to 800°C.
JP16302685A 1985-07-25 1985-07-25 Production of porous glass film Granted JPS6227352A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16302685A JPS6227352A (en) 1985-07-25 1985-07-25 Production of porous glass film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16302685A JPS6227352A (en) 1985-07-25 1985-07-25 Production of porous glass film

Publications (2)

Publication Number Publication Date
JPS6227352A JPS6227352A (en) 1987-02-05
JPH0425226B2 true JPH0425226B2 (en) 1992-04-30

Family

ID=15765774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16302685A Granted JPS6227352A (en) 1985-07-25 1985-07-25 Production of porous glass film

Country Status (1)

Country Link
JP (1) JPS6227352A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7625399B2 (en) 2003-04-24 2009-12-01 Cook Incorporated Intralumenally-implantable frames
EP3281608B1 (en) 2012-02-10 2020-09-16 CVDevices, LLC Medical product comprising a frame and visceral pleura
CN104837783A (en) 2012-10-12 2015-08-12 旭硝子株式会社 Manufacturing method for phase-separated glass, and phase-separated glass

Also Published As

Publication number Publication date
JPS6227352A (en) 1987-02-05

Similar Documents

Publication Publication Date Title
US2106744A (en) Treated borosilicate glass
US3650721A (en) Method of forming micro-porous glass fibers
US3804647A (en) Porous glass supports for automotive emissions control catalysts
WO2002026647A1 (en) Optical glass silica soot particles and method of making same
JPH06256035A (en) Production of preform for optical fiber
US3630700A (en) Process for forming particles of microporous glass for tobacco smoke filters
JPS6346005B2 (en)
JPH0425226B2 (en)
Kuraoka et al. Preparation of molecular-sieving glass hollow fiber membranes based on phase separation
JP2002160941A (en) Double layer structure porous glass membrane and method for making the same
US4340408A (en) High silica glass
EP0248391A3 (en) Porous siliceous-containing gas enriching material and process of manufacture and use
JPS63201025A (en) Production of high-purity transparent glass
JPH0525530B2 (en)
US2612727A (en) Method of making ultraviolet-transmitting high-silica glasses
EP0174851A1 (en) Porous titanate glass and a method of producing it
JPS61227936A (en) Manufacture of glass body
JPS627132B2 (en)
JPH0139974B2 (en)
Papanikolau et al. Preparation of ultra-pure silica glass from autoclave-dried gels
JPS6227351A (en) Production of porous glass film
JPS6317229A (en) Production of preform for optical fiber
JP2551642B2 (en) Glass base material heating furnace for optical fiber
JPS6081038A (en) Manufacture of optical glass fiber containing tio2
JP2985493B2 (en) Manufacturing method of optical fiber preform

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term