JPH0139062B2 - - Google Patents

Info

Publication number
JPH0139062B2
JPH0139062B2 JP55187103A JP18710380A JPH0139062B2 JP H0139062 B2 JPH0139062 B2 JP H0139062B2 JP 55187103 A JP55187103 A JP 55187103A JP 18710380 A JP18710380 A JP 18710380A JP H0139062 B2 JPH0139062 B2 JP H0139062B2
Authority
JP
Japan
Prior art keywords
expanded particles
particles
foaming
cylindrical container
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55187103A
Other languages
Japanese (ja)
Other versions
JPS57110938A (en
Inventor
Akio Takahashi
Hisatoshi Fukui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP18710380A priority Critical patent/JPS57110938A/en
Publication of JPS57110938A publication Critical patent/JPS57110938A/en
Publication of JPH0139062B2 publication Critical patent/JPH0139062B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N5/00Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】 本発明は予備発泡機で予備発泡される発泡性熱
可塑性樹脂粒子の予備発泡粒子の発泡倍率の変動
を自動的に検知する自動倍率測定方法ならびに該
測定法に立脚した予備発泡機内の発泡倍率制御法
に関するものである。
Detailed Description of the Invention The present invention is based on an automatic magnification measuring method for automatically detecting fluctuations in the expansion magnification of expandable thermoplastic resin particles pre-foamed in a pre-foaming machine, and an automatic magnification measuring method based on the measuring method. This invention relates to a method for controlling the expansion ratio in a pre-foaming machine.

ビーズ法発泡スチレンは成形機による型内成形
を行なう前に原料の発泡スチレンビーズを所要の
見掛比重まで発泡させ予め所要の発泡倍率のビー
ズとする操作を行なつており、予備発泡と通称さ
れている。
Before forming styrene foam using the bead method in a mold using a molding machine, the raw material styrene foam beads are expanded to the required apparent specific gravity to form beads with the required expansion ratio, which is commonly known as pre-foaming. ing.

この予備発泡には一般に撹拌機の装備された発
泡槽内へ下部から前記発泡スチレンビーズの如き
原料樹脂粒子を連続的に供給し、水蒸気等の加熱
媒体により加熱発泡させ、この予備発泡された粒
子を発泡槽上部より連続的に取出す連続方式と、
撹拌機の設置された前記発泡槽内へ原料樹脂粒子
を回分式に定量宛供給し、加熱媒体により樹脂粒
子を発泡させた後、予備発泡粒子を回分式に取出
すバツチ方式の二通りがあり、何れも利用されて
いるが、前者の場合には発泡槽の壁付近と中心部
では撹拌羽根の周速の相違、温度分布の不均一
さ、更には撹拌操作による不均一発生等の理由か
ら得られた予備発泡粒子の発泡倍率には相当のバ
ラツキがあり、又、一方バラツキ方式のものも、
発泡槽内の上下を均等に万遍なく撹拌することは
実質上難しく、槽の上下において発泡倍率に差を
有して不均一な発泡倍率を余儀なくされていた。
For this pre-foaming, raw resin particles such as the expanded styrene beads are generally continuously fed from the bottom into a foaming tank equipped with a stirrer, heated and foamed with a heating medium such as water vapor, and the pre-foamed particles are A continuous method that takes out the foam continuously from the top of the foaming tank,
There are two methods: a batch method, in which the raw resin particles are fed into the foaming tank equipped with a stirrer in a fixed amount in batches, the resin particles are foamed with a heating medium, and then the pre-expanded particles are taken out in batches; Both methods are used, but in the case of the former, there is a difference in the circumferential speed of the stirring blade near the wall and the center of the foaming tank, uneven temperature distribution, and even unevenness caused by the stirring operation. There is considerable variation in the expansion ratio of the pre-expanded particles, and on the other hand, the expansion ratio of the pre-expanded particles is
It is practically difficult to evenly and evenly stir the foaming tank from top to bottom, and there is a difference in the foaming ratio between the top and bottom of the tank, resulting in an uneven foaming ratio.

そして、このような予備発泡粒子の発泡倍率の
バラツキは当然発泡成形品の品質のバラツキをも
たらし、良質な成形品の製造は望めないばかりで
なく、近時の高度な品質が要求される時代の趨勢
から機械構造部品などの製作上の隘路となつてい
た。
Such variations in the expansion ratio of pre-expanded particles naturally lead to variations in the quality of foamed molded products, and not only can it not be expected to produce high-quality molded products, but also in the modern era where high quality is required. This trend has become a bottleneck in the production of mechanical structural parts.

そのため、予備発泡粒子の均一性、平均発泡倍
率の安定性の見地から発泡倍率を自動制御しよう
とする試みが一部において取り上げられている
が、通常、行なわれているこの発泡倍率の制御方
法はバツチ方式の手動による制御方法であり、予
備発泡機から排出された予備発泡が完了した粒子
をバケツ等の容器でサンプリング採取し、一定容
積にしてその重量をを測定して見掛比重を換算
し、設定比重との比較を行ない、両者間に偏差が
あればこれによつて蒸気供給量を手動弁の開閉操
作により手動的に調節するか、又は変速機付モー
タの回転数を手動操作して原料粒子供給量を調節
して所定の発泡倍率を維持するようにしている。
Therefore, some attempts have been made to automatically control the expansion ratio from the viewpoint of the uniformity of pre-expanded particles and the stability of the average expansion ratio. This is a batch-type manual control method, in which the pre-foamed particles discharged from the pre-foaming machine are sampled in a container such as a bucket, the volume is made to a constant volume, the weight is measured, and the apparent specific gravity is calculated. , compare it with the set specific gravity, and if there is a deviation between the two, either manually adjust the steam supply amount by opening and closing the manual valve, or manually adjust the rotation speed of the motor with a transmission. The feed rate of raw material particles is adjusted to maintain a predetermined expansion ratio.

ところが、予備発泡粒子の発泡倍率は成形機に
よる成形品の品質を規定する大きな要因であると
共に、コスト面でも大きな割合を占めており、発
泡倍率を調節する操作は非常に重要な操作であ
る。
However, the expansion ratio of the pre-expanded particles is a major factor that determines the quality of the molded product produced by the molding machine, and also accounts for a large proportion of the cost, so the operation of adjusting the expansion ratio is a very important operation.

従つて、前述のような手動制御方法において予
備発泡操作には専任の運転員が必要とされ、この
運転員が15〜30分間隔で予備発泡粒子を測定し、
調節を行なつている実状である。
Therefore, in the manual control method described above, a dedicated operator is required for the pre-foaming operation, and this operator measures the pre-foamed particles at intervals of 15 to 30 minutes.
The situation is that adjustments are being made.

しかし、このような制御方法は人員の有効活用
の面で問題があるのみならず、15〜30分間隔の測
定制御では必らずしも充分、予備発泡粒子の均一
性、安定性を確保するに至らず、時代の要求に必
らずしも応えていない。
However, this control method not only has problems in terms of effective utilization of personnel, but also measurement control at 15 to 30 minute intervals is not necessarily sufficient to ensure uniformity and stability of pre-expanded particles. It does not necessarily meet the demands of the times.

本発明は叙上の如き実状に対処し、時代の趨勢
に適合した新規な予備発泡粒子の発泡倍率測定な
らびに制御法を提供することを目的とするもので
ある。
The present invention addresses the above-mentioned circumstances and aims to provide a novel method for measuring and controlling the expansion ratio of pre-expanded particles that is compatible with the trends of the times.

即ち、本発明は予備発泡機で発泡された予備発
泡熱可塑性樹脂粒子を連続的に筒形容器内に導
き、該容器内に設置されている計重器により前記
予備発泡粒子をその流動状態下において一定容量
宛、自動連続測定して発泡倍率に換算して発泡倍
率を操作できる蒸気供給量又は原料粒子供給量の
何れか一方又は双方を自動制御し、所定の発泡倍
率を常に維持するようにした方法である。
That is, in the present invention, pre-foamed thermoplastic resin particles foamed by a pre-foaming machine are continuously introduced into a cylindrical container, and a weighing device installed in the container allows the pre-foamed particles to be weighed in a fluidized state. The foaming ratio can be manipulated by automatically and continuously measuring a certain volume at a certain volume and converting it into a foaming ratio.The steam supply amount or raw material particle supply amount, or both, can be automatically controlled to always maintain a predetermined foaming ratio. This is the method.

これを更に具体的に云えば、先ず本発明の第1
の発明は予備発泡粒子を縦型筒形容器内に導き、
該容器内で下方へ流動させつつ該容器内に設けら
れた計重器により、前記流動下にある予備発泡粒
子の一定容量を順次連続して自動的に計量し予備
発泡粒子の発泡倍率を検知することであり、第2
の発明は予備発泡機より排出される予備発泡粒子
を縦型筒形容器内に導き、該容器内で下方へ流動
させつつ筒形容器内に設けられた計重器により前
記流動下にある予備発泡粒子の一定容量を順次連
続して自動的に計重し、この計重測定値を電気信
号で取り出して制御装置に入れ、制御装置で該測
定値と予め設定した設定値との偏差に応じた制御
信号を発信して、この発信信号により予備発泡機
内への加熱媒体供給量又は原料供給量の何れか一
方もしくは双方を自動制御する方法である。
To describe this more specifically, first, the first aspect of the present invention
The invention introduces pre-expanded particles into a vertical cylindrical container,
While flowing downward in the container, a meter installed in the container automatically measures a certain volume of the pre-expanded particles under the flow, and detects the expansion ratio of the pre-expanded particles. The second
In the invention, pre-foamed particles discharged from a pre-foaming machine are guided into a vertical cylindrical container, and while flowing downward within the container, a weighing device installed in the cylindrical container is used to collect the pre-expanded particles in the flowing state. A certain volume of foamed particles is automatically weighed one after another, the measured weight value is taken out by an electrical signal and input into a control device, and the control device responds to the deviation between the measured value and a preset setting value. In this method, a control signal is transmitted, and either or both of the amount of heating medium supplied or the amount of raw material supplied into the pre-foaming machine is automatically controlled by this transmitted signal.

以下、添付図面について本発明方法の具体的態
様を説明する。
Hereinafter, specific embodiments of the method of the present invention will be explained with reference to the accompanying drawings.

第1図は本発明方法を適用した連続方式による
発泡性熱可塑性樹脂粒子の予備発泡装置の概要で
あり、ホツパー8に供与する発泡スチレン予備発
泡粒子などの原料粒子を変速機付モータ4により
回転駆動されるスクリユーフイーダー7により予
備発泡機5内へ連続的に供給し、同予備発泡機5
内において撹拌部材11により撹拌しつつ蒸気供
給ライン9より導入される水蒸気などの加熱媒体
により加熱発泡し、所要の発泡倍率として上方の
予備発泡粒子排出シユート6より排出している。
FIG. 1 is an outline of a continuous system pre-foaming device for expandable thermoplastic resin particles to which the method of the present invention is applied. Raw material particles such as pre-expanded styrene particles supplied to a hopper 8 are rotated by a motor 4 with a transmission. The driven screw feeder 7 continuously feeds into the pre-foaming machine 5.
While being stirred by a stirring member 11 inside, the particles are heated and foamed by a heating medium such as steam introduced from a steam supply line 9, and are discharged from an upper pre-expanded particle discharge chute 6 at a desired expansion ratio.

この予備発泡機5の構造は既知の構造のもので
あり、公知あるいは改良に係る種々の型式の予備
発泡機が採用され使用可能であるが、排出シユー
ト6直下に設けられた符号1で示される発泡倍率
測定装置は本発明の第1の発明をなす測定法の要
部を占める連続自動測定装置であり、第2図乃至
第4図にその構成の各例が詳示されている。
The structure of this pre-foaming machine 5 is a known structure, and various types of pre-foaming machines known or improved can be adopted and used, but the pre-foaming machine 5 is shown by the reference numeral 1 provided directly below the discharge chute 6. The foaming ratio measuring device is a continuous automatic measuring device that occupies the main part of the measuring method that constitutes the first aspect of the present invention, and examples of its configuration are shown in detail in FIGS. 2 to 4.

即ち、第2図はかかる測定装置の1例に係り筒
形容器21内の上方にはスクリーン22と断面菱
形をなす上面傘状の分配板25が2段ににわたつ
て設けられており、分配板中間部は絞られて狭い
通路23となつていて、その開放端部の筒形容器
21に余剰の供給された予備発泡粒子をオーバー
フローさせるための溢流孔24が設けられ、筒形
容器21内に充填収容される予備発泡粒子の上限
を規制している。
That is, FIG. 2 shows an example of such a measuring device, in which a screen 22 and an umbrella-shaped distribution plate 25 on the upper surface having a rhombic cross section are provided in two stages above a cylindrical container 21. The middle part of the plate is constricted to form a narrow passage 23, and an overflow hole 24 is provided at the open end of the passage for overflowing the excess pre-foamed particles supplied to the cylindrical container 21. The upper limit of the number of pre-expanded particles that can be filled and housed within the container is regulated.

ここで、上記予備発泡粒子の上限とは粉体の力
学的・機械的特性測定に広く用いられている安息
角測定法におけるもので、第2図に示される筒形
容器21に関しては点線で示す如く溢流孔24下
側と筒形容器21外側との交点を起点とした安息
角の交叉点(頂点)であり、筒形容器の中心部に
ある。
Here, the upper limit of the pre-expanded particles is based on the angle of repose measurement method that is widely used to measure the mechanical and mechanical properties of powder, and for the cylindrical container 21 shown in FIG. 2, it is indicated by a dotted line. This is the intersection (apex) of the angle of repose starting from the intersection between the lower side of the overflow hole 24 and the outside of the cylindrical container 21, and is located at the center of the cylindrical container.

安息角とは予備発泡粒子が水平面に対して一定
の傾斜角を形成する勾配角度であつて、この角度
は該粒子の粒径により異なるが通常の範囲として
は40〜30゜である。
The angle of repose is the inclination angle at which the pre-expanded particles form a constant inclination angle with respect to the horizontal plane, and this angle varies depending on the particle size of the particles, but is usually in the range of 40 to 30 degrees.

一方、筒形容器21内の下部には予備発泡粒子
排出口26が形成され、その下部開口部に近接し
て漏斗状の重量測定用カバー支持材27が、その
起立壁を一部、前記下部開口部の外周に重合状態
で設けられていて、その内部に重量測定用のカバ
ー28がその傾斜面を前記漏斗状部材の傾斜面に
重合して装着されている。そして、この重量測定
用カバー28及び支持材27はその底面において
中空筒状受部29を介して筒状容器底部支持台3
6上に配設されたストレンゲージ35の上部支持
台34を貫通して螺着された支持ボルト30の上
端によつて支承されていると共に、前記重量測定
用カバー28と支持台34との中間に、測定され
た予備発泡粒子と筒形容器21下方に設けられた
排出孔37へ誘導し排出するための排出通路32
が形成されている。
On the other hand, a pre-expanded particle discharge port 26 is formed at the lower part of the cylindrical container 21, and a funnel-shaped cover support member 27 for weight measurement is provided adjacent to the lower opening of the pre-expanded particle outlet 26, and a part of the upright wall of the cover support member 27 is attached to the lower part of the cylindrical container 21. It is provided in an overlapping state around the outer periphery of the opening, and a cover 28 for weight measurement is mounted inside the cover 28 with its sloped surface overlapping the sloped surface of the funnel-shaped member. The weight measuring cover 28 and the support member 27 are connected to the cylindrical container bottom support stand 3 via the hollow cylindrical receiving part 29 on the bottom surface thereof.
The strain gauge 35 is supported by the upper end of a support bolt 30 that is screwed through the upper support stand 34 of the strain gauge 35 disposed on the top of the strain gauge 6 , and is supported by the upper end of the support bolt 30 screwed on. Then, there is a discharge passage 32 for guiding and discharging the measured pre-expanded particles to a discharge hole 37 provided below the cylindrical container 21.
is formed.

排出通路32は前記重量測定用カバー支持材2
7の下部中央部の連通開口の外周を僅かの間隙を
おいてとり巻く円筒壁部と、これに連続して前記
排出孔37に向かつて延びる斜壁を備えた上側区
画部材と、前記斜壁に平行な斜壁によつて形成さ
れる山形壁面33をもつ下側区画部材によつて区
画形成されており、前記貫装される支持ボルト3
0の周囲には案内筒31が前記上下両側の区画部
材を貫通し、区画部材との間に僅かの空隙をおい
て貫装されている。
The discharge passage 32 is connected to the weight measuring cover support member 2.
a cylindrical wall surrounding the outer periphery of the communication opening in the lower central part of 7 with a slight gap; an upper partitioning member having a slanted wall that extends continuously toward the discharge hole 37; and the slanted wall. The support bolt 3 is partitioned by a lower partition member having a chevron-shaped wall surface 33 formed by an inclined wall parallel to the
A guide tube 31 is installed around the 0, passing through the upper and lower partition members with a slight gap between them.

そして上記筒形容器21内部の重量測定用カバ
ー28と同支持材27とを支持する支持ボルト3
0によつて上記上下の区画部材を含め、ストレン
ゲージ35は一体に構成され、筒形容器21内に
配置されて取脱可能な計重器を構成しており、前
記測定面をなす重量測定用カバー28面によつて
下方における予備発泡粒子の下限を規制してい
る。
Support bolts 3 that support the weight measurement cover 28 and the support member 27 inside the cylindrical container 21
0, the strain gauge 35 including the upper and lower partition members is integrally constructed, and is arranged in the cylindrical container 21 to constitute a removable weighing device, and the weight measurement device forming the measurement surface The lower limit of the pre-expanded particles below is regulated by the cover 28 surface.

かくして計重器によつて測定される予備発泡粒
子の容量は前記上限と下限によつて規制された一
定容量のものとなり、予備発泡粒子は上方より下
方へ流動しつつ常に一定容量の予備発泡粒子をそ
の測定面上に確保して発泡倍率の変動を計重器に
より知見することができるのである。
In this way, the capacity of the pre-expanded particles measured by the weighing device is a constant volume regulated by the upper and lower limits, and the pre-expanded particles always flow from the top to the bottom while maintaining a constant volume of the pre-expanded particles. By keeping the foam on the measurement surface, it is possible to check the fluctuations in the foaming ratio using a weighing device.

従つて上記筒形容器21内に配設された前記計
重器を利用し第1図に図示する本発明による予備
発泡粒子の発泡倍率を自動的に連続測定する方法
について以下、説明すれば、予備発泡粒子は通常
2〜5mmの球状固型物であるが、なかには相互融
着した大きな塊があるので、先ず測定装置内への
混入を防止するためスクリーン22を通して測定
装置内へ入れる。
Therefore, a method for automatically and continuously measuring the expansion ratio of pre-expanded particles according to the present invention as shown in FIG. 1 using the scale disposed in the cylindrical container 21 will be described below. The pre-expanded particles are usually solid spherical particles with a diameter of 2 to 5 mm, but since some of them are large clumps that are fused together, they are first introduced into the measuring device through a screen 22 to prevent them from entering the measuring device.

測定装置は前述の如く筒形容器21により形成
されており、円筒又は角筒状の何れでもよいが、
筒内上部に予備発泡機より連続的に排出、供給さ
れる予備発泡粒子は上部の分配板25の周端と筒
壁との間を通つて下方の重量測定部へ順次連続し
て流動状態で下降する。上部分配板25の機能
は、この際、上限を規制する溢流孔と相俟つて重
量測定部における予備発泡粒子が常に一定容積に
維持できるようにすること、及び筒体上部に入つ
た予備発泡粒子のヘツドの変動による影響を受け
ないように邪摩板のの役割をも有しており、分配
板底面で予備発泡粒子充填層の上面を僅かに圧接
せしめるようにするのが好適である。
The measuring device is formed of the cylindrical container 21 as described above, and may be either cylindrical or prismatic.
The pre-foamed particles that are continuously discharged and supplied from the pre-foaming machine to the upper part of the cylinder pass between the circumferential edge of the upper distribution plate 25 and the cylinder wall and flow into the weight measurement section below. descend. At this time, the function of the upper distribution plate 25 is to always maintain a constant volume of the pre-expanded particles in the weight measuring section, together with the overflow hole that regulates the upper limit, and to prevent the pre-expanded particles that have entered the upper part of the cylinder. It also has the role of a friction plate so as not to be affected by variations in the head of the particles, and it is preferable that the top surface of the pre-expanded particle packed bed is brought into slight pressure contact with the bottom surface of the distribution plate.

通常、本発明における予備発泡粒子の重量測定
対象範囲は筒形容器内部の重量測定用カバー28
とこれに最も近接している分配板25に存在して
いる予備発泡粒子が測定される。
Usually, the range to be measured by the weight of the pre-expanded particles in the present invention is the weight measurement cover 28 inside the cylindrical container.
The pre-expanded particles present on the distribution plate 25 closest to this are measured.

そのため重量測定用カバー28と分配板25の
距離を大きくすれば測定対象範囲が大きくなり、
一般的に測定重量値が大きくなつて測定精度が向
上する。
Therefore, if the distance between the weight measurement cover 28 and the distribution plate 25 is increased, the measurement range will be increased.
Generally, the measurement accuracy improves as the measured weight value increases.

しかし、反面、同距離が大きくなれば測定器が
大型化し、取扱性や測定器コストが高くなるとい
う矛盾を生じる。そこで後述の第3図及び第4図
は分配板が1段44,63でもよいことを示して
いるが何れにせよ、分配板底面で予備発泡粒子充
填層の上面を僅かに圧接せしめるようにすること
は重測測定部における予備発泡粒子の量を一定に
維持せしめること、即ち、重量測定部における予
備発泡粒子のヘツドの変動による影響を受けない
ようにする上で有効である。
However, on the other hand, if the same distance increases, the measuring device becomes larger, which creates a contradiction in that handling and cost of the measuring device become higher. Therefore, although FIGS. 3 and 4, which will be described later, show that the distribution plate may have one stage 44, 63, in any case, the bottom surface of the distribution plate should be brought into slight pressure contact with the top surface of the pre-expanded particle packed bed. This is effective in keeping the amount of pre-expanded particles in the weight measurement section constant, that is, in preventing it from being affected by fluctuations in the head of the pre-expanded particles in the weight measurement section.

一方、重量測定部において、予備発泡粒子は予
備発泡粒子排出口26を通り、重量測定用カバー
28の上面に沿つて流動し、排出孔37を通つて
測定装置系外に排出される。そして上記の筒形容
器21上方への供給と、下部のの測定装置外への
排出量を合致させつつ、測定系に充填される予備
発泡粒子の量をその流動に拘らず一定量に維持し
つつ、その間の重量を順次測定する。
On the other hand, in the weight measurement section, the pre-expanded particles pass through the pre-expanded particle discharge port 26, flow along the upper surface of the weight measurement cover 28, and are discharged out of the measuring device system through the discharge hole 37. Then, the amount of pre-expanded particles filled into the measurement system is maintained at a constant amount regardless of their flow, while matching the supply above the cylindrical container 21 with the amount of discharge from the bottom of the measurement device. While doing so, measure the weight sequentially.

予備発泡粒子の発泡倍率が均一である場合には
この測定時における重量は一定容量であるため変
動はない筈であるが、若し、予備発泡機内におけ
る発泡倍率が不均一であつた場合には測定値に変
化を来たし、これによつて予備発泡機内において
加熱発泡された予備発泡粒子の均一性を確認する
ことができる。
If the expansion ratio of the pre-expanded particles is uniform, the weight at the time of this measurement is a constant volume and should not fluctuate, but if the expansion ratio in the pre-expanding machine is uneven, There is a change in the measured value, and from this it is possible to confirm the uniformity of the pre-expanded particles heated and expanded in the pre-expander.

第3図は本発明方法に使用する測定装置の他の
実施例であり、筒状容器41と面にスクリーン4
2を有し、筒状容器41内に上部分配板44、溢
流孔43、絞り通路45を備えていることは前記
第2図の場合と同様な構成であるが、下部におけ
る計重器の構成は簡易化され、予備発泡粒子排出
口46の下部にストレンゲージ51を配置し、そ
の立設支持棒50により測定面をなす重量測定用
カバー47をその底面の下部オリフイス48と共
に支承して構成している。なお49はガイド、5
2は下部排出孔、53はストレンゲージ支持板で
ある。
FIG. 3 shows another embodiment of the measuring device used in the method of the present invention, in which a cylindrical container 41 and a screen 4 on the surface are shown.
2, and has an upper distribution plate 44, an overflow hole 43, and a throttle passage 45 in the cylindrical container 41, which is the same structure as in the case of FIG. The structure is simplified, and a strain gauge 51 is arranged at the bottom of the pre-expanded particle discharge port 46, and a weight measurement cover 47, which forms a measurement surface, is supported by an erected support rod 50 together with a lower orifice 48 on the bottom surface of the strain gauge 51. are doing. Note that 49 is a guide, and 5
2 is a lower discharge hole, and 53 is a strain gauge support plate.

一方、第4図は本発明方法における更にもう1
つの他の測定装置例であり、この装置も前記各例
同様、筒状容器61内の下部に計重器が配置さ
れ、上方にはスクリーン62、分配板63、溢流
孔66が夫々設けられている。そして、計重器は
予備発泡粒子排出口64下部において、ストレン
ゲージ支持板70上に設置されたストレンゲージ
69の立設棒68により測定面をなす測定用カバ
ー67を支承することによつて構成され、ストレ
ンゲージ69の外方にはガイド65がその先端を
測定用カバー67の底部に嵌入するによつて配設
されている。なおストレンゲージ支持板70の底
面には排出孔制限板72が止めボルト74により
回動可能に取り付けられ、その一側に予備発泡粒
子排出孔71に続く排出制限孔73を形成してい
る。
On the other hand, FIG. 4 shows still another example of the method of the present invention.
This is another example of a measuring device, and like each of the above examples, a weighing device is disposed at the bottom of a cylindrical container 61, and a screen 62, a distribution plate 63, and an overflow hole 66 are provided above. ing. The weighing device is constructed by supporting a measurement cover 67 forming a measurement surface by an upright rod 68 of a strain gauge 69 installed on a strain gauge support plate 70 at the lower part of the pre-expanded particle discharge port 64. A guide 65 is disposed outside the strain gauge 69 by fitting its tip into the bottom of the measurement cover 67. A discharge hole restriction plate 72 is rotatably attached to the bottom surface of the strain gauge support plate 70 by a fixing bolt 74, and a discharge restriction hole 73 that continues to the pre-expanded particle discharge hole 71 is formed on one side thereof.

これら第3図、第4図に図示する測定装置の場
合においてもその使用により予備発泡粒子を測定
する方法は前記第2図の場合と同様であり、上部
の溢流孔、分配板によつて夫々点線で示すように
上限が規制され、測定用カバー面によつて下限が
規制される一定容量の予備発泡粒子の重量を流動
状態下において順次連続的に自動測定することが
できるのである。
In the case of the measuring devices shown in FIGS. 3 and 4, the method of measuring the pre-expanded particles is the same as in the case of FIG. The weight of pre-expanded particles of a certain volume, the upper limit of which is regulated as shown by the dotted lines, and the lower limit of which is regulated by the measuring cover surface, can be automatically and sequentially measured in a fluidized state.

なおこれらの測定において予備発泡粒子排出口
の下端、即ち測定用カバー直上は可及的広大な口
径の開口であることが好ましく、その方が測定に
際し、より正確な測定値が得られる。
In these measurements, it is preferable that the lower end of the pre-expanded particle outlet, that is, directly above the measurement cover, be an opening with the largest possible diameter, so that more accurate measured values can be obtained.

以上は本発明方法の自動計重に関するものであ
るが前記予備発泡粒子の重量はストレンゲージに
よつて順次、取り出し、事前に発泡倍率の既知な
予備発泡粒子を測定装置内に流すことによりスト
レンゲージから得られる電気信号との関係を予め
求めておくことにより連続自動測定を容易に行な
うと共に、その変動を知ることができる。
The above is related to the automatic weighing of the method of the present invention. By determining in advance the relationship with the electrical signal obtained from the signal, continuous automatic measurement can be easily performed and its fluctuations can be known.

この測定において、前記測定装置におけるガイ
ド65などは予備発泡粒子及び水分等がストレン
ゲージ内部に流入するのを防止するのに役立つ。
又、予備発泡粒子の流入量は下部の予備発泡粒子
の排出孔からの排出量を変化させることにより、
随時変えることができる。
In this measurement, the guide 65 in the measuring device serves to prevent pre-expanded particles, moisture, etc. from flowing into the strain gauge.
In addition, the inflow amount of pre-expanded particles can be adjusted by changing the amount of discharge from the lower pre-expanded particle discharge hole.
It can be changed at any time.

前記測定装置のの構成材質は、通常、プラスチ
ツクス又は金属などが使用され、各構成部品の固
定は接着剤、ボルト、溶接など種々の手段が適用
可能である。
The measuring device is usually made of plastic or metal, and various means such as adhesives, bolts, welding, etc. can be used to fix each component.

次に前記測定装置による自動測定法を利用し、
これを連続方式による予備発泡機内の予備発泡粒
子の発泡倍率の制御を行なう自動制御法について
第1図を参照しつつ説明する。
Next, using the automatic measurement method using the measurement device,
An automatic control method for controlling the expansion ratio of pre-expanded particles in a continuous pre-expanding machine will be explained with reference to FIG.

即ち、予備発泡機5より排出される予備発泡粒
子を第1図に示すように、配置された測定装置1
に連続的に導入し、順次、その重量を前記測定法
によつて連続的に測定するが、このとき測定され
た前記一定容量の予備発泡粒子の重量を前記スト
レンゲージによつて電気信号として取り出し、測
定装置1と別個に設けられている発泡倍率制御装
置2に入力する。
That is, as shown in FIG.
The weight of the pre-expanded particles is successively measured by the measuring method described above, and the weight of the pre-expanded particles of the constant volume measured at this time is taken out as an electrical signal by the strain gauge. , is input to the foaming ratio control device 2 which is provided separately from the measuring device 1.

この制御装置2には事前に既知の予備発泡粒子
を測定装置内に流すことによりそののストレンゲ
ージから得られる電気信号との関係を求め、予め
設定値を決めて入力がなされているので、この設
定値との対比によつて両者の偏差値に対応した制
御操作信号を発信する。この制御装置2は第1図
の如く、蒸気量自動制御弁3を介して蒸気供給ラ
イン9に連なつており、又、更に変速機付モータ
4の回転制御にも連絡するように構成され、従つ
て前記制御操作信号を発信することによつて蒸気
量自動制御弁3を作動させ、供給蒸気量を変化さ
せて所定の発泡倍率になるよう調節するか、ある
いは前記変速機付モータ4を作動調節して予備発
泡機への原料粒子供給量を変化させ、所定の発泡
倍率になるよう調節する。
This control device 2 is inputted by flowing known pre-expanded particles into the measurement device in advance to determine the relationship between the pre-expanded particles and the electrical signal obtained from the strain gauge, and determining the set value in advance. By comparing it with the set value, a control operation signal corresponding to the deviation value between the two is transmitted. As shown in FIG. 1, this control device 2 is connected to a steam supply line 9 via an automatic steam amount control valve 3, and is also configured to be connected to rotation control of a motor 4 with a transmission. Therefore, by transmitting the control operation signal, the automatic steam amount control valve 3 is actuated to change the amount of supplied steam to adjust it to a predetermined foaming ratio, or the motor 4 with a transmission is actuated. The amount of raw material particles supplied to the pre-foaming machine is adjusted to achieve a predetermined foaming ratio.

かくして連続的に予備発泡される予備発泡粒子
について予備発泡操作を中断することなく、連続
的に発泡倍率の制御を行ない、均一な発泡倍率を
有する予備発泡粒子を得ることができる。
In this way, the expansion ratio of the continuously pre-foamed particles can be continuously controlled without interrupting the pre-foaming operation, and pre-foamed particles having a uniform expansion ratio can be obtained.

なお、発泡倍率自動測定装置1に予備発泡粒子
を供給するには第1図の如く排出シユート6を利
用して直接供給してもよいし、ブロワーによつて
予備発泡粒子を吸引、送風取出し間接的に供給し
てもよい。
In order to supply the pre-expanded particles to the automatic expansion ratio measuring device 1, it is possible to directly supply them using the discharge chute 6 as shown in FIG. It may also be supplied.

以上のように本発明は、1つは予備発泡機より
排出される予備発泡粒子を連続的に、流動状態下
において一定容量宛計重する方法であり、他に更
にその計重結果にもとづき、予備発泡機内におけ
る予備発泡の発泡倍率を所定の倍率に安定的に制
御する方法で、従来、手動操作により行なわれて
いた回分式な発泡倍率の測定に比較し、より正確
で、連続的に得られるため予備発泡粒子のすべて
にわたり測定が可能で発泡倍率の均一性、安定性
向上に顕著な効果を有すると共に従来、必要とさ
れていた専任運転員の必要をなくし作業合理化を
促進する上に有用な役割を発揮する。
As described above, the present invention is based on one method of continuously weighing pre-expanded particles discharged from a pre-expanding machine to a fixed volume under a fluidized state, and further based on the weighing results, This is a method that stably controls the expansion ratio of pre-foaming in a pre-foaming machine to a predetermined ratio, and is more accurate and can be obtained continuously compared to the conventional batch-type measurement of expansion ratio that was performed manually. This makes it possible to measure all of the pre-expanded particles, which has a remarkable effect on improving the uniformity and stability of the expansion ratio.It also eliminates the need for full-time operators, which was previously required, and is useful for streamlining work. fulfill a role.

しかも測定装置と制御装置との組合せにより電
気信号により予備発泡粒子の倍率自動制御が可能
となり、予備発泡粒子の均質性を高め、品質の均
一な成形品の製造、機械構造部品等高度な品質の
要求される製品の製造に寄与し、工業上、その発
展の期待される方法である。
Moreover, by combining a measuring device and a control device, it is possible to automatically control the magnification of pre-expanded particles using electrical signals, which increases the homogeneity of pre-expanded particles, enables the production of molded products of uniform quality, and the production of high-quality products such as mechanical structural parts. It contributes to the production of required products and is a promising method for industrial development.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明における予備発泡装置概要図、
第2図乃至第4図は本発明方法に使用する測定装
置の各実施例を示す概要断面図である。 1……発泡倍率測定装置、2……制御装置、5
……予備発泡機、21,41,61……筒形容
器、35,51,59……ストレンゲージ。
FIG. 1 is a schematic diagram of the pre-foaming device in the present invention;
2 to 4 are schematic sectional views showing each embodiment of the measuring device used in the method of the present invention. 1... Foaming ratio measuring device, 2... Control device, 5
...Pre-foaming machine, 21,41,61...Cylindrical container, 35,51,59...Strain gauge.

Claims (1)

【特許請求の範囲】 1 予備発泡粒子を縦型筒形容器内に導き、該容
器内で下方へ流動させつつ該容器内に設けられた
計重器により、前記流動下にある予備発泡粒子の
一定容量を順次連続して自動的に計重し予備発泡
粒子の発泡倍率を検知することを特徴とする予備
発泡粒子の自動倍率測定法。 2 予備発泡機より排出される予備発泡粒子を縦
型筒形容器内に導き、該容器内で下方へ流動させ
つつ筒形容器内に設けられた計重器により前記流
動下にある予備発泡粒子の一定容量を順次連続し
て自動的に計重し、この計重測定値を電気信号で
取り出して制御装置に入れ、制御装置で該測定値
と予め設定した設定値との偏差に応じた制御信号
を発信してこの発信信号により予備発泡機内への
加熱媒体供給量又は原料供給量を自動制御する
か、あるいは加熱媒体供給量と原料供給量の双方
を自動制御することを特徴とする予備発泡粒子の
自動倍率制御法。
[Scope of Claims] 1 Pre-expanded particles are guided into a vertical cylindrical container, and while flowing downward within the container, a weighing device installed in the container measures the pre-expanded particles under the flow. 1. An automatic magnification measuring method for pre-expanded particles, which is characterized in that the expansion magnification of pre-expanded particles is detected by automatically weighing a constant volume one after another. 2. The pre-foamed particles discharged from the pre-foaming machine are guided into a vertical cylindrical container, and while flowing downward within the container, the pre-foamed particles under the flow are measured by a weighing device installed in the cylindrical container. Automatically weighs a certain amount of water one after another in succession, extracts this weight measurement value as an electrical signal and inputs it into a control device, and the control device controls according to the deviation between the measured value and a preset setting value. Pre-foaming characterized by transmitting a signal and automatically controlling the amount of heating medium supplied or the amount of raw material supplied into the pre-foaming machine based on the transmitted signal, or automatically controlling both the amount of heating medium and raw material supplied Automatic magnification control method for particles.
JP18710380A 1980-12-27 1980-12-27 Automatic measurement and control of magnification of preliminarily foamed particles Granted JPS57110938A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18710380A JPS57110938A (en) 1980-12-27 1980-12-27 Automatic measurement and control of magnification of preliminarily foamed particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18710380A JPS57110938A (en) 1980-12-27 1980-12-27 Automatic measurement and control of magnification of preliminarily foamed particles

Publications (2)

Publication Number Publication Date
JPS57110938A JPS57110938A (en) 1982-07-10
JPH0139062B2 true JPH0139062B2 (en) 1989-08-17

Family

ID=16200151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18710380A Granted JPS57110938A (en) 1980-12-27 1980-12-27 Automatic measurement and control of magnification of preliminarily foamed particles

Country Status (1)

Country Link
JP (1) JPS57110938A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939480A (en) * 1972-08-14 1974-04-12

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939480A (en) * 1972-08-14 1974-04-12

Also Published As

Publication number Publication date
JPS57110938A (en) 1982-07-10

Similar Documents

Publication Publication Date Title
KR910005301B1 (en) Apparatus for automatic registration of a continuous bulck material flow by means of a run-through weighting device
CA2049334C (en) Device, method and use of the method for determining a production flow
US5213724A (en) Process and apparatus for determining the rate at which material is received by an extruder from a feed container
JP3164419B2 (en) Method and device for measuring and blending different material components
US4852028A (en) Method and apparatus for measuring and controlling the volumetric weight of an expanded particulate material
US4011070A (en) Method and apparatus for regulating molten glass flow into a conditioning chamber
US3378245A (en) Apparatus for controllably expanding expandable material
JPS6234413B2 (en)
JPH0139062B2 (en)
US5683632A (en) Method and apparatus for automatically supplying a molding material
CN105479719A (en) Weighing and weight losing integrated extrusion control system and method
US5435189A (en) Device, method and use of the method for determining a production flow
JPH02253835A (en) Mixing device for raw material of particulate matter
US3252228A (en) Expander for polymeric material
US6488181B1 (en) Device for metering powder
US3867970A (en) Mixing and bagging machine for dry mixes
CN105839498B (en) A kind of cold asphalt rehabilitation powder addition metering device
CA3217222A1 (en) Gravimetric metering device and control method thereof
US3353713A (en) System for charging small quantities of granular materials
CN207995887U (en) A kind of online drawing-in device of wheat germ
JPS61293812A (en) Mixed feeding device of material in in-line molding machine
CN210375359U (en) Novel master batch machine weightless scale
CN216321714U (en) UV printing ink automatic blending device
JPH0680816A (en) Apparatus for automatic determination of expansion ratio
JPH0216204B2 (en)