JPH0139045B2 - - Google Patents

Info

Publication number
JPH0139045B2
JPH0139045B2 JP2580883A JP2580883A JPH0139045B2 JP H0139045 B2 JPH0139045 B2 JP H0139045B2 JP 2580883 A JP2580883 A JP 2580883A JP 2580883 A JP2580883 A JP 2580883A JP H0139045 B2 JPH0139045 B2 JP H0139045B2
Authority
JP
Japan
Prior art keywords
measured
optical axis
curvature
laser interferometer
spherical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP2580883A
Other languages
Japanese (ja)
Other versions
JPS58193408A (en
Inventor
Kenji Nunome
Kenichi Kudo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP2580883A priority Critical patent/JPS58193408A/en
Publication of JPS58193408A publication Critical patent/JPS58193408A/en
Publication of JPH0139045B2 publication Critical patent/JPH0139045B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures
    • G01B11/255Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures for measuring radius of curvature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
    • G01B5/213Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures for measuring radius of curvature

Description

【発明の詳細な説明】 本発明は凹球面や凸球面の球面曲率半径をレー
ザー干渉計を用いて測定する方法に関し、迅速で
且つ高精度な測定を可能にすることを主な目的と
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for measuring the radius of spherical curvature of a concave spherical surface or a convex spherical surface using a laser interferometer, and its main object is to enable rapid and highly accurate measurement.

一般に、動圧軸受等の凹凸球面の曲率半径測定
にはレーザー干渉計がよく用いられている。この
レーザー干渉計による球面曲率半径の測定原理は
公知で、第1図でその測定原理を説明する。まず
レーザー干渉計の基準球面レンズ1に平行に入射
したレーザービーム2が光軸3上の焦点位置4に
収束するように調整しておく。次に曲率半径を測
定しようとする被測定物5の球面中心を前記光軸
3に一致させる。而して、被測定物5を光軸3に
沿つて移動させながら、干渉縞を観測すると、被
測定物5の球面中心が焦点位置4に一致した位置
Aと、被測定物5の表面が焦点位置4に一致した
位置Bとを検出することができる。この位置Aと
位置B間の移動距離rが被測定物5の曲率半径に
一致するので、移動距離rを精密に測定すること
により、曲率半径を精密に求めることができる。
In general, laser interferometers are often used to measure the radius of curvature of uneven spherical surfaces such as hydrodynamic bearings. The principle of measuring the radius of curvature of a spherical surface using this laser interferometer is well known, and the principle of measurement will be explained with reference to FIG. First, adjustment is made so that the laser beam 2 incident parallel to the reference spherical lens 1 of the laser interferometer is converged at a focal point 4 on the optical axis 3. Next, the center of the spherical surface of the object to be measured 5 whose radius of curvature is to be measured is aligned with the optical axis 3. When the interference fringes are observed while the object to be measured 5 is moved along the optical axis 3, the center of the spherical surface of the object to be measured 5 coincides with the focal position 4, and the surface of the object to be measured 5 is at a position A. A position B that coincides with the focal position 4 can be detected. Since the moving distance r between the positions A and B matches the radius of curvature of the object to be measured 5, the radius of curvature can be precisely determined by accurately measuring the moving distance r.

そこで従来では、上記A及びBの位置、又は
A・B間の距離rの読取りに際し、被測定物5を
装着した摺動台をねじにより送り、この摺動台の
移動距離rを目盛板やダイアルケージ等で読取つ
ていた。そのため、従来装置では摺動台のねじ送
りに時間を要し、また目盛板やダイアルゲージ等
の累積誤差の影響を受けて精密な測定が困難であ
つた。特に、被測定物5の曲率半径が数mm乃至数
十mm以上の場合には、摺動台のねじ送り時間が非
常に長くなり、而も測定距離が長くなる程ダイア
ルゲージ等の累積誤差が大きくなる欠点があつ
た。また被測定物5が大量生産にかかる同一製品
の連続測定の場合には、測定時間の短縮化が難し
く、大量生産上での大きなネツクとなつていた。
Conventionally, when reading the positions of A and B, or the distance r between A and B, the slide table with the object to be measured 5 mounted thereon is moved by a screw, and the moving distance r of the slide table is measured using a scale plate or the like. It was read with a dial cage etc. Therefore, with conventional devices, it takes time to feed the screws of the sliding table, and it is difficult to perform accurate measurements due to the influence of accumulated errors in the scale plate, dial gauge, etc. In particular, when the radius of curvature of the object to be measured 5 is several mm to several tens of mm or more, the screw feeding time of the sliding table becomes extremely long, and the longer the measurement distance, the more the cumulative error of the dial gauge etc. increases. There was a growing flaw. Furthermore, when the object to be measured 5 is the same product that is mass produced, it is difficult to shorten the measurement time, which is a major problem in mass production.

本発明は上記従来の欠点に鑑み、これを改良・
除去したもので、以下本発明の構成を図面を参照
して説明する。
In view of the above-mentioned conventional drawbacks, the present invention improves and improves the conventional drawbacks.
The structure of the present invention will be explained below with reference to the drawings.

いま本発明を凹球面被測定物の測定について、
第2図乃至第4図で説明する。この第2図及び第
3図に於て、6はレーザー干渉計本体、7は干渉
計附属の基準球面レンズ収納部、8は光軸、9は
干渉計附属の基準球面レンズの焦点位置、10は
被測定物、11は被測定物10のチヤツクであ
る。また12は装置全体を固定するベツド、13
はベツド12上を光軸8方向に手動で移動自由な
摺動台、14,15は摺動台13の側方に配置さ
れた2個のダイアルゲージ、16は第4図の説明
で後述する基準ブロツクである。前記ダイアルゲ
ージ14は被測定物10の球面中心が焦点位置9
に一致した時の被測定物10の光軸方向位置を読
取り、またダイアルゲージ15は被測定物10の
表面が焦点位置9に一致した時の被測定物10の
光軸方向位置を読取るためのものである。また摺
動台13は手動で光軸方向に大きく移動されると
共に、マイクロメータ17で光軸方向に微動調整
される。
Now, the present invention relates to the measurement of a concave spherical object to be measured.
This will be explained with reference to FIGS. 2 to 4. In FIGS. 2 and 3, 6 is the laser interferometer main body, 7 is the reference spherical lens housing part attached to the interferometer, 8 is the optical axis, 9 is the focal position of the reference spherical lens attached to the interferometer, and 10 is an object to be measured, and 11 is a chuck of the object to be measured 10. 12 is a bed for fixing the entire device; 13
14 and 15 are two dial gauges arranged on the sides of the sliding table 13, and 16 will be described later in the explanation of FIG. 4. This is a reference block. The dial gauge 14 has the center of the spherical surface of the object to be measured 10 at the focal point 9.
The dial gauge 15 is used to read the position of the object 10 in the optical axis direction when the surface of the object 10 coincides with the focal point 9. It is something. Further, the sliding table 13 is manually moved largely in the optical axis direction, and finely adjusted in the optical axis direction using a micrometer 17.

また18は摺動台13上に固定され、且つチヤ
ツク11に結合された光軸合せ台、19は光軸合
せ台18を上下方向に微動調整するマイクロメー
タ20は光軸合せ台18を第2図の図面に垂直な
方向に微動調整するマイクロメータで、この2つ
のマイクロメータ19,20で被測定物10の球
面中心が光軸合せ台18を介して光軸8に合せら
れる。21は摺動台13に固定されているマイク
ロメータ17に対するストツパーで、摺動台13
は図示されてないバネにより、ストツパー21を
介してマイクロメータ17に常時軽圧接されてい
る。また22は被測定物10が必要以上に基準球
面レンズ収納部7に接近してレンズを破損するの
を防止するための保護ストツパー、23は摺動台
13を手動で移動させる時に用いる取手、24,
25は各ダイアルゲージ14,15に当接するス
トツパーである。
Further, reference numeral 18 denotes an optical axis alignment table fixed on the sliding table 13 and coupled to the chuck 11, and 19 a micrometer 20 for finely adjusting the optical axis alignment table 18 in the vertical direction. These two micrometers 19 and 20 are micrometers that are finely adjusted in a direction perpendicular to the drawing in the figure, and the center of the spherical surface of the object to be measured 10 is aligned with the optical axis 8 via the optical axis alignment table 18. 21 is a stopper for the micrometer 17 fixed to the sliding table 13;
is always lightly pressed against the micrometer 17 via the stopper 21 by a spring (not shown). Further, 22 is a protective stopper for preventing the object to be measured 10 from approaching the reference spherical lens housing 7 more than necessary and damaging the lens; 23 is a handle used when manually moving the sliding table 13; and 24 ,
Reference numeral 25 denotes a stopper that comes into contact with each dial gauge 14, 15.

第4図で示した基準ブロツク16は被測定物1
0の基準曲率半径に一致する基準幅aを有するも
ので、例えばブロツクゲージ、基準ボール、或は
それに相当する寸法基準物であればよい。この基
準ブロツク16は摺動台13のストツパー21と
マイクロメータ17の先端部26との間に手動で
適宜挿入され、両者に軽圧接されて保持される。
またこの基準ブロツク16の挿入時、摺動台13
は初期位置からa寸法だけ左方に移動した位置で
停止し、この状態で前記ストツパー25はダイア
ルゲージ15に当接するように配置されている。
The reference block 16 shown in FIG.
The reference width a matches the reference radius of curvature of 0, and may be, for example, a block gauge, a reference ball, or an equivalent dimension reference object. The reference block 16 is manually inserted between the stopper 21 of the slide table 13 and the tip 26 of the micrometer 17, and is held by being lightly pressed against both.
Also, when inserting this reference block 16, the sliding base 13
stops at a position moved leftward by dimension a from the initial position, and in this state the stopper 25 is arranged so as to come into contact with the dial gauge 15.

次に上記構成による測定動作要領を、多数の被
測定物10の曲率半径を順次に測定していく場合
について説明する。
Next, a measurement operation procedure using the above configuration will be described for a case where the radius of curvature of a large number of objects to be measured 10 is sequentially measured.

まず第1番目の被測定物10をチヤツク11に
取付け、マイクロメータ19,20を操作して光
軸合せ台18を動かし、被測定物10の球面中心
を光軸8に一致させておく。次に第2図及び第3
図に示すように、基準ブロツク16を挿入しない
状態に於てマイクロメータ17を操作し、摺動台
13を光軸方向に微動調整して、干渉縞を観察す
ることにより、被測定物10の球面中心が焦点位
置9に一致する位置を求める。そして、この時、
第3図で示すように摺動台13と一体をなすスト
ツパー24がダイアルゲージ14に当接し、ダイ
アルゲージ14の指針が零を指示するようにダイ
アルゲージ14の零点調整を行う。
First, the first object to be measured 10 is attached to the chuck 11, and the optical axis alignment table 18 is moved by operating the micrometers 19 and 20 to align the spherical center of the object to be measured 10 with the optical axis 8. Next, Figures 2 and 3
As shown in the figure, by operating the micrometer 17 without inserting the reference block 16, finely adjusting the sliding table 13 in the optical axis direction, and observing the interference fringes, the object to be measured 10 can be measured. Find the position where the center of the sphere coincides with the focal point position 9. And at this time,
As shown in FIG. 3, a stopper 24 integral with the sliding base 13 comes into contact with the dial gauge 14, and the zero point of the dial gauge 14 is adjusted so that the pointer of the dial gauge 14 indicates zero.

次に摺動台13の取手23を手に持つて摺動台
13を左方に移動させておいて、摺動台13のス
トツパー21とマイクロメータ17の先端部26
との間に基準ブロツク16を挿入し、その後取手
23から手を離す。すると摺動台13のバネの作
用で基準ブロツク16はストツパー21と先端部
26との間に軽圧接され、摺動台13はダイアル
ゲージ14を零点調整した元の位置から正確に基
準寸法aだけ左方に移動して停止する。この状態
で摺動台13と一体をなすストツパー25がダイ
アルゲージ15に当接し、ダイアルゲージ15の
指針が零を指示するようにダイアルゲージ15の
零点調整を行う。続いてマイクロメータ17を操
作し、摺動台13を光軸方向に微動調整して、干
渉縞を観察することにより、被測定物10の表面
が焦点位置9に一致する位置を求め、その時のダ
イアルゲージ15の指針の読みeを読取る。する
と、この場合の被測定物10の曲率半径rはr=
a−eとして直ちに求められる。
Next, hold the handle 23 of the slide table 13 in your hand and move the slide table 13 to the left, and then touch the stopper 21 of the slide table 13 and the tip 26 of the micrometer 17.
Insert the reference block 16 between the handle 23 and then release the handle 23. Then, by the action of the spring of the slide table 13, the reference block 16 is lightly pressed between the stopper 21 and the tip 26, and the slide table 13 is moved exactly by the reference dimension a from the original position where the dial gauge 14 was zeroed. Move to the left and stop. In this state, the stopper 25 integral with the slide table 13 comes into contact with the dial gauge 15, and the zero point of the dial gauge 15 is adjusted so that the pointer of the dial gauge 15 indicates zero. Next, by operating the micrometer 17 and finely adjusting the sliding table 13 in the optical axis direction and observing the interference fringes, the position where the surface of the object to be measured 10 coincides with the focal position 9 is determined, and the Read the reading e of the pointer of the dial gauge 15. Then, the radius of curvature r of the object to be measured 10 in this case is r=
It can be immediately determined as a-e.

この第1番目の被測定物10の測定が完了する
と、被測定物10をチヤツク11から外し、また
基準ブロツク16も外し、摺動台13を元の位置
に戻して、第2番目の被測定物10′をチヤツク
11に取付ける。そして第2番目の被測定物10
の光軸合せを行い、マイクロメータ17を操作し
て、干渉縞を観察することにより、球面中心が焦
点位置9に一致する位置を求め、この時のダイア
ルゲージ14の指針の読みfを読取る。続いて摺
動台13を手動で移動させ、基準ブロツク16を
挿入後、更にマイクロメータ17を操作して、干
渉縞を観察することにより、第2番目の被測定物
10′の表面が焦点位置9に一致する位置を求め、
その時のダイアルゲージ15の指針の読みe′を読
取る。すると第2番目の被測定物10の曲率半径
r′はr′=a−e′+fとして直ちに求められる。
When the measurement of the first object to be measured 10 is completed, the object to be measured 10 is removed from the chuck 11, the reference block 16 is also removed, the slide table 13 is returned to its original position, and the second object to be measured is removed. Attach the object 10' to the chuck 11. and the second object to be measured 10
The optical axis is aligned, the micrometer 17 is operated, and the interference fringes are observed to determine the position where the center of the spherical surface coincides with the focal point position 9, and the reading f of the pointer of the dial gauge 14 at this time is read. Next, the sliding table 13 is moved manually, the reference block 16 is inserted, and the micrometer 17 is further operated to observe the interference fringes, so that the surface of the second object 10' is at the focal position. Find the position that matches 9,
At that time, read the reading e' of the pointer of the dial gauge 15. Then, the radius of curvature of the second measured object 10
r' can be immediately determined as r'=a-e'+f.

以下、第2番目の被測定物10′と同様に第3
番目、第4番目……の被測定物10″,10…
…の曲率半径が順次に求められる。
Hereinafter, similarly to the second object to be measured 10', the third object to be measured 10'
th, 4th... object to be measured 10'', 10...
The radius of curvature of ... is found in sequence.

尚、上記説明は凹球面の被測定物10について
説明したが、凸球面の被測定物であつても本発明
の適用は可能である。また微動調整範囲の測定に
ダイアルゲージ14,15を用いたが、ダイアル
ゲージ14,15に限らず、他の測微器であつて
もよい。
In the above description, the object to be measured 10 has a concave spherical surface, but the present invention can also be applied to an object to be measured that has a convex spherical surface. Further, although the dial gauges 14 and 15 are used to measure the fine adjustment range, the present invention is not limited to the dial gauges 14 and 15, and other micrometers may be used.

以上説明したように、本発明によれば、摺動台
の操作が手動によりワンタツチ化され、操作時間
が短いため、大量生産にかかる被測定物の連続測
定を行つても時間的損失が少なく、迅速で能率的
な測定が可能となる。また基準寸法として基準ブ
ロツクを用い、被測定物の球面中心及び表面を焦
点位置に一致させた時の位置読取りを夫々の近傍
での微動調整範囲のみで行うようにしたから、小
範囲、高精度のダイアルゲージ等の測微器を用い
ることが可能であり、更に計測すべき曲率半径が
大きい場合でもゲージの累積誤差を生じないた
め、例えば0.001mmのオーダーの精密な測定が可
能となる。また以上のような特徴を持つため、高
価な計測機構を用いないにもかかわらず、従来長
時間を要していたレーザー干渉計による曲率半径
測定が極く短時間で且つ精密に実施でき、特に連
続測定に於て著しい能率向上が図れる。
As explained above, according to the present invention, the sliding table can be manually operated in one touch, and the operation time is short, so there is little time loss even when continuously measuring objects to be measured in mass production. This enables quick and efficient measurements. In addition, a reference block is used as the reference dimension, and when the center and surface of the spherical surface of the object to be measured are aligned with the focal position, the position reading is performed only within the fine adjustment range in the vicinity of each, allowing for small range and high precision. It is possible to use a micrometer such as a dial gauge, and furthermore, even when the radius of curvature to be measured is large, there is no cumulative error in the gauge, making it possible to perform precise measurements on the order of, for example, 0.001 mm. In addition, because of the above characteristics, the radius of curvature measurement using a laser interferometer, which conventionally required a long time, can be carried out in an extremely short time and accurately without using an expensive measurement mechanism. Significant efficiency improvement can be achieved in continuous measurement.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はレーザー干渉計による曲率半径測定の
原理図、第2図は本発明に用いる装置の実施例を
示す全体側面図、第3図は第2図の概略平面図、
第4図は第2図の動作説明側面図である。 6……レーザー干渉計本体、8……光軸、9…
…焦点位置、10……被測定物、13……摺動
台、14,15……ダイアルゲージ(測微器)、
16……基準ブロツク。
Fig. 1 is a principle diagram of curvature radius measurement using a laser interferometer, Fig. 2 is an overall side view showing an embodiment of the apparatus used in the present invention, Fig. 3 is a schematic plan view of Fig. 2,
FIG. 4 is a side view illustrating the operation of FIG. 2. 6... Laser interferometer body, 8... Optical axis, 9...
...Focus position, 10...Object to be measured, 13...Sliding table, 14, 15...Dial gauge (micrometer),
16...Reference block.

Claims (1)

【特許請求の範囲】[Claims] 1 摺動台上の被測定物をレーザー干渉計の光軸
に沿つて移動させ、被測定物の球面中心がレーザ
ー干渉計の基準球面レンズの焦点位置に一致した
位置と被測定物の表面が前記焦点位置に一致した
位置とを検出し、両位置間の被測定物の光軸方向
の移動距離によつて被測定物の球面曲率を測定す
る方法であつて、先ず、被測定物の球面中心をレ
ーザー干渉計の基準球面レンズの焦点位置に一致
させ、次いで被測定物の基準曲率半径に相当する
基準幅を有する基準ブロツクを使用することによ
つて被測定物をレーザー干渉計の基準球面レンズ
に向けて前記基準幅だけ移動させ、さらに、摺動
台を微動調整手段で被測定物の球面表面をレーザ
ー干渉計の基準球面レンズの焦点位置に一致させ
て被測定物の光軸方向の移動距離を求めるように
したことを特徴とする球面曲率半径測定方法。
1. Move the object to be measured on the sliding table along the optical axis of the laser interferometer, and align the surface of the object with the position where the center of the spherical surface of the object coincides with the focal position of the reference spherical lens of the laser interferometer. The method detects a position that coincides with the focal position and measures the spherical curvature of the measured object based on the moving distance of the measured object in the optical axis direction between the two positions. By aligning the center with the focal position of the reference spherical lens of the laser interferometer and then using a reference block having a reference width corresponding to the reference radius of curvature of the object to be measured, the object to be measured is aligned with the reference spherical lens of the laser interferometer. The slide table is moved by the reference width toward the lens, and then the spherical surface of the object to be measured is aligned with the focal position of the reference spherical lens of the laser interferometer using the fine adjustment means to adjust the direction of the optical axis of the object to be measured. A method for measuring the radius of curvature of a spherical surface, characterized in that the distance traveled is determined.
JP2580883A 1983-02-17 1983-02-17 Device for measuring radius of curvature of spherical surface Granted JPS58193408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2580883A JPS58193408A (en) 1983-02-17 1983-02-17 Device for measuring radius of curvature of spherical surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2580883A JPS58193408A (en) 1983-02-17 1983-02-17 Device for measuring radius of curvature of spherical surface

Publications (2)

Publication Number Publication Date
JPS58193408A JPS58193408A (en) 1983-11-11
JPH0139045B2 true JPH0139045B2 (en) 1989-08-17

Family

ID=12176164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2580883A Granted JPS58193408A (en) 1983-02-17 1983-02-17 Device for measuring radius of curvature of spherical surface

Country Status (1)

Country Link
JP (1) JPS58193408A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59108204A (en) * 1982-12-13 1984-06-22 住友電気工業株式会社 Wire
FR2620219B1 (en) * 1987-09-04 1991-03-29 Synthelabo OPTICAL SYSTEM FOR DETERMINING THE VARIATION IN CURVATURE OF AN OBJECT ON A SMALL DIMENSIONAL AREA
CN102168955B (en) * 2011-05-18 2012-09-19 中国科学院长春光学精密机械与物理研究所 Method for detecting curvature radius of optical spherical surface

Also Published As

Publication number Publication date
JPS58193408A (en) 1983-11-11

Similar Documents

Publication Publication Date Title
US3786332A (en) Micro positioning apparatus
KR940003918B1 (en) Shape measuring instrument
US4884697A (en) Surface profiling interferometer
US5671541A (en) Accuracy verification devices for coordinate measuring machines
Brand et al. Development of a special CMM for dimensional metrology on microsystem components
US5649368A (en) Method for calibrating a coordinate measuring apparatus having two pivot axes
CN114577125B (en) Non-contact optical lens center thickness measuring method and measuring device
US7099008B2 (en) Alignment adjuster of probe, measuring instrument and alignment adjusting method of probe
CN209961611U (en) Measuring device based on ruler reading telescope and optical lever
US4359282A (en) Optical measuring method and apparatus
US8184301B2 (en) Surface alignment and positioning method and apparatus
US20080212107A1 (en) Apparatus and method for measuring suspension and head assemblies in a stack
JP4434431B2 (en) 3D shape measuring device
US3740150A (en) Surface measurement by interferometer
US5646732A (en) Coordinate measuring system
JPH0139045B2 (en)
Takacs et al. Surface profiling interferometer
US3347130A (en) Optical measuring instruments
JP4326356B2 (en) Phase correction value measurement method
JPS60151501A (en) Measuring instrument for radius of curvature
JPH06174430A (en) Center thickness measuring method and device used for it
JP2672718B2 (en) Refractive index measuring method and apparatus
JPH0338645Y2 (en)
JP2000298011A (en) Method and apparatus for measuring shape
Wang Straightness Detection Method and Accuracy Analysis of Guide Rail Parts