JPH0139021B2 - - Google Patents

Info

Publication number
JPH0139021B2
JPH0139021B2 JP55148753A JP14875380A JPH0139021B2 JP H0139021 B2 JPH0139021 B2 JP H0139021B2 JP 55148753 A JP55148753 A JP 55148753A JP 14875380 A JP14875380 A JP 14875380A JP H0139021 B2 JPH0139021 B2 JP H0139021B2
Authority
JP
Japan
Prior art keywords
core member
duct
orifice hole
air
outlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55148753A
Other languages
Japanese (ja)
Other versions
JPS5773345A (en
Inventor
Toshio Hayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP14875380A priority Critical patent/JPS5773345A/en
Publication of JPS5773345A publication Critical patent/JPS5773345A/en
Publication of JPH0139021B2 publication Critical patent/JPH0139021B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、建物内に配設された空気ダクトから
調和空気を室内に吹出すためのダクト用吹出口の
改良に関するもので、ダクト内を流れる空気の全
圧を変化させることによりこれに応動して吹出気
流の方向と吹出風速を自動的に変えるようにした
ダクト用の気流可変吹出口を提供するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a duct outlet for blowing out conditioned air indoors from an air duct installed in a building. To provide a variable airflow outlet for a duct, which automatically changes the direction and speed of the airflow in response to the change in air flow.

吹出方向を自動的に変えるようにした様々な空
気吹出口が従来提案されているが、その多くは空
調機用のものであつて、これをダクト用吹出口に
そのまま適用することができない場合が多い。建
物内に配設されたダクトに多数の独立した空気吹
出口を取付ける場合には、他の動力によつて駆動
する方向可変手段を採用すると、その工事と保守
に難点が生ずるからである。
Various air outlets that automatically change the blowing direction have been proposed, but most of them are for air conditioners, and they may not be directly applicable to duct outlets. many. This is because when a large number of independent air outlets are installed in a duct installed in a building, if a direction variable means driven by other power is employed, construction and maintenance thereof will be difficult.

本発明は、送風ダクト系に多数配置される吹出
口を気流可変吹出口として機能させる簡便かつ施
工容易な新機構を提案するもので、送風ダクトに
おける送風系の全圧変化を制御信号として方向と
風速を変えるようにした吹出口を提供するもので
ある。すなわち本発明は、建物内に配設された空
気ダクトに接続され且つダクト内空気の全圧変化
に応じて吹出方向を変えるダクト用の気流可変吹
出口であつて、空気通過方向と直角方向の開口面
をもつ細長いオリフイス孔をケーシング内に形成
したうえ、このオリフイス孔の長辺側の両縁から
室内側に向けて先広がりとなるように二枚のガイ
ドを取付け、該オリフイス孔の長辺側の縁と平行
な外縁を両側にもつコア部材を該オリフイス孔の
中央部に取付けて該オリフイス孔の長辺側の縁と
コア部材の外縁との間にスリツト状の開口を形成
し、該コア部材の室内側の面を、このコア部材の
両外縁から室内側に向けて先細りとなる面に形成
し、そして、オリフイス孔の長辺側の縁に対する
該コア部材の外縁の相対高さが風圧によつて変位
するようにコア部材自身がスプリングを介して該
オリフイス孔内に取付けられ、この風圧による該
スリツト状の開口面の傾き変化により該風圧が高
いときに前記のガイド側に偏した気流が発生し、
風圧が低いときにコア部材の該先細りの面の側に
偏した気流が発生するようにしたことを特徴とす
る。そのさい、コア部材の室内側の先細り面を好
ましくは断面V型の面とし、その先細りの先端部
で回動自在にその両面を接続し、風圧によつて先
細り角度が変位するようにするとよい。
The present invention proposes a new, simple and easy-to-install mechanism that allows a large number of air outlets arranged in a ventilation duct system to function as variable airflow outlets. This provides an outlet that allows the wind speed to be changed. That is, the present invention is a variable airflow outlet for a duct that is connected to an air duct installed in a building and changes the blowout direction according to changes in the total pressure of air inside the duct, and which A long and narrow orifice hole with an opening surface is formed in the casing, and two guides are attached so that the long side edges of the orifice hole widen toward the indoor side. A core member having outer edges parallel to the side edges on both sides is attached to the center of the orifice hole, and a slit-shaped opening is formed between the long side edge of the orifice hole and the outer edge of the core member. The indoor side surface of the core member is formed to be tapered from both outer edges of the core member toward the indoor side, and the relative height of the outer edge of the core member with respect to the long side edge of the orifice hole is The core member itself is installed in the orifice hole via a spring so as to be displaced by wind pressure, and due to the change in the inclination of the slit-shaped opening surface due to this wind pressure, it is biased toward the guide side when the wind pressure is high. Airflow occurs,
It is characterized in that when the wind pressure is low, an airflow is generated that is biased toward the tapered surface of the core member. In this case, the tapered surface on the indoor side of the core member should preferably have a V-shaped cross section, and the tapered tip should connect both sides of the core member in a rotatable manner so that the tapered angle can be changed by wind pressure. .

以下に図面の実施例について説明する。第1図
は箱型の本発明に従うダクト用吹出口の概略断面
図、第2図はその透視斜視図であり、図示の例で
は上下開口の方形ケーシング1内の中央部に細長
いオリフイス孔が形成されるように固定板2,
2′を両側から下向きに傾斜をもたせて取付け、
この固定板2,2′の下方に室内側に向けて先広
がりとなるようなガイド3,3′が取付けてある。
この固定板2,2′とガイド3,3′の自由端縁
は、両縁を相互に接続しないで若干の隙間ができ
るように相互に離してある。そして、このように
して形成された細長いオリフイス孔の中央部に断
面V字型の細長いコア部材4をスプリング5を介
して吊す。このコア部材4は、図示の例では断面
がV字形になるように方形板を折り曲げたもので
あり、その両縁には折り返し片6,6′が設けて
ある。また、図示の例では断面V字型の先細り面
がその先端部で回動自在となつており、風圧によ
つてその開き角度が変化するようにしてある。こ
のコア部材4をオリフイス孔の中央部に吊るすこ
とによつて、折り返し片6,6′と固定板2,
2′との間で相互に対称な2つの細長いスリツト
状の開口が形成される。このコア部材4は送風系
の全圧が変動すると、これに応動してスプリング
5の弾力に抗して上下に変位すると共にその折り
返し片6,6′が開閉し、これに伴つて折り返し
片6,6′と固定板2,2′との間で形成されてい
る細長いスリツト孔の形態が変化する。すなわ
ち、その位置が固定されたオリフイス孔の開口面
に対してコア部材4の折り返し片6,6′と固定
板2,2′との間で形成されるスリツト状の開口
面が風圧に応じて傾斜し、またその開口面積も変
化することになる。このスリツト孔の形態変化に
よつて、吹出気流はその方向を図示の矢印の如く
変化する。
Examples of the drawings will be described below. Fig. 1 is a schematic cross-sectional view of a box-shaped duct outlet according to the present invention, and Fig. 2 is a perspective view thereof. fixing plate 2,
2' with a downward slope from both sides,
Guides 3, 3' are installed below the fixing plates 2, 2' so as to widen towards the indoor side.
The free edges of the fixing plates 2, 2' and the guides 3, 3' are not connected to each other, but are spaced apart from each other with a slight gap. Then, an elongated core member 4 having a V-shaped cross section is suspended via a spring 5 at the center of the elongated orifice hole thus formed. In the illustrated example, the core member 4 is a rectangular plate bent so as to have a V-shaped cross section, and folded pieces 6, 6' are provided on both edges thereof. Further, in the illustrated example, the tapered surface having a V-shaped cross section is rotatable at its tip, and its opening angle changes depending on the wind pressure. By hanging this core member 4 at the center of the orifice hole, the folded pieces 6, 6' and the fixing plate 2,
2', two mutually symmetrical elongated slit-shaped openings are formed. When the total pressure of the air blowing system fluctuates, this core member 4 moves up and down against the elasticity of the spring 5 in response to the change, and its folded pieces 6 and 6' open and close. , 6' and the fixing plates 2, 2'. In other words, the slit-shaped opening surface formed between the folded pieces 6, 6' of the core member 4 and the fixed plates 2, 2', with respect to the opening surface of the orifice hole whose position is fixed, changes depending on the wind pressure. It will be tilted and its opening area will also change. Due to this change in the shape of the slit hole, the direction of the blown airflow changes as shown by the arrow in the figure.

すなわち、ダクト内の風圧(全圧)が低い場合
は、スプリング5の弾力に抗してコア部材4が下
降する程度が少ないのでコア部材4は実線の如き
状態にあり、折り返し片6,6′の外縁の高さが
比較的高い位置にあるので、スリツト状の開口面
がややコア部材の先細り面の側に向き、したがつ
て、この先細り面との間でコアンダ効果が発生
し、気流は実線のように流れる。全圧が徐々に上
昇すると、コア部材4が一点破線の位置に変位し
て折り返し片6,6′の外縁の高さも徐々に下降
し、先に形成されていたコア部材4の先細り面の
間にコアンダ効果は相互の位置関係が不整合とな
つて崩れ、気流はこの先細り面から剥離して、一
点破線のように流れる。さらに全圧が上昇する
と、コア部材4はさらに変位して点線位置とな
り、今度はガイド3,3′との間でコアンダ効果
が発生して吹出角のさらに大きな点線のような吹
出気流となる。
That is, when the wind pressure (total pressure) inside the duct is low, the extent to which the core member 4 descends against the elasticity of the spring 5 is small, so the core member 4 is in a state as shown by the solid line, and the folded pieces 6, 6' Since the height of the outer edge of the core member is relatively high, the slit-shaped opening faces slightly toward the tapered surface of the core member, and a Coanda effect occurs between the tapered surface and the airflow. It flows like a solid line. As the total pressure gradually increases, the core member 4 is displaced to the position indicated by the dotted line, and the height of the outer edges of the folded pieces 6, 6' gradually decreases, and between the tapered surfaces of the core member 4 that were previously formed. The Coanda effect collapses as the mutual positional relationship becomes mismatched, and the airflow separates from this tapered surface and flows as shown by the dashed line. When the total pressure further increases, the core member 4 is further displaced to the position shown by the dotted line, and the Coanda effect occurs between the guides 3 and 3', resulting in a blowing airflow with a larger blowing angle as shown by the dotted line.

なお、前例では、固定板2,2′とガイド3,
3′の自由端縁に若干の隙間を設けた例を示した
が、この隙間は必ずしも必要ではなく、原理的に
は固定板2,2′自身も省略してガイド3,3′の
上縁で細長いオリフイス孔を設けてもよい。しか
し、図例のように固定板2,2′をオリフイス孔
に向けて傾斜をもたせて取付けると、ケーシング
内の中央部に設けられるオリフイス孔にケーシン
グ内気流を安定して案内することができる。ま
た、コア部材4の両側縁は折り返し片6,6′に
よつて形成されている例を示したが、この折り返
し片6,6′も必ずしも必要ではなく、開口面積
が固定されたオリフイス孔の中において、このオ
リフイス孔の長辺側の固定縁に対するコア部材の
外縁の相対高さが風圧によつて変化するスリツト
状の細孔(風圧によつてその形態が変化する細
孔)を形成することと、そしてコア部材の外縁か
ら室内側に向けてコアンダ効果を得るための先細
り面を形成することがコア部材の重要な要素とな
る。
In addition, in the example, the fixed plates 2, 2' and the guide 3,
Although an example is shown in which a slight gap is provided at the free end edge of the guide 3', this gap is not necessarily necessary, and in principle, the fixing plate 2, 2' itself can also be omitted and the upper edge of the guide 3, 3' An elongated orifice hole may be provided. However, if the fixing plates 2, 2' are mounted with an inclination toward the orifice hole as shown in the figure, the airflow inside the casing can be stably guided to the orifice hole provided in the center of the casing. In addition, although an example has been shown in which both side edges of the core member 4 are formed by folded pieces 6, 6', these folded pieces 6, 6' are not necessarily necessary, and the opening area of the orifice hole is fixed. Inside, a slit-like pore is formed in which the relative height of the outer edge of the core member to the fixed edge on the long side of the orifice hole changes depending on wind pressure (a pore whose shape changes depending on wind pressure). In addition, an important element of the core member is to form a tapered surface from the outer edge of the core member toward the indoor side in order to obtain the Coanda effect.

第3〜5図は、送風全圧変動手段の具体的に示
したものであり、第3図はダクト15内に回転可
能に取付けたダンパー翼16をサーボモータ17
で回転駆動するようにしたもの、第4図は同じく
ダンパー翼18,18′をサーボモータ17でリ
ンク機構によつて周期的に開閉するようにしたも
の、第5図は可変翼ピツチ軸流フアン19のピツ
チをサーボモータ17でリンク機構によつてサイ
クリングするようにしたものである。
3 to 5 specifically show the blowing total pressure varying means, and FIG.
Fig. 4 shows a damper blade 18, 18' which is periodically opened and closed by a link mechanism using a servo motor 17, and Fig. 5 shows a variable blade pitch axial flow fan. 19 pitches are cycled by a servo motor 17 using a link mechanism.

このようなダクト送風系の全圧変動手段によつ
て、送風系の全圧を変化させれば、そのダクト端
末に接続される多数の本発明に従う吹出口はそれ
ぞれの吹出気流の方向を自動的に変化させること
になり、またこの全圧の変化に伴つて吹出速度も
変化することになる。
By changing the total pressure of the air blowing system using such a total pressure variation means of the duct air blowing system, a large number of air outlets according to the present invention connected to the duct terminal automatically change the direction of the respective airflow. In addition, the blowing speed also changes as the total pressure changes.

したがつて本発明によると、ダクト用吹出口の
個別の制御を行わずとも、送風動力部における一
括制御(全圧変動制御)によつて建物の各所に多
数配置される吹出口の気流吹出方向および吹出速
度の遠隔制御が可能になりダクト空調として全く
新しい自動可変気流制御システムを提供すること
ができる。
Therefore, according to the present invention, the airflow blowing direction of a large number of air outlets arranged in various places in a building can be controlled by collective control (total pressure fluctuation control) in the blower power unit without individually controlling the air outlet for the duct. And remote control of blowout speed is possible, providing a completely new automatic variable airflow control system for duct air conditioning.

以下に本発明吹出口の代表的試験例を挙げる。 Typical test examples of the outlet of the present invention are listed below.

試験は第1〜2図に示した吹出口について行つ
た。試験に供した吹出口の各要素の寸法を第6図
に示した。この吹出口を十分に高い天井に設置し
た。そしてこの吹出口の上部開口(300mm×200
mm)を同じ断面積(300mm×200mm)をもつ長さ約
600mmの一次ダクトを水平方向に接続した。この
一次ダクトを断面積300mm×300mmの長さ6mの二
次ダクトを水平方向に接続し、この二次ダクトの
端(上流側の端)に上部水平吹出しの遠心送風機
を接続し、この送風機の吸込側にさらに吸込ダク
トを水平方向に接続した。そして、吸込ダクトに
2個のバタフライダンパを取付け、このダンパの
操作によつてダクト内の全圧を調整した。
The test was conducted using the air outlet shown in FIGS. 1 and 2. Figure 6 shows the dimensions of each element of the air outlet used in the test. This air outlet was installed in a sufficiently high ceiling. And the upper opening of this air outlet (300mm x 200
mm) with the same cross-sectional area (300mm x 200mm)
A 600mm primary duct was connected horizontally. This primary duct is horizontally connected to a secondary duct with a cross-sectional area of 300 mm x 300 mm and a length of 6 m, and a centrifugal blower with an upper horizontal blowout is connected to the end of this secondary duct (the upstream end). A suction duct was further connected horizontally to the suction side. Then, two butterfly dampers were attached to the suction duct, and the total pressure inside the duct was adjusted by operating the dampers.

各測定項目の測定方法は次のとおりである。 The measurement method for each measurement item is as follows.

(a) 風速分布 吹出口から吹き出される空気の風速を第7図
の黒丸印で示す各位置で測定した。高さ方向は
1m間隔、横方向は0.5m間隔である。測定は
熱線風速計を使用して行つた。そのさい、その
検出部を吹出口に向けてスタンドに固定し、そ
の点の風速を記録計に記録した。なお、吹出口
は形状が左右対称であるから、吹出口の左半分
の空間に関して風速を測定した。
(a) Wind speed distribution The wind speed of the air blown out from the outlet was measured at each position indicated by the black circle in Figure 7. The height direction is 1 m apart, and the horizontal direction is 0.5 m apart. Measurements were made using a hot wire anemometer. At that time, the detection unit was fixed to a stand facing the air outlet, and the wind speed at that point was recorded on a recorder. In addition, since the shape of the air outlet is bilaterally symmetrical, the wind speed was measured for the left half space of the air outlet.

(b) 送風量 吹出口に通ずる一次ダクトの吹出口直前の位
置において、同一断面内に碁盤の目状に24個の
測定点を設け、熱線風速計を用いて各測定点の
風速を記録計に記録し、算術平均風速とダクト
断面積とから送風量を算出した。
(b) Air flow rate 24 measurement points were set up in a grid pattern in the same cross section at the position immediately before the air outlet of the primary duct leading to the air outlet, and a hot wire anemometer was used to record the wind speed at each measurement point. The air flow rate was calculated from the arithmetic mean wind speed and the duct cross-sectional area.

(c) 吹出口の静圧 一次ダクトの吹出口直前の位置におけるダク
ト天井面にマノメータを設置して静圧を測定し
た。
(c) Static pressure at the air outlet A manometer was installed on the duct ceiling at a position immediately in front of the air outlet of the primary duct to measure the static pressure.

吸込ダクトのバタフライダンパの調節によつて
ダクト内空気に全圧変化を与えたときの、吹出口
から吹き出された空気の風速分布の測定結果を第
8図a〜dおよび第9図a〜dに示した。
Figures 8a-d and 9a-d show the measurement results of the wind speed distribution of air blown out from the outlet when the total pressure of the air inside the duct is changed by adjusting the butterfly damper of the suction duct. It was shown to.

第8図は、バネ定数が3g/mgで長さ70mmのス
プリング(第1〜2図の5で示すスプリング)を
使用した場合、第9図はバネ定数が12g/mgで長
さ50mmのスプリングを使用した場合の結果を示
す。
Figure 8 shows a spring with a spring constant of 3 g/mg and a length of 70 mm (the spring shown by 5 in Figures 1 and 2). Figure 9 shows a spring with a spring constant of 12 g/mg and a length of 50 mm. Shows the results when using .

第8図および第9図に見られるように、本発明
の吹出口によるとダクト内の全圧変化に対応して
吹出気流の方向が良好に変化することがわかる。
As seen in FIGS. 8 and 9, it can be seen that according to the air outlet of the present invention, the direction of the air flow changes favorably in response to changes in the total pressure within the duct.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の1実施例を示すダクト用吹出
口の概略断面図、第2図は第1図の吹出口の透視
図、第3〜5図はいづれも送風全圧変動手段の実
施例を示す断面図、第6図は試験に供した本発明
吹出口の各要素の寸法を記した略断面図、第7図
は本発明の吹出口による風速分布を調べるための
風速測定点の位置を示す図、第8図a〜dはバネ
定数3g/mgの長さ70mmのスプリングを使用した
第9図の吹出口の試験において、ダクト内全圧の
相違による風速分布の変化を示す図、第9図a〜
dはバネ定数12g/mgの長さ50mmのスプリングを
使用した第9図の吹出口の試験において、ダクト
内全圧の相違による風速分布の変化を示す図であ
る。 1……方形ケーシング、2……固定板、3……
ガイド、4……コア部材、5……スプリング、6
……折り返し片。
FIG. 1 is a schematic cross-sectional view of a duct outlet showing one embodiment of the present invention, FIG. 2 is a perspective view of the outlet shown in FIG. 1, and FIGS. A cross-sectional view showing an example, FIG. 6 is a schematic cross-sectional view showing the dimensions of each element of the outlet of the present invention used in the test, and FIG. 7 is a schematic cross-sectional view showing the dimensions of each element of the outlet of the present invention. FIG. Figures 8a to 8d are diagrams showing the changes in wind speed distribution due to differences in the total pressure inside the duct in the test of the air outlet in Figure 9 using a spring with a spring constant of 3 g/mg and a length of 70 mm. , Figure 9 a~
d is a diagram showing changes in the wind speed distribution due to differences in the total pressure inside the duct in a test of the outlet of FIG. 9 using a spring with a spring constant of 12 g/mg and a length of 50 mm. 1... Square casing, 2... Fixed plate, 3...
Guide, 4... Core member, 5... Spring, 6
...Folded piece.

Claims (1)

【特許請求の範囲】[Claims] 1 建物内に配設された空気ダクトに接続され且
つダクト内空気の全圧変化に応じて吹出方向を変
えるダクト用の気流可変吹出口であつて、空気通
過方向と直角方向の開口面をもつ細長いオリフイ
ス孔をケーシング内に形成したうえ、このオリフ
イス孔の長辺側の両縁から室内側に向けて先広が
りとなるように二枚のガイドを取付け、該オリフ
イス孔の長辺側の縁と平行な外縁を両側にもつコ
ア部材を該オリフイス孔の中央部に取付けて該オ
リフイス孔の長辺側の縁とコア部材の外縁との間
にスリツト状の開口を形成し、該コア部材の室内
側の面を、このコア部材の両外縁から室内側に向
けて先細りとなる面に形成し、そして、オリフイ
ス孔の長辺側の縁に対する該コア部材の外縁の相
対高さが風圧によつて変位するようにコア部材自
身がスプリングを介して該オリフイス孔内に取付
けられ、この風圧による該スリツト状の開口面の
傾き変化により該風圧が高いときに前記のガイド
側に偏した気流が発生し、風圧が低いときにコア
部材の該先細りの面の側に偏した気流が発生する
ようにしたことを特徴とするダクト用気流可変吹
出口。
1. A variable airflow outlet for a duct that is connected to an air duct installed in a building and changes the outlet direction according to changes in the total pressure of the air inside the duct, and has an opening surface perpendicular to the air passage direction. An elongated orifice hole is formed in the casing, and two guides are installed so that they spread out from both long side edges of the orifice hole toward the indoor side. A core member having parallel outer edges on both sides is attached to the center of the orifice hole, a slit-shaped opening is formed between the long side edge of the orifice hole and the outer edge of the core member, and a chamber of the core member is formed. The inner surface is formed to be tapered from both outer edges of the core member toward the indoor side, and the relative height of the outer edge of the core member to the long side edge of the orifice hole is determined by wind pressure. The core member itself is installed in the orifice hole via a spring so as to be displaced, and due to the change in the inclination of the slit-shaped opening surface due to this wind pressure, when the wind pressure is high, an airflow biased toward the guide side is generated. A variable airflow outlet for a duct, characterized in that when wind pressure is low, airflow is generated biased towards the tapered surface of the core member.
JP14875380A 1980-10-23 1980-10-23 Air supply port for duct capable of changing air stream Granted JPS5773345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14875380A JPS5773345A (en) 1980-10-23 1980-10-23 Air supply port for duct capable of changing air stream

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14875380A JPS5773345A (en) 1980-10-23 1980-10-23 Air supply port for duct capable of changing air stream

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP63265273A Division JPH01193550A (en) 1988-10-22 1988-10-22 Air flow variable blowing port for duct

Publications (2)

Publication Number Publication Date
JPS5773345A JPS5773345A (en) 1982-05-08
JPH0139021B2 true JPH0139021B2 (en) 1989-08-17

Family

ID=15459855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14875380A Granted JPS5773345A (en) 1980-10-23 1980-10-23 Air supply port for duct capable of changing air stream

Country Status (1)

Country Link
JP (1) JPS5773345A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4733424B2 (en) * 2005-05-13 2011-07-27 ヤンマー株式会社 Waste heat recovery device
CN109282467B (en) * 2018-09-27 2021-08-03 Tcl空调器(中山)有限公司 Air conditioner
KR102217513B1 (en) * 2020-09-10 2021-02-19 주식회사 경인기계 Noise reduction cooling tower

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325409U (en) * 1976-08-11 1978-03-03

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5325409U (en) * 1976-08-11 1978-03-03

Also Published As

Publication number Publication date
JPS5773345A (en) 1982-05-08

Similar Documents

Publication Publication Date Title
US5632675A (en) Mixing section for supply air and return air in an air-conditioning apparatus
GB2068084A (en) Means for controlling the flow of fluids
US3595475A (en) Bleed-type thermostat
WO2019163934A1 (en) Air blowing device and air conditioning device
US3593645A (en) Terminal outlet for air distribution system
US5564975A (en) Air flow controller for heating and air conditioning vents
JPH0139021B2 (en)
US2433981A (en) Ventilating air distributor
US2123440A (en) Air conditioning system
KR200458718Y1 (en) Variable discharge type swirl diffuser for high place installation
CA1134195A (en) Variable volume control assembly
JPS60159550A (en) Rectangular air outlet for room air-conditioning system
JPH0354254B2 (en)
KR101144147B1 (en) Electronic diffuser of automatic pressure response
US2388073A (en) Fluid flow control
JPH06159783A (en) Blowoff chamber
JP2584736Y2 (en) Air volume adjustment device at line type outlet for system ceiling
JPS61210912A (en) Air flow measuring instrument
EP0254733B1 (en) Intake air disperser
Jackman Design recommendations for room air distribution systems.
JPH10332190A (en) Cold air diffuser
JP2526291B2 (en) Control method for air conditioner cooling by floor blowing
WO1991012496A1 (en) Air flow sensor
JPH01193550A (en) Air flow variable blowing port for duct
Prozuments et al. The optimal operating range of VAV supply units