US3595475A - Bleed-type thermostat - Google Patents

Bleed-type thermostat Download PDF

Info

Publication number
US3595475A
US3595475A US846662A US3595475DA US3595475A US 3595475 A US3595475 A US 3595475A US 846662 A US846662 A US 846662A US 3595475D A US3595475D A US 3595475DA US 3595475 A US3595475 A US 3595475A
Authority
US
United States
Prior art keywords
bleed
air
bimetallic element
movement
port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US846662A
Inventor
Daniel H Morton
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Carrier Corp
Original Assignee
Carrier Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Carrier Corp filed Critical Carrier Corp
Application granted granted Critical
Publication of US3595475A publication Critical patent/US3595475A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/08Air-flow control members, e.g. louvres, grilles, flaps or guide plates
    • F24F13/10Air-flow control members, e.g. louvres, grilles, flaps or guide plates movable, e.g. dampers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/76Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity by means responsive to temperature, e.g. bimetal springs

Definitions

  • the terminal is provided [50] Field of Search 236/87, with a bleedrtype thermostat employing a perforated bimetal 93; 7313635337 I 379 lic element movable in response to temperature variations in the air passing through the perforations from the area served [56] Ran-noes Cited by the air terminal to regulate the quantity of air bled from the UNITED STATES PATENTS thermostat and thereby control the quantity of conditioned air 2,210,701 8/ 1940 Bletz 73/3635 discharged from the terminal.
  • the exterior dimensions must be minimized while the airflow passages within the terminal must be maximized for quiet operation and maximum airflow therethrough. These design criteria may result in a minimum amount of space within the terminal for the terminal controls.
  • This invention relates to a ceiling air terminal employing a bleed-type thermostat adapted for use in an air-conditioning system.
  • the thermostat mounted within the terminal, is provided with a perforated bimetallic element.
  • the bimetallic element which is mounted in the thermostat housing on an adjustable support, acts on a pivot arm to slide a bleed port blocking plate relative to the thermostat bleed ports to regulate the quantity of control air bled therefrom in response to room temperature variations sensed by the bimetallic element.
  • FIG. 1 is a schematic of a portion of an air-conditioning system illustrating an air terminal employing the thermostat of the present invention
  • FIG. 2 is a perspective view illustrating the air-conditioning terminal of FIG. 1 installed in a ceiling with the control section thereof removed therefrom;
  • FIG. 3 is a cross-sectional view of the bleed-type thermostat of the present invention.
  • FIG. 4 is a cross-sectional view of the thermostat taken along line IV-IV of FIG. 3;
  • FIG. 5 is a partial cross-sectional view of the thermostat taken along line V-V of FIG. 3.
  • a central airconditioning apparatus of the type employed in large multistory buildings including a system of ductwork, a filter 5, a cooling coil 7, spray means 9, a cooling coil 11, a heating coil 13, and a fan for heating, cooling, humidifying and filtering the air as desired to provide conditioned air for passage to the areas within the building equipped with an air-conditioning system incorporating the apparatus.
  • a supply air duct 17 is illustrative of the plurality of ducts provided to supply conditioned air to ceiling air terminals disposed in areas throughout the building.
  • the ceiling terminal includes a primary chamber 19 lined with a sound absorbing material 21 such as a glass fiber blanket.
  • the primary chamber is ordinarily open at both ends for connecting a series of terminals end to end to provide a complete air discharge system. Suitable end pieces, not shown, are utilized to cap the end terminals in the series.
  • An air supply distribution plate 23 having a plurality of collared openings 25 therein is provided to evenly distribute the supply air from primary chamber 19 into a distribution chamber 27 which is defined by the top and sidewalls of distribution plate 23.
  • the bottom of distribution chamber 27 includes aligned cutofi plates 29 which are provided with a curved surface 30 for engagement by bladders 31 and 33 on an airflow control unit to form a damper.
  • the curved surfaces smooth the flow of air through the damper to minimize the pressure drop therethrough and minimize noise generation within the terminal.
  • the surface 30 is covered with felt 32 to further minimize noise.
  • the bladders 31 and 33 are adhesively mounted on a central partition comprised of opposed generally convex plates 35.
  • the plates have a V-shaped recess therein so that the bladders are completely recessed within the plates when deflated. This provides a large area between the active walls 34 of the bladders and the cutoff plates for maximum airflow therebetween. Further, the recessed bladder provides a smooth surface along the plate 35 to minimize air turbulence.
  • the damper mechanism is disposed a substantial distance upstream from the discharge openings in the terminal to provide sufficient space therebetween to absorb any noise generated by the damper mechanism.
  • downwardly extending walls 41 which form narrow, vertical air discharge passages in conjunction with plates 35 are lined with a sound-absorbing material such as glass fiber blankets 43.
  • Outlet members 45 having outwardly flared lower portions 47 thereon are affixed as by welding to the walls 41.
  • the damper-control module assembly illustrated in FIG. 2 is comprised of convex plates 35, bladders 31 and 33, and a control module 39 mounted on triangular diffuser member 37.
  • the control module consists of a frame 48 having filters 49 pressure regulators 51 and thermostats 53 mounted therein.
  • the filters 49 are provided with openings (not shown) in the top surface thereof for communication with primary chamber 19 when the damper-control module assembly is inserted into the air terminal for receiving conditioned air from chamber 19. Filtered air from filters 49 is supplied to pressure regula tors 51.
  • Control air from pressure regulators 51 is supplied to thermostats 53 and to bladders 31 and 33.
  • the illustrated control module is provided with two filters, two regulators, and two thermostats to control bladders 31 and 33 independently. This may be desired when the air terminal is disposed above a room partition for individual temperature control on each side of the partition. It should be understood that a single set of control elements could be employed to control both bladders simultaneously.
  • the thermostat 53 is mounted in the damper-control module assembly as illustrated in FIG. 2 to position the thermostat within the ceiling terminal as illustrated in FIG. 4.
  • the damper-control module assembly is extremely narrow to provide a ceiling air terminal as unobtrusive as possible. This results in a very narrow control section which must be provided with room air for the thermostat to maintain the conditioned area at the desired temperature.
  • the thermostat must be designed so as to provide minimal resistance to the passage of room air into the control module for contact with the temperature sensing bimetallic element of the thermostat.
  • the thermostat 53 includes a housing 57 having an opening 58 formed in the lower portion thereof for passage of room air therethrough into the interior of the housing.
  • a U-shaped bimetallic element 59 is mounted within housing 57 on an adjustment block 6!.
  • the bimetallic element 59 is provided with a plurality of perforations 63 extending throughout its axial extent in both legs 60 thereof. This allows the use of a bimetallic element having a width slightly less than the interior width of housing 57 since the room air can pass into the housing through the perforations of the bimetallic element.
  • the perforations in bimetallic element 59 allow maximum contact between room air and element 59 for rapid and accurate response of the thermostat to variations in room temperature.
  • the adjustment block 61 which mounts bimetallic element 59 is slidably mounted within housing 57 for vertical movement relative thereto. Springs 69 are provided to bias block 61 against temperature adjustment cams 71 formed on adjustment shaft 75. Shaft 75 is journaled in a calibration block 77 which is secured to housing 57 by calibration screw 79. The position of calibration block 77 may be adjusted relative to the housing 57 by calibration screw 79 for reasons to be hereinafter explained.
  • a setscrew 81 and friction block 83 are provided within calibration block 77 for frictional engagement between block 83 and shaft 75 to prevent free rotation of shaft 75 while allowing rotation thereof by rotational force applied manually or otherwise through adjustment lever 85 which is affixed to the end of shaft 75.
  • a lever 87 pivotable about a shaft 89, journaled in the sidewalls of housing'57, is provided to convert the vertical movement of bimetallic element 59 caused by temperature variations thereof into horizontal movement.
  • a bleed plate 91 having openings 93 therein is provided to overlie bleed ports 95 formed within housing 57.
  • the lever 87 is therefore provided with arms 86 and 88 of unequal lengths measured from the pivot 89. The short arm contacts bimetallic element 59 while the long arm contacts bleed plate 91. This provides a relatively large horizontal movement of bleed plate 91 to compensate for the relatively small vertical movement resulting from the use of a short bimetallic element.
  • the bimetallic element 59 has a greater thickness than bimetallic elementsnormally employed in a thermostat of this type.
  • a leaf spring 97 suitably affixed to housing 57 as by fastener 98 is provided to bias plate 91 toward lever 87.
  • An adjustment screw 99 in housing 57 is provided to adjust the biasing force exertedxby spring 97 against plate 91.
  • the bleed ports 95 communicate with an air passage 101 within housing 57.
  • An opening 103 within housing 57 communicating with passage 101 is provided for receiving pressure regulator 51 to provide regulated control pressure to the thermostat bleed ports 95.
  • the regulator communicates with the bladders 31 through suitable piping including tubes 52 and bladder connectors 54 to supply conditioned air to the bladders at a pressure less than the pressure in the primary chamber 19. Air is bled from the regulator through bleed ports 95 to provide variable air premure at the bladders in response to temperature variations in the area being treated.
  • suitable pressure regulator reference may be had to U.S. Pat. No. 3,434,409, granted Mar. 25, 1969, to Daniel A, Fragnito.
  • the thermostat is preferably factory calibrated by adjustment of screw 79. It can be seen by reference to FIG. that rotation of screw 79 will vary the position of calibration block 77 and the adjustment shaft 75 journaled therein. This will vary the vertical position of adjustment block 61 and the bimetallic element affixed thereto and, in turn, vary the position of bleed plate 91. For comfort-conditioning installations, it is preferable to calibrate the thermostat to maintain a 75 room temperature when the lever is vertically oriented. This will provide temperature adjustment range above and below 75 to suit individual temperature preferences by movement of lever 85 from the vertical position.
  • a bleed-type thermostat comprising:
  • adjustable support means mounted on said housing
  • a bleed-type thermostat according to claim 1 wherein said blockage means comprises a bleed plate overlying said bleed port, movement of said bleed plate relative to said bleed port regulating the flow of air through said port;
  • said means associated with said blockage means including motion amplifying means disposed between the other end of said bimetallic element and said bleed plate to amplify movement of said bimetallic element for positioning said bleed plate.
  • a bleed-type thermostat according to claim 2 wherein said bimetallic element is adapted for movement in a plane perpendicular to the movement of said bleed plate, said motion amplifying means including a pivoted lever having unequal length arms, the shorter arm being adapted for contact with said bimetallic element-and the longer arm being adapted for contact with said bleed block.
  • a bleed-type thermostat according to claim 3 further including biasing means associated with said bleed plate to bias said bleed plate toward the longer arm of said lever.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Duct Arrangements (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

A ceiling air terminal serving as part of an air-conditioning system for a building adapted to discharge conditioned air into an area to be treated. The terminal is provided with a bleed-type thermostat employing a perforated bimetallic element movable in response to temperature variations in the air passing through the perforations from the area served by the air terminal to regulate the quantity of air bled from the thermostat and thereby control the quantity of conditioned air discharged from the terminal.

Description

United States Patent [72] Inventor Daniel ll. Morton I 2,492,744 12/1949 Gunn 236/93 North Syracme, N.Y. 2,581,045 l/1952 Rhoads..... 236/101 [2]] Appl. No. 846,662 3,181,788 5/1965 Norman 236/87 [22] Filed Aug. 1, 1969 3,394,884 7/1968 Lord 236/13 [45] Patented July 27, 1971 mary Exammer-Meyer Perlln [73] Asslgnee garner 8mm Assistant Examiner-Ronald C. Capossela ymuse Attorneys-Harry G. Martin, Jr. and J. Raymond Curtin [54] BLEED-TY PE THERMOSTAT 4 Claims, 5 Drawing Figs. [52] US. Cl 236/93, ABSTRACT; A ceiling air terminal Serving as part f an 73/3635 236/101 337/ l l L 337/379 conditioning system for a building adapted to discharge condi- [Sl Int. Cl ..G05d 23/02 tioned i an area to be treated. The terminal is provided [50] Field of Search 236/87, with a bleedrtype thermostat employing a perforated bimetal 93; 7313635337 I 379 lic element movable in response to temperature variations in the air passing through the perforations from the area served [56] Ran-noes Cited by the air terminal to regulate the quantity of air bled from the UNITED STATES PATENTS thermostat and thereby control the quantity of conditioned air 2,210,701 8/ 1940 Bletz 73/3635 discharged from the terminal.
t l l 5 l l I I PATENIED JUL27 I9?! SHEET 1 UF 2 INVENTOR. DANIEL H. MORTON.
ATTORNEY.
PATENTED JUL 2 7 Ian SHEET 2 BF 2 Mi; a ian INVENTOR. DANIEL H. MORTON.
ATTAnKlI V BLEED-TYPE THERMOSTAT BACKGROUND OF THE INVENTION In many air-conditioning installations, it is desirable to utils ize air-conditioning terminals employing a portion of the conditioned air supplied thereto as a control medium to avoid the necessity of a separate control system. When a portion of the conditioned air is utilized as a control medium, the terminal can be supplied with a self-contained control system. The resulting simplification of the air-conditioning system reduces installation, maintenance and repair costs.
In order to provide an air-conditioning terminal which is as inconspicuous as possible, the exterior dimensions must be minimized while the airflow passages within the terminal must be maximized for quiet operation and maximum airflow therethrough. These design criteria may result in a minimum amount of space within the terminal for the terminal controls.
SUMMARY OF THE INVENTION This invention relates to a ceiling air terminal employing a bleed-type thermostat adapted for use in an air-conditioning system. The thermostat, mounted within the terminal, is provided with a perforated bimetallic element. The bimetallic element, which is mounted in the thermostat housing on an adjustable support, acts on a pivot arm to slide a bleed port blocking plate relative to the thermostat bleed ports to regulate the quantity of control air bled therefrom in response to room temperature variations sensed by the bimetallic element.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic of a portion of an air-conditioning system illustrating an air terminal employing the thermostat of the present invention;
FIG. 2 is a perspective view illustrating the air-conditioning terminal of FIG. 1 installed in a ceiling with the control section thereof removed therefrom;
FIG. 3 is a cross-sectional view of the bleed-type thermostat of the present invention;
FIG. 4 is a cross-sectional view of the thermostat taken along line IV-IV of FIG. 3; and
FIG. 5 is a partial cross-sectional view of the thermostat taken along line V-V of FIG. 3.
DESCRIPTION OF THE PREFERRED EMBODIMENT Referring to the drawings, there is illustrated a central airconditioning apparatus of the type employed in large multistory buildings including a system of ductwork, a filter 5, a cooling coil 7, spray means 9, a cooling coil 11, a heating coil 13, and a fan for heating, cooling, humidifying and filtering the air as desired to provide conditioned air for passage to the areas within the building equipped with an air-conditioning system incorporating the apparatus.
A supply air duct 17 is illustrative of the plurality of ducts provided to supply conditioned air to ceiling air terminals disposed in areas throughout the building. The ceiling terminal includes a primary chamber 19 lined with a sound absorbing material 21 such as a glass fiber blanket. The primary chamber is ordinarily open at both ends for connecting a series of terminals end to end to provide a complete air discharge system. Suitable end pieces, not shown, are utilized to cap the end terminals in the series. An air supply distribution plate 23 having a plurality of collared openings 25 therein is provided to evenly distribute the supply air from primary chamber 19 into a distribution chamber 27 which is defined by the top and sidewalls of distribution plate 23.
The bottom of distribution chamber 27 includes aligned cutofi plates 29 which are provided with a curved surface 30 for engagement by bladders 31 and 33 on an airflow control unit to form a damper. The curved surfaces smooth the flow of air through the damper to minimize the pressure drop therethrough and minimize noise generation within the terminal. The surface 30 is covered with felt 32 to further minimize noise. By varying the inflation of the bladders, the area of the openings between the bladders and the cutoff plates can be varied to regulate the quantity of air discharged into the area being conditioned.
The bladders 31 and 33 are adhesively mounted on a central partition comprised of opposed generally convex plates 35. The plates have a V-shaped recess therein so that the bladders are completely recessed within the plates when deflated. This provides a large area between the active walls 34 of the bladders and the cutoff plates for maximum airflow therebetween. Further, the recessed bladder provides a smooth surface along the plate 35 to minimize air turbulence.
The damper mechanism is disposed a substantial distance upstream from the discharge openings in the terminal to provide sufficient space therebetween to absorb any noise generated by the damper mechanism. For maximum sound absorption, downwardly extending walls 41 which form narrow, vertical air discharge passages in conjunction with plates 35 are lined with a sound-absorbing material such as glass fiber blankets 43. Outlet members 45 having outwardly flared lower portions 47 thereon are affixed as by welding to the walls 41.
The damper-control module assembly illustrated in FIG. 2 is comprised of convex plates 35, bladders 31 and 33, and a control module 39 mounted on triangular diffuser member 37. The control module consists of a frame 48 having filters 49 pressure regulators 51 and thermostats 53 mounted therein. The filters 49 are provided with openings (not shown) in the top surface thereof for communication with primary chamber 19 when the damper-control module assembly is inserted into the air terminal for receiving conditioned air from chamber 19. Filtered air from filters 49 is supplied to pressure regula tors 51. Control air from pressure regulators 51 is supplied to thermostats 53 and to bladders 31 and 33. For a complete description of the operation of the control system, reference may be had to US. Pat. 3,167,253, granted Jan. 26, I965, in the names of Richard A. Church and Boris W. Haritonoff.
The illustrated control module is provided with two filters, two regulators, and two thermostats to control bladders 31 and 33 independently. This may be desired when the air terminal is disposed above a room partition for individual temperature control on each side of the partition. It should be understood that a single set of control elements could be employed to control both bladders simultaneously.
The thermostat 53 is mounted in the damper-control module assembly as illustrated in FIG. 2 to position the thermostat within the ceiling terminal as illustrated in FIG. 4. By mounting the thermostat and the associated controls in this manner, an assembly which is easily removed for cleaning, calibration, or repair, is obtained. The damper-control module assembly is extremely narrow to provide a ceiling air terminal as unobtrusive as possible. This results in a very narrow control section which must be provided with room air for the thermostat to maintain the conditioned area at the desired temperature. The thermostat must be designed so as to provide minimal resistance to the passage of room air into the control module for contact with the temperature sensing bimetallic element of the thermostat.
Referring more particularly to FIGS. 3, 4 and S, the thermostat 53 includes a housing 57 having an opening 58 formed in the lower portion thereof for passage of room air therethrough into the interior of the housing. A U-shaped bimetallic element 59 is mounted within housing 57 on an adjustment block 6!. In order to assure maximum contact of room air with the bimetallic element and to provide a bimetallic element large enough to actuate the movable members of the thermostat, the bimetallic element 59 is provided with a plurality of perforations 63 extending throughout its axial extent in both legs 60 thereof. This allows the use of a bimetallic element having a width slightly less than the interior width of housing 57 since the room air can pass into the housing through the perforations of the bimetallic element. The perforations in bimetallic element 59 allow maximum contact between room air and element 59 for rapid and accurate response of the thermostat to variations in room temperature. The adjustment block 61 which mounts bimetallic element 59 is slidably mounted within housing 57 for vertical movement relative thereto. Springs 69 are provided to bias block 61 against temperature adjustment cams 71 formed on adjustment shaft 75. Shaft 75 is journaled in a calibration block 77 which is secured to housing 57 by calibration screw 79. The position of calibration block 77 may be adjusted relative to the housing 57 by calibration screw 79 for reasons to be hereinafter explained. A setscrew 81 and friction block 83 are provided within calibration block 77 for frictional engagement between block 83 and shaft 75 to prevent free rotation of shaft 75 while allowing rotation thereof by rotational force applied manually or otherwise through adjustment lever 85 which is affixed to the end of shaft 75.
A lever 87 pivotable about a shaft 89, journaled in the sidewalls of housing'57, is provided to convert the vertical movement of bimetallic element 59 caused by temperature variations thereof into horizontal movement. A bleed plate 91 having openings 93 therein is provided to overlie bleed ports 95 formed within housing 57. To obtain an extremely compact thermostat, a very short bimetallic element is utilized. The lever 87 is therefore provided with arms 86 and 88 of unequal lengths measured from the pivot 89. The short arm contacts bimetallic element 59 while the long arm contacts bleed plate 91. This provides a relatively large horizontal movement of bleed plate 91 to compensate for the relatively small vertical movement resulting from the use of a short bimetallic element. To obtainthe necessary force against arm 86, the bimetallic element 59 has a greater thickness than bimetallic elementsnormally employed in a thermostat of this type. A leaf spring 97 suitably affixed to housing 57 as by fastener 98 is provided to bias plate 91 toward lever 87. An adjustment screw 99 in housing 57 is provided to adjust the biasing force exertedxby spring 97 against plate 91.
The bleed ports 95 communicate with an air passage 101 within housing 57. An opening 103 within housing 57 communicating with passage 101 is provided for receiving pressure regulator 51 to provide regulated control pressure to the thermostat bleed ports 95. The regulator communicates with the bladders 31 through suitable piping including tubes 52 and bladder connectors 54 to supply conditioned air to the bladders at a pressure less than the pressure in the primary chamber 19. Air is bled from the regulator through bleed ports 95 to provide variable air premure at the bladders in response to temperature variations in the area being treated. For a description of a suitable pressure regulator, reference may be had to U.S. Pat. No. 3,434,409, granted Mar. 25, 1969, to Daniel A, Fragnito.
The thermostat is preferably factory calibrated by adjustment of screw 79. It can be seen by reference to FIG. that rotation of screw 79 will vary the position of calibration block 77 and the adjustment shaft 75 journaled therein. This will vary the vertical position of adjustment block 61 and the bimetallic element affixed thereto and, in turn, vary the position of bleed plate 91. For comfort-conditioning installations, it is preferable to calibrate the thermostat to maintain a 75 room temperature when the lever is vertically oriented. This will provide temperature adjustment range above and below 75 to suit individual temperature preferences by movement of lever 85 from the vertical position.
Considering the operation of the thermostat, temperature variations in theroom air passing through opening 58 of housing 57 cause vertical movement of the free end of the bimetallic element which pivots lever 87 about shaft 89 to slide bleed plate 91 relative to bleed ports 95. This will vary the quantity of control air bled from regulator 51 which in turn will control the degree-of inflation of bladders 31 to regulate the quantity of conditioned air discharged from the terminal.
It can be seen from the foregoing that a very narrow, accurate thermostat adapted for use in the control module of a ceiling air-conditioning terminal is obtained through the use of the horizontally disposed perforated bimetal and the linkages associated therewith.
While I have described a preferred embodiment of the invention, it is to be understood the invention is not limited thereto since it may be otherwise embodied within the scope of the following claims.
Iclaim:
1. A bleed-type thermostat comprising:
a housing;
means forming a bleed port associated with said housing; blockage means operably associated with said bleed port for regulating the flow of air through said port;
adjustable support means mounted on said housing;
a U-shaped perforated bimetallic element, one end of said perforated bimetallic element being affixed to said adjustable support means for adjusting the location of said bimetallic element relative to said housing;
means associated with the other end of said bimetallic element for moving said blockage means in response to movement of said other end of said bimetallic element, passage of ambient air through the perforations in said bimetallic element causing movement thereof in response to ambient temperature variations to regulate the flow of air through said bleed port.
2. A bleed-type thermostat according to claim 1 wherein said blockage means comprises a bleed plate overlying said bleed port, movement of said bleed plate relative to said bleed port regulating the flow of air through said port; and
said means associated with said blockage means including motion amplifying means disposed between the other end of said bimetallic element and said bleed plate to amplify movement of said bimetallic element for positioning said bleed plate.
3. A bleed-type thermostat according to claim 2 wherein said bimetallic element is adapted for movement in a plane perpendicular to the movement of said bleed plate, said motion amplifying means including a pivoted lever having unequal length arms, the shorter arm being adapted for contact with said bimetallic element-and the longer arm being adapted for contact with said bleed block.
4. A bleed-type thermostat according to claim 3 further including biasing means associated with said bleed plate to bias said bleed plate toward the longer arm of said lever.

Claims (4)

1. A bleed-type thermostat comprising: a housing; means forming a bleed port associated with said housing; blockage means operably associated with said bleed port for regulating the flow of air through said port; adjustable support means mounted on said housing; a U-shaped perforated bimetallic element, one end of said perforated bimetallic element being affixed to said adjustable support means for adjusting the location of said bimetallic element relative to said housing; means associated with the other end of said bimetallic element for moving said blockage means in response to movement of said other end of said bimetallic element, passage of ambient air through the perforations in said bimetallic element causing movement thereof in response to ambient temperature variations to regulate the flow of air through said bleed port.
2. A bleed-type thermostat according to claim 1 wherein said blockage means comprises a bleed plate overlying said bleed port, movement of said bleed plate relative to said bleed port regulating the flow of air through said port; and said means associated with said blockage means including motion amplifying means disposed between the other end of said bimetallic element and said bleed plate to amplify movement of said bimetallic element for positioning said bleed plate.
3. A bleed-type thermostat according to claim 2 wherein said bimetallic element is adapted for movement in a plane perpendicular to the movement of said bleed plate, said motion amplifying means including a pivoted lever having unequal length arms, the shorter arm being adapted for contact with said bimetallic element and the longer arm being adapted for contact with said bleed block.
4. A bleed-type thermostat according to claim 3 further including biasing means associated with said bleed plate to bias said bleed plate toward the longer arm of said lever.
US846662A 1969-08-01 1969-08-01 Bleed-type thermostat Expired - Lifetime US3595475A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US84666269A 1969-08-01 1969-08-01

Publications (1)

Publication Number Publication Date
US3595475A true US3595475A (en) 1971-07-27

Family

ID=25298582

Family Applications (1)

Application Number Title Priority Date Filing Date
US846662A Expired - Lifetime US3595475A (en) 1969-08-01 1969-08-01 Bleed-type thermostat

Country Status (1)

Country Link
US (1) US3595475A (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700165A (en) * 1971-01-11 1972-10-24 Gen Motors Corp Thumbwheel vacuum thermostat
US3727835A (en) * 1971-07-01 1973-04-17 Carrier Corp Ceiling air terminal
US3824800A (en) * 1973-09-07 1974-07-23 Carrier Corp Air conditioning unit and control
US3946614A (en) * 1973-08-15 1976-03-30 Honeywell Inc. Multi-position condition sensing device
US3954222A (en) * 1971-06-22 1976-05-04 Bjoerklund Curt Arnold Water mixer
US4312474A (en) * 1980-07-02 1982-01-26 Carrier Corporation Positive shutoff
US4324358A (en) * 1980-07-02 1982-04-13 Carrier Corporation Minimum airflow control
US4375872A (en) * 1980-10-08 1983-03-08 Schrock Andrew J Draft control for stoves and furnaces
DE3208107A1 (en) * 1982-03-06 1983-09-08 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE WITH A SINGLE-SIDED BIMETAL CLAMPED IN A HOUSING
US4919329A (en) * 1989-04-24 1990-04-24 Mccabe Francis J Thermally activated automatic damper and damper operator
US4921165A (en) * 1989-06-14 1990-05-01 Texas Instruments Incorporated Automotive oil level control valve apparatus
EP0366340A2 (en) * 1988-10-28 1990-05-02 Texas Instruments Incorporated Automotive oil level control valve apparatus
US5195678A (en) * 1991-12-20 1993-03-23 Texas Instruments Incorporated Automotive oil level control apparatus
US20070145158A1 (en) * 2005-12-27 2007-06-28 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
US9612024B2 (en) 2013-10-31 2017-04-04 Robert M. Rohde Energy efficient HVAC system
US9759442B2 (en) 2005-12-27 2017-09-12 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
US11946661B2 (en) 2021-01-29 2024-04-02 Robert M. Rohde Variable airflow energy efficient HVAC systems and methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210701A (en) * 1939-04-25 1940-08-06 Westinghouse Electric & Mfg Co Thermostat
US2492744A (en) * 1947-06-23 1949-12-27 Metals & Controls Corp Thermostatic element
US2581045A (en) * 1948-09-01 1952-01-01 Robert D Rhoads Thermostatic regulating valve
US3181788A (en) * 1962-06-26 1965-05-04 Powers Regulator Co Temperature sensing device
US3394884A (en) * 1966-11-03 1968-07-30 United Aircraft Prod System of mixed air flows

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2210701A (en) * 1939-04-25 1940-08-06 Westinghouse Electric & Mfg Co Thermostat
US2492744A (en) * 1947-06-23 1949-12-27 Metals & Controls Corp Thermostatic element
US2581045A (en) * 1948-09-01 1952-01-01 Robert D Rhoads Thermostatic regulating valve
US3181788A (en) * 1962-06-26 1965-05-04 Powers Regulator Co Temperature sensing device
US3394884A (en) * 1966-11-03 1968-07-30 United Aircraft Prod System of mixed air flows

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700165A (en) * 1971-01-11 1972-10-24 Gen Motors Corp Thumbwheel vacuum thermostat
US3954222A (en) * 1971-06-22 1976-05-04 Bjoerklund Curt Arnold Water mixer
US3727835A (en) * 1971-07-01 1973-04-17 Carrier Corp Ceiling air terminal
US3946614A (en) * 1973-08-15 1976-03-30 Honeywell Inc. Multi-position condition sensing device
US3824800A (en) * 1973-09-07 1974-07-23 Carrier Corp Air conditioning unit and control
US4312474A (en) * 1980-07-02 1982-01-26 Carrier Corporation Positive shutoff
US4324358A (en) * 1980-07-02 1982-04-13 Carrier Corporation Minimum airflow control
US4375872A (en) * 1980-10-08 1983-03-08 Schrock Andrew J Draft control for stoves and furnaces
DE3208107A1 (en) * 1982-03-06 1983-09-08 Robert Bosch Gmbh, 7000 Stuttgart CONTROL DEVICE WITH A SINGLE-SIDED BIMETAL CLAMPED IN A HOUSING
US4497437A (en) * 1982-03-06 1985-02-05 Robert Bosch Gmbh Control device with a bimetallic element unilaterally fastened in a housing
EP0366340A2 (en) * 1988-10-28 1990-05-02 Texas Instruments Incorporated Automotive oil level control valve apparatus
EP0366340A3 (en) * 1988-10-28 1990-06-06 Texas Instruments Incorporated Automotive oil level control valve apparatus
US4919329A (en) * 1989-04-24 1990-04-24 Mccabe Francis J Thermally activated automatic damper and damper operator
US4921165A (en) * 1989-06-14 1990-05-01 Texas Instruments Incorporated Automotive oil level control valve apparatus
US5195678A (en) * 1991-12-20 1993-03-23 Texas Instruments Incorporated Automotive oil level control apparatus
US20070145158A1 (en) * 2005-12-27 2007-06-28 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
US7766734B2 (en) 2005-12-27 2010-08-03 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
US20100227541A1 (en) * 2005-12-27 2010-09-09 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
US9201428B2 (en) 2005-12-27 2015-12-01 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
US9759442B2 (en) 2005-12-27 2017-09-12 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
US10571140B2 (en) 2005-12-27 2020-02-25 American Aldes Ventilation Corporation Method and apparatus for passively controlling airflow
US9612024B2 (en) 2013-10-31 2017-04-04 Robert M. Rohde Energy efficient HVAC system
US11946661B2 (en) 2021-01-29 2024-04-02 Robert M. Rohde Variable airflow energy efficient HVAC systems and methods

Similar Documents

Publication Publication Date Title
US3595475A (en) Bleed-type thermostat
US3951205A (en) Air-conditioning apparatus
US7178545B2 (en) Modulating bypass control system and method
US3955595A (en) Automatic fluid flow regulator
US3848799A (en) Ceiling air diffuser
US3411712A (en) Bimetallic disc valve flow diverter
US3053454A (en) Fluid mixer and flow regulator
IE47498B1 (en) Air conditioning system including a system powered damper blade assembly
US3976244A (en) Adjustable air volume regulator having thermal motor actuator for effecting adjustment
US3117723A (en) Air distributing units
US4019566A (en) Air conditioning system
US4141496A (en) Pneumatic thermostat
US3796367A (en) Control valve for use in an air distribution unit
US4007873A (en) Pneumatic thermostat
US3967780A (en) Air conditioning system
US3779275A (en) Environmental air distribution control system powered by system pressure
US3208508A (en) Air conditioning system and method
US3727835A (en) Ceiling air terminal
US3623542A (en) Control of air-conditioning apparatus
US3167253A (en) Control arrangement for air distributing units
US4102494A (en) Air distribution system
US3604625A (en) Airflow mixing device for air conditioning systems
US2998194A (en) Air conditioning and air distributing structure
US3411711A (en) Control mechanism
US3034725A (en) Damper control mechanism for air distributing units