JPH0138911B2 - - Google Patents
Info
- Publication number
- JPH0138911B2 JPH0138911B2 JP60156999A JP15699985A JPH0138911B2 JP H0138911 B2 JPH0138911 B2 JP H0138911B2 JP 60156999 A JP60156999 A JP 60156999A JP 15699985 A JP15699985 A JP 15699985A JP H0138911 B2 JPH0138911 B2 JP H0138911B2
- Authority
- JP
- Japan
- Prior art keywords
- weight
- carbon fibers
- resin
- polymaleimide
- fibers
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 35
- 239000004917 carbon fiber Substances 0.000 claims description 35
- 239000000203 mixture Substances 0.000 claims description 19
- 238000004513 sizing Methods 0.000 claims description 18
- 229920005989 resin Polymers 0.000 claims description 13
- 239000011347 resin Substances 0.000 claims description 13
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 12
- 229920001721 polyimide Polymers 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 11
- 239000003822 epoxy resin Substances 0.000 claims description 10
- 229920000647 polyepoxide Polymers 0.000 claims description 10
- 239000009719 polyimide resin Substances 0.000 claims description 8
- 230000004580 weight loss Effects 0.000 claims description 6
- 239000004642 Polyimide Substances 0.000 claims description 4
- 230000003014 reinforcing effect Effects 0.000 claims description 3
- 230000002787 reinforcement Effects 0.000 claims 1
- 239000000835 fiber Substances 0.000 description 22
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 239000011159 matrix material Substances 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 6
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 6
- 230000000704 physical effect Effects 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- -1 O-toluidine Chemical compound 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- JJYPMNFTHPTTDI-UHFFFAOYSA-N 3-methylaniline Chemical compound CC1=CC=CC(N)=C1 JJYPMNFTHPTTDI-UHFFFAOYSA-N 0.000 description 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 150000004982 aromatic amines Chemical class 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- GYZLOYUZLJXAJU-UHFFFAOYSA-N diglycidyl ether Chemical class C1OC1COCC1CO1 GYZLOYUZLJXAJU-UHFFFAOYSA-N 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 229920006015 heat resistant resin Polymers 0.000 description 2
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 229920003986 novolac Polymers 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 1
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- NFDXQGNDWIPXQL-UHFFFAOYSA-N 1-cyclooctyldiazocane Chemical compound C1CCCCCCC1N1NCCCCCC1 NFDXQGNDWIPXQL-UHFFFAOYSA-N 0.000 description 1
- CMCBDXRRFKYBDG-UHFFFAOYSA-N 1-dodecoxydodecane Chemical compound CCCCCCCCCCCCOCCCCCCCCCCCC CMCBDXRRFKYBDG-UHFFFAOYSA-N 0.000 description 1
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 1
- OWYWGLHRNBIFJP-UHFFFAOYSA-N Ipazine Chemical compound CCN(CC)C1=NC(Cl)=NC(NC(C)C)=N1 OWYWGLHRNBIFJP-UHFFFAOYSA-N 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920004738 ULTEM® Polymers 0.000 description 1
- 238000007259 addition reaction Methods 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000003934 aromatic aldehydes Chemical class 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000006386 neutralization reaction Methods 0.000 description 1
- 239000002736 nonionic surfactant Substances 0.000 description 1
- 229920005575 poly(amic acid) Polymers 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 239000012744 reinforcing agent Substances 0.000 description 1
- 238000007363 ring formation reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000004753 textile Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
Landscapes
- Reinforced Plastic Materials (AREA)
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
Description
(技術分野)
本発明は、ポリイミド系樹脂をマトリツクス材
(母材)とする炭素繊維強化材において、マトリ
ツクス樹脂との高温における接着性に優れ且つ加
工安定性に優れた炭素繊維に関するものである。
(背景技術)
近年、炭素繊維は、高強度、高弾性率で、しか
も比重1.6〜1.9であるため、繊維束(ストラン
ド)やチヨツプの形で各種のマトリツクス材、例
えば熱硬化性或いは熱可塑性プラスチツクスと複
合化されて、主として航空機、自動車、スポーツ
用品の分野に多用されている。特に、ポリイミド
系樹脂をマトリツクス材として用いた炭素繊維強
化物は、該樹脂の耐熱性が非常に良好であること
から、高温を必要とする部分に使われる可能性が
期待されている。
例えば、エンジン周辺の部材は、その代表的な
ものである。しかしながら、通常用いられている
炭素繊維束は、ポリイミド系樹脂の強化剤として
使用した場合、加工性保持のため付着してあるサ
イズ剤が、高温においてガス化するなど耐熱性に
乏しいため、得られた強化物の高温での物性、特
に接着性に劣るという欠点があつた。そのため
に、耐熱性を有する樹脂をサイズ剤に用いた炭素
繊維が考えられているが、かかる炭素繊維は加工
時に毛羽が発生しやすく、また、サイズ剤自体が
経時的に変化して加工性が不安定となるという欠
点を有していた。
(発明の課題)
本発明者らは、ポリイミド系マトリツクス樹脂
に使用して、上記のごとき欠点を解決した耐熱性
に優れ且つ加工性とその安定性に優れたサイズ剤
付着炭素繊維について検討した結果、本発明に至
つたものである。
(発明の構成及び作用)
本発明は、一般式(1)
(ここで、R:
(Technical Field) The present invention relates to a carbon fiber reinforced material having polyimide resin as a matrix material (base material), which has excellent adhesiveness to the matrix resin at high temperatures and excellent processing stability. (Background Art) In recent years, carbon fibers have high strength, high elastic modulus, and specific gravity of 1.6 to 1.9, so they have been used in various matrix materials such as thermosetting or thermoplastic plastics in the form of fiber bundles (strands) or chops. It is mainly used in the fields of aircraft, automobiles, and sporting goods. In particular, carbon fiber reinforced materials using polyimide resin as a matrix material are expected to be used in areas that require high temperatures because the resin has very good heat resistance. For example, members around the engine are a typical example. However, when commonly used carbon fiber bundles are used as reinforcing agents for polyimide resins, the sizing agent attached to them to maintain workability gasifies at high temperatures, making them difficult to obtain. The disadvantage was that the reinforced materials had poor physical properties at high temperatures, especially poor adhesiveness. For this purpose, carbon fibers using heat-resistant resin as a sizing agent have been considered, but such carbon fibers tend to generate fuzz during processing, and the sizing agent itself changes over time, resulting in poor processability. It had the disadvantage of being unstable. (Problem to be solved by the invention) The present inventors have investigated a sizing agent-attached carbon fiber that can be used in a polyimide matrix resin and has excellent heat resistance, processability, and stability, and has solved the above-mentioned drawbacks. , which led to the present invention. (Structure and operation of the invention) The present invention is based on the general formula (1) (Here, R:
【式】)
で示されるポリマレイミドとエポキシ樹脂とを含
み且つ50℃における粘度が10〜5×104ポイズで
あるサイズ剤組成物を0.1〜5重量%付着したポ
リイミド系樹脂強化用炭素繊維である。特に、望
ましくは、該サイズ剤組成物は、サイズ剤組成物
中のポリマレイミドの含有量が15重量%以上で、
また空気中の230℃、1時間処理後における重量
減少量が5%以下のものである。本発明で用いら
れるポリマレイミドは、芳香族ジアルデヒド1モ
ルに対し芳香族アミンを2〜60モルの割合で反応
させて得たポリアミンと無水マレイン酸とを付加
反応させポリアミド酸とし、これを脱水環化して
得られる。
ここで芳香族アルデヒドは、一般式
で示される1.2−ベンゼンジアルデヒド、1.3−ベ
ンゼンジアルデヒド、1.4−ベンゼンジアルデヒ
ドであり、耐熱性の点から好ましくは1.4−ベン
ゼンジアルデヒドである。
また、芳香族アミンは、アニリン、O−トルイ
ジン、m−トルイジン、P−トルイジンである
が、通常アニリンが好ましい。
本発明におけるポリマレイミドは、一般式(1)で
示される化合物を60重量%以上含む反応物でもよ
く、また、この反応物の抽出精製物でもよい。
本発明で用いられるエポキシ樹脂は、通常ビス
フエノールA、ビスフエノールF、ビスフエノー
ルSのジグリシジルエーテルで、その商品として
は、エピコート827、同828、同834(油化シエルエ
ポキシ社製)などのエポキシ当量100〜230のも
の、フエノールノボラツクエポキシで、その商品
としては、エピコート152、同154(油化シエルエ
ポキシ社製)アラルダイトEPN1138(チバ・ガイ
ギー社製)などのエポキシ当量170〜182のもの、
ウレタン変性エポキシ樹脂で、その商品として
は、アデカレジンEPU−6、EPU−6A(旭電化
社製)などのエポキシ当量210〜250のものであつ
て、これらの1種又は2種以上である。これ以外
のアミノ化合物からつくられたエポキシ樹脂の場
合は、繊維の硬さが経済的に変化し加工性が悪く
なるので好ましくない。
本発明において、ポリマレイミドとエポキシ樹
脂と必要ならば10重量%以下の潤滑性を示す表面
活性剤、例えば、脂肪族又は芳香族アルキルのポ
リエーテル付加物から成る公知のノニオン活性
剤、集束性を向上させるためのポリビニルアルコ
ールなどと、50℃における粘度が10〜5×104ポ
イズになるごとく混合した混合物の形で炭素繊維
に付与するが、ポリマレイミドは該混合物中に15
重量%以上含むことが好ましい。15重量%未満の
場合、成形物の耐熱性に劣る傾向となるので好ま
しくない。該混合物の50℃における粘度が10ポイ
ズ未満の場合、該混合物を付着した炭素繊維の集
束性が不充分となるため、加工性に劣る傾向とな
るので好ましくない。また、5×104ポイズ超の
場合、該混合物を付着した炭素繊維へのポリイミ
ドマトリツクス樹脂の含浸不良を招き、得られた
成形物の高温における物性、特に層間剪断強度
(ILSS)が低くなるので好ましくない。
また、該混合物は、空気中230℃1時間処理後
における重量減少量が5%以下であることが好ま
しい。
5%超の場合、上記のごとく成形物の高温物性
が低くなる。
サイズ剤組成物中のポリマレイミドの割合を高
くするほど減量しなくなるが、重量減少量は、エ
ポキシ樹脂の種類や添加される潤滑剤、表面活性
剤、集束性化合物の量、種類にても影響されるの
で、ポリマレイミドの含有量は適当に選ぶことが
望ましい。
付着方法は、ポリマレイミドとエポキシ樹脂及
び必要ならば添加物とを予めニーダー等にて溶融
混合したもの、又はそれぞれの単独を良溶媒であ
るアセトン、メチルエチルケトン、テトラヒドロ
フランなどに1.0〜100g/の濃度になるごとく
溶解して得た溶液に炭素繊維を浸漬するか該溶液
をスプレーして、0.1〜5重量%の付着量(対全
体重量)となるように付着する。付着量が0.1重
量%未満の場合、炭素繊維の加工性が劣るので好
ましくない。また5重量%超の場合、成形加工時
のマトリツクス樹脂の炭素繊維相互間への含浸性
が低下し、加えて成形物の高温における物性値、
特に層間剪断強度が低いものとなるので好ましく
ない。
本発明に用いられる炭素繊維は、炭素含有量85
重量%であり、アクリロニトリル系繊維又はピツ
チ系繊維を出発原料としてつくられた単繊維直径
0.1〜20ミクロン、構成本数100〜100000から成
り、繊維の強さが1〜7ギガパスカル(GPa)で
弾性率100〜500ギガパスカル(GPa)を有する繊
維束である。
本発明のサイズ剤付着炭素繊維は、ポリイミド
系マトリツクス樹脂例えば、ポリイミド樹脂(商
品名、PMR−11、LARKなど)、トリアジン系
ビスマレイド樹脂(商品名、BTレジン)の他、
N.N′−4.4′−ジフエニルメタンビスマレイミドな
どのポリマレイミド樹脂などの熱硬化性樹脂やポ
リエーテルイミド樹脂(商品名、ウルテムなど)
などの熱可塑性樹脂と複合化されるのが好まし
く、また、該炭素繊維は長繊維又は単繊維の形で
使われる。
(発明の効果)
本発明のサイズ剤付着炭素繊維は、耐熱性に優
れ且つ繊維を織物、編物、シート材に加工する際
の取扱性と、毛羽等の発生もなく円滑に操業しう
るという加工性とに優れ、しかも長期の保存後で
も安定した加工性を有する繊維であるために、耐
熱性樹脂特に200℃以上の熱変形温度であるポリ
イミド系樹脂と組み合わせて、高温時の物性に優
れた耐熱性複合材料とすることができる。したが
つて、従来、エンジンなどの高温にさらされる部
分の材料として使われている金属に代えて使うこ
とができ、重量の軽減による省エネルギーを達成
するのに好適な材料をつくりうる。
(実施例及び比較例)
本発明について、実施例を挙げて更に詳しく説
明する。
特に指定しない限り「%」「部」は重量で示す。
実施例 1
1.4−ベンゼンジアルデヒド(0.44モル)とア
ニリン(2.6モル)とから得たポリアミン(軟化
点115〜121℃、中和当量118、過塩素酸滴定法)
94.4gと無水マレイン酸78.6gとを反応させて反
応物(軟化点160〜180℃)を調製した。この反応
物は式(3)
(R1:Carbon fibers for reinforcing polyimide resin to which 0.1 to 5% by weight of a sizing agent composition containing polymaleimide and epoxy resin represented by [Formula]) and having a viscosity of 10 to 5 x 104 poise at 50°C are attached. be. Particularly desirably, the sizing composition has a polymaleimide content of 15% by weight or more,
In addition, the amount of weight loss after treatment at 230°C in air for 1 hour is 5% or less. The polymaleimide used in the present invention is obtained by reacting an aromatic amine at a ratio of 2 to 60 moles with respect to 1 mole of aromatic dialdehyde, and then undergoes an addition reaction with maleic anhydride to form polyamic acid, which is then dehydrated. Obtained by cyclization. Here, the aromatic aldehyde has the general formula These are 1.2-benzenedialdehyde, 1.3-benzenedialdehyde, and 1.4-benzenedialdehyde, and 1.4-benzenedialdehyde is preferable from the viewpoint of heat resistance. Further, aromatic amines include aniline, O-toluidine, m-toluidine, and P-toluidine, and aniline is usually preferred. The polymaleimide in the present invention may be a reaction product containing 60% by weight or more of the compound represented by general formula (1), or may be an extracted and purified product of this reaction product. The epoxy resins used in the present invention are usually diglycidyl ethers of bisphenol A, bisphenol F, and bisphenol S, and their commercial products include Epicote 827, Epicote 828, Epicote 834 (manufactured by Yuka Ciel Epoxy Co., Ltd.). Phenol novolac epoxy with an epoxy equivalent of 100 to 230, such as Epicote 152 and 154 (manufactured by Yuka Ciel Epoxy Co., Ltd.) and Araldite EPN1138 (manufactured by Ciba Geigy) with an epoxy equivalent of 170 to 182. ,
The urethane-modified epoxy resin is a commercially available product having an epoxy equivalent of 210 to 250, such as Adeka Resin EPU-6 and EPU-6A (manufactured by Asahi Denka Co., Ltd.), and is one or more of these. Epoxy resins made from other amino compounds are not preferred because the hardness of the fibers changes economically and processability deteriorates. In the present invention, a known nonionic surfactant consisting of a polymaleimide, an epoxy resin and, if necessary, a surfactant exhibiting lubricity of up to 10% by weight, such as a polyether adduct of an aliphatic or aromatic alkyl, and a focusing property are used. It is applied to carbon fibers in the form of a mixture with polyvinyl alcohol, etc., to give a viscosity of 10 to 5 x 104 poise at 50°C.
It is preferable that the content is at least % by weight. If it is less than 15% by weight, the heat resistance of the molded product tends to be poor, which is not preferable. If the viscosity of the mixture at 50° C. is less than 10 poise, the carbon fibers to which the mixture is attached will not have sufficient cohesiveness, resulting in poor processability, which is not preferred. In addition, if it exceeds 5 x 10 4 poise, the carbon fibers to which the mixture is attached will be impregnated with polyimide matrix resin, and the physical properties at high temperatures of the obtained molded product, especially the interlaminar shear strength (ILSS), will decrease. So I don't like it. Further, it is preferable that the weight loss of the mixture after being treated in air at 230° C. for 1 hour is 5% or less. If it exceeds 5%, the high-temperature physical properties of the molded product will deteriorate as described above. The higher the proportion of polymaleimide in the sizing composition, the less weight loss will occur, but the amount of weight loss will also be affected by the type of epoxy resin and the amount and type of added lubricant, surfactant, and focusing compound. Therefore, it is desirable to appropriately select the content of polymaleimide. The method of attachment is to melt and mix the polymaleimide, epoxy resin, and additives if necessary in a kneader or the like, or to mix each alone in a good solvent such as acetone, methyl ethyl ketone, or tetrahydrofuran at a concentration of 1.0 to 100 g/ml. The carbon fibers are immersed in the solution obtained by completely dissolving the carbon fibers, or the carbon fibers are sprayed with the solution so that the carbon fibers adhere to the carbon fibers in an amount of 0.1 to 5% by weight (relative to the total weight). If the amount of adhesion is less than 0.1% by weight, the processability of the carbon fiber will be poor, which is not preferable. If the amount exceeds 5% by weight, the impregnation of the matrix resin between the carbon fibers during molding will decrease, and in addition, the physical properties of the molded product at high temperatures will decrease.
In particular, this is not preferable because the interlaminar shear strength becomes low. The carbon fiber used in the present invention has a carbon content of 85
% by weight, and the diameter of a single fiber made from acrylonitrile fiber or pitch fiber as a starting material
It is a fiber bundle consisting of 0.1 to 20 microns, 100 to 100,000 fibers, and has a fiber strength of 1 to 7 gigapascals (GPa) and an elastic modulus of 100 to 500 gigapascals (GPa). The sizing agent-attached carbon fibers of the present invention can be made of polyimide matrix resins such as polyimide resins (product names such as PMR-11 and LARK), triazine-based bismaleide resins (product names such as BT Resin), etc.
Thermosetting resins such as polymaleimide resins such as NN'-4.4'-diphenylmethane bismaleimide and polyetherimide resins (trade name, Ultem, etc.)
The carbon fibers are preferably composited with thermoplastic resins such as carbon fibers, and the carbon fibers are used in the form of long fibers or single fibers. (Effects of the Invention) The sizing agent-attached carbon fibers of the present invention have excellent heat resistance, are easy to handle when processed into textiles, knitted fabrics, and sheet materials, and can be processed smoothly without generating fuzz. Because the fiber has excellent properties and stable processability even after long-term storage, it can be combined with heat-resistant resin, especially polyimide resin, which has a heat distortion temperature of 200℃ or higher, to create a fiber with excellent physical properties at high temperatures. It can be a heat-resistant composite material. Therefore, it can be used in place of metals conventionally used as materials for parts exposed to high temperatures, such as engines, and can be made into a material suitable for achieving energy savings by reducing weight. (Examples and Comparative Examples) The present invention will be described in more detail by giving examples. Unless otherwise specified, "%" and "part" are expressed by weight. Example 1 Polyamine obtained from 1.4-benzenedialdehyde (0.44 mol) and aniline (2.6 mol) (softening point 115-121°C, neutralization equivalent 118, perchloric acid titration method)
A reaction product (softening point: 160-180°C) was prepared by reacting 94.4 g with 78.6 g of maleic anhydride. This reactant has the formula (3) ( R1 :
【式】)
で示されるポリマレイミド化合物を68%含むもの
であつた。この反応物35%とビスフエノールAの
ジグリシジルエーテルであるエピコート828(油化
シエルエポキシ社製)65%とを混合し、得られた
混合物をアセトンに1.5%の濃度に溶解した。こ
れに直径7ミクロン、構成本数6000本から成る炭
素繊維(強さ4.2GPa、弾性率250GPa)を浸漬し
て、繊維に対し溶液を80%付着して130℃で乾燥
し、上記混合物が付着した炭素繊維を得た。得ら
れた炭素繊維から、付着した混合物をアセトン還
流抽出法により抽出したところ、付着量1.18%で
あり、また、抽出した混合物を粘度測定装置(レ
オメトリツクス社RD−7700タイプ)にて粘度を
測定したところ50℃で1300ポイズであつた。
上記の混合物を付着した炭素繊維束を25℃の室
内に6ケ月保存した前後の繊維の硬さについて、
紙管(外径3インチ、長さ11インチ)に60m/分
で巻き上げたときの繊維表面の毛羽状況にて加工
性について、また、アセトン還流抽出物の耐熱性
(内径45mm、高さ50mmに1グラムの被測定物を入
れ、空気中230℃1時間処理したときの酸化重量
減)について調べると共に、ビスマレイミド系樹
脂であるコンピマイドH−800(テクノケミー社
製)に触媒としてジアザビシクロオクタン0.25%
(対樹脂)を用いて一方向プリプレグをつくり、
オートクレープ中190℃3時間4Kgf/cm2下で成
形板〔厚さ(t)1mm、繊維体積含有量(vf)60
容量%〕をつくり、更にこれを210℃15時間加熱
し、得られた成形板の25℃と250℃における層間
剪断強度(ILSS)について測定した(測定装置
はインストロン万能試験機、測定法ASTMD−
2344)。
その結果は、第1表に示すごとく、繊維の加工
性は良好で、また、長期保存後でも良い加工性を
示し、更に、サイズ剤の耐熱性が良く成形物の高
温時の接着性(ILSS)も優れていた。It contained 68% of a polymaleimide compound represented by the following formula. 35% of this reaction product and 65% of Epicote 828 (manufactured by Yuka Ciel Epoxy Co., Ltd.), which is a diglycidyl ether of bisphenol A, were mixed, and the resulting mixture was dissolved in acetone to a concentration of 1.5%. Carbon fibers (strength 4.2 GPa, elastic modulus 250 GPa) consisting of 6,000 fibers with a diameter of 7 microns were immersed in this solution, and 80% of the solution was adhered to the fibers, and the mixture was dried at 130°C. Carbon fiber was obtained. When the adhering mixture was extracted from the obtained carbon fiber by acetone reflux extraction method, the amount of adhesion was 1.18%, and the viscosity of the extracted mixture was measured using a viscosity measuring device (Rheometrics RD-7700 type). When measured, it was 1300 poise at 50°C. Regarding the hardness of the fibers before and after storing the carbon fiber bundles coated with the above mixture in a room at 25℃ for 6 months,
The processability of the acetone refluxed extract was evaluated based on the fuzz condition of the fiber surface when rolled up at 60 m/min into a paper tube (outer diameter 3 inches, length 11 inches), and the heat resistance of the acetone reflux extract (inner diameter 45 mm, height 50 mm). In addition to examining the oxidation weight loss when 1 gram of the object to be measured was placed in the air and treated at 230°C for 1 hour, 0.25% of diazabicyclooctane was added as a catalyst to Compimide H-800 (manufactured by Technochemy), which is a bismaleimide resin. %
(for resin) to make a unidirectional prepreg,
Molded plate in autoclave at 190℃ for 3 hours under 4Kgf/ cm2 [thickness (t) 1mm, fiber volume content (vf) 60
Volume %] was further heated at 210°C for 15 hours, and the interlaminar shear strength (ILSS) of the obtained molded plate was measured at 25°C and 250°C (the measuring device was an Instron universal testing machine, and the measuring method was ASTMD). −
2344). As shown in Table 1, the fibers have good processability and good processability even after long-term storage.Furthermore, the sizing agent has good heat resistance and the molded product has good adhesion at high temperatures (ILSS). ) were also excellent.
【表】【table】
【表】
実施例2〜3及び比較例1〜3
実施例1で得たポリマレイミドとフエノールノ
ボラツク型エポキシ樹脂であるエピコート152(油
化シエルエポキシ社製)とを第2表のごとく混合
したものをサイズ剤とする以外は、実施例1と同
様にして炭素繊維を得た。該繊維の性質を調べた
結果を第2表に併せ示す。
本発明の範囲の場合、繊維の加工性は良好で、
また、長期保存後でも良い加工性を示すと共に、
サイズ剤の耐熱性、成形物の高温時の接着性
(ILSS)も優れていた。[Table] Examples 2 to 3 and Comparative Examples 1 to 3 The polymaleimide obtained in Example 1 and Epicote 152 (manufactured by Yuka Ciel Epoxy Co., Ltd.), which is a phenol novolak type epoxy resin, were mixed as shown in Table 2. Carbon fibers were obtained in the same manner as in Example 1, except that carbon fibers were used as the sizing agent. The results of examining the properties of the fibers are also shown in Table 2. Within the scope of the present invention, the processability of the fiber is good;
In addition, it shows good processability even after long-term storage, and
The heat resistance of the sizing agent and the adhesion of molded products at high temperatures (ILSS) were also excellent.
【表】【table】
【表】
実施例 4〜5
実施例1で得たポリマレイミドとテトラグリシ
ジルジアミノフエニルメタン(チバ・ガイギー社
製、アラルダイトMY−720)とを第3表のごと
く混合したものをサイズ剤(A)とし、また、テ
トラグリシジルジアミノフエニルメタンに代えて
ビスフエノールAのジグリシジルエーテル化合物
(油化シエルエポキシ社製、エピコート815)とを
第3表のごとく混合したものをサイズ剤(B)と
する以外は実施例1と同様にして炭素繊維を得
た。
その性質を調べた結果を第3表に示す。[Table] Examples 4 to 5 A sizing agent (A ) and a diglycidyl ether compound of bisphenol A (manufactured by Yuka Ciel Epoxy Co., Ltd., Epicoat 815) in place of tetraglycidyldiaminophenylmethane as shown in Table 3. Carbon fibers were obtained in the same manner as in Example 1 except for the following. Table 3 shows the results of investigating its properties.
【表】【table】
【表】
実施例 6
実施例2において添加剤として潤滑性を有する
ポリオキシエチレン(n=10)ラウリルエーテル
をポリマレイミドとエポキシ樹脂の混合系100部
に対し1、5、10部それぞれ添加して、実施例1
と同様にして酸化減量を測定した。
結果はそれぞれ2.3、2.5、2.7%であり良好な値
を示した。また、得られたサイズ剤組成物の粘度
はそれぞれ1.2×104、1.0×104、7.0×103ポイズで
あつた。
該サイズ剤組成物を実施例1と同様にして炭素
繊維に付着量1.5%付着させ、諸特性を測定した。
繊維束の硬さの6ケ月後の変化、繊維の加工性
について6ケ月後の変化はなく、また、それぞれ
の成形物のILSSは25℃で12.3±0.1GPa、250℃測
定で5.3±0.1GPa内であつた。[Table] Example 6 In Example 2, 1, 5, and 10 parts of polyoxyethylene (n=10) lauryl ether having lubricity as an additive were added to 100 parts of the mixed system of polymaleimide and epoxy resin. , Example 1
Oxidation loss was measured in the same manner as above. The results were 2.3%, 2.5%, and 2.7%, respectively, showing good values. Further, the viscosities of the obtained sizing agent compositions were 1.2×10 4 , 1.0×10 4 and 7.0×10 3 poise, respectively. The sizing agent composition was applied to carbon fibers in an amount of 1.5% in the same manner as in Example 1, and various properties were measured. There was no change in the hardness of the fiber bundle after 6 months, and there was no change in the processability of the fibers after 6 months, and the ILSS of each molded product was 12.3 ± 0.1 GPa at 25°C and 5.3 ± 0.1 GPa when measured at 250°C. It was hot inside.
Claims (1)
み且つ50℃における粘度が10〜5×104ポイズで
あるサイズ剤組成物を0.1〜5重量%付着したポ
リイミド系樹脂強化用炭素繊維。 2 サイズ剤組成物中のポリマレイミドの含有量
が15重量%以上である特許請求の範囲1項のポリ
イミド系樹脂強化用炭素繊維。 3 サイズ剤組成物の空気中230℃、1時間処理
後における重量減少量が5%以下である特許請求
の範囲1項のポリイミド系樹脂強化用炭素繊維。[Claims] 1 General formula (1) (Here, R: [Formula]) A polyimide system containing 0.1 to 5% by weight of a sizing agent composition containing a polymaleimide represented by the formula and an epoxy resin and having a viscosity of 10 to 5 x 104 poise at 50°C Carbon fiber for resin reinforcement. 2. The carbon fiber for reinforcing polyimide resin according to claim 1, wherein the content of polymaleimide in the sizing composition is 15% by weight or more. 3. The carbon fiber for reinforcing polyimide resin according to claim 1, wherein the weight loss of the sizing composition after being treated in air at 230° C. for 1 hour is 5% or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60156999A JPS6221872A (en) | 1985-07-18 | 1985-07-18 | Carbon fiber for reinforcing polyimide resin |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60156999A JPS6221872A (en) | 1985-07-18 | 1985-07-18 | Carbon fiber for reinforcing polyimide resin |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6221872A JPS6221872A (en) | 1987-01-30 |
JPH0138911B2 true JPH0138911B2 (en) | 1989-08-17 |
Family
ID=15639972
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60156999A Granted JPS6221872A (en) | 1985-07-18 | 1985-07-18 | Carbon fiber for reinforcing polyimide resin |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6221872A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020125559A (en) * | 2019-02-05 | 2020-08-20 | 三菱ケミカル株式会社 | Sizing agent and method for producing reinforcing fiber bundle |
WO2022004872A1 (en) * | 2020-07-03 | 2022-01-06 | 三菱ケミカル株式会社 | Chopped carbon fiber bundle and production method for chopped carbon fiber bundle |
EP4343649A1 (en) | 2021-09-20 | 2024-03-27 | UAB EEC Engineering | Automated postal logistics module, method, and network for automated postal delivery services |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL1007987C2 (en) * | 1998-01-08 | 1999-07-12 | Ten Cate Advanced Composites B | A method of preparing a fabric essentially consisting of carbon fibers. |
NL1009108C2 (en) * | 1998-01-08 | 1999-07-12 | Ten Cate Advanced Composites B | Preparation of a carbon fiber fabric for impregnation with a thermoplastics |
-
1985
- 1985-07-18 JP JP60156999A patent/JPS6221872A/en active Granted
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020125559A (en) * | 2019-02-05 | 2020-08-20 | 三菱ケミカル株式会社 | Sizing agent and method for producing reinforcing fiber bundle |
WO2022004872A1 (en) * | 2020-07-03 | 2022-01-06 | 三菱ケミカル株式会社 | Chopped carbon fiber bundle and production method for chopped carbon fiber bundle |
EP4343649A1 (en) | 2021-09-20 | 2024-03-27 | UAB EEC Engineering | Automated postal logistics module, method, and network for automated postal delivery services |
Also Published As
Publication number | Publication date |
---|---|
JPS6221872A (en) | 1987-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1275674A1 (en) | Epoxy resin composition and prepreg made with the epoxy resin composition | |
JPS6234876B2 (en) | ||
JPH11302507A (en) | Epoxy resin composition for fiber-reinforced composite material, intermediate substrate for fiber-reinforced composite material and fiber-reinforced composite material | |
JPS60139875A (en) | Sizing composition for inorganic fiber | |
CN113150497B (en) | High-modulus high-strength epoxy resin composition and preparation method and application thereof | |
EP0031904B1 (en) | Heat-resistant thermosetting resin composition | |
JP2010202727A (en) | Epoxy resin composition for fiber-reinforced composite material and fiber-reinforced composite material using the same | |
JPH0138911B2 (en) | ||
JP3363927B2 (en) | Resin composition and prepreg | |
WO2022004872A1 (en) | Chopped carbon fiber bundle and production method for chopped carbon fiber bundle | |
US4500582A (en) | Modified amine hardener systems | |
JPS634000B2 (en) | ||
US5128425A (en) | Epoxy resin composition for use in carbon fiber reinforced plastics, containing amine or amide based fortifiers | |
JPH08506847A (en) | Curable composite material | |
JPS6215570B2 (en) | ||
JPS6143616A (en) | Epoxy resin composition | |
JP2615003B2 (en) | Heat resistant adhesive | |
JPH05186667A (en) | Epoxy resin composition and prepreg | |
JPH0381342A (en) | Manufacture of prepreg | |
JPS6313444B2 (en) | ||
JP2020125559A (en) | Sizing agent and method for producing reinforcing fiber bundle | |
JP2736442B2 (en) | Epoxy resin composition for carbon fiber composite material | |
US4924005A (en) | Bismaleimide resins | |
JP2736444B2 (en) | Epoxy resin composition | |
JPH05311069A (en) | Surface modifier for carbon fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |