JPH0138816B2 - - Google Patents

Info

Publication number
JPH0138816B2
JPH0138816B2 JP16551481A JP16551481A JPH0138816B2 JP H0138816 B2 JPH0138816 B2 JP H0138816B2 JP 16551481 A JP16551481 A JP 16551481A JP 16551481 A JP16551481 A JP 16551481A JP H0138816 B2 JPH0138816 B2 JP H0138816B2
Authority
JP
Japan
Prior art keywords
weight
resin
molding
glass powder
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16551481A
Other languages
Japanese (ja)
Other versions
JPS5867747A (en
Inventor
Kazuhiko Muya
Yoshitaka Tagami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP16551481A priority Critical patent/JPS5867747A/en
Publication of JPS5867747A publication Critical patent/JPS5867747A/en
Publication of JPH0138816B2 publication Critical patent/JPH0138816B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、充填材を含む熱硬化性樹脂成形材料
に関する。 近年、原価低減と軽量化を目的として各方面で
金属部品のプラスチツク化が進められており、フ
エノール樹脂、エポキシ樹脂、不飽和ポリエステ
ル樹脂、ポリイミド樹脂等の各種熱硬化性樹脂な
らびにポリエチレン、ポリスチレン、ナイロン、
ポリカーボネート等の各種熱可塑性樹脂またはこ
れらに無機質充填材や繊維補強材を配合した材料
が各種機構部品に用いられている。一方、高度な
寸法精度や寸法安定性が要求される精密機構部品
では、現在も、主に金属材料を精密加工すること
によつて作られている。このような精密機構部品
のプラスチツク化の検討も進められており、多量
のガラス繊維と無機質充填材とを配合した低収縮
性の不飽和ポリエステル系樹脂の利用が試みられ
ている。しかし、強度、特に剛性に問題があつ
た。 フエノール樹脂は、他の樹脂に比べて弾性率が
きわめて大きく、広い温度範囲で機械的性質や電
気的性質の変化が少なく、寸法精度が良い等の特
徴を持つている。特にガラス繊維や長繊維のアス
ベストを充填材とした成形材料は、成形時の収縮
が少なく、寸法安定性が良好で、電気部品等に用
いられている。しかし、複雑な穴や切り欠きを有
したり薄い成形品では繊維の配向により寸法精度
が悪くなり、そりやねじれなどを生じやすくなる
という欠点があつた。また、成形品の成形収縮
率、熱膨張率は、樹脂分の割合に大きく依存す
る。成形収縮率や熱膨張率は、樹脂量が少なくな
るほど小さくなり、精密成形用材料は樹脂分が少
なくなる傾向にある。吸水等による寸法安定性の
面でも、樹脂量の少ない方が有利である。しか
し、樹脂量が少なくなると強度が低下し、また流
動性が著しく悪くなり成形できなくなるという問
題点があつた。 本発明の目的は少ない樹脂量においても上記欠
点を生じることなく射出成形可能で、かつその成
形品の寸法精度が良好であるような成形材料を作
ることにある。 即ち、本発明は、ノボラツク樹脂を15〜30重量
%、ガラス粉を40〜60重量%、および長さ3mm以
下のガラス繊維を15〜30重量%含有することを特
徴とする。 本発明で用いられるノボラツク樹脂の重量平均
分子量は、1000〜2000の範囲とする1000以下では
硬化が遅く、ガスの発生が多くなる。また、2000
以上では流動性が悪くなり、本発明のような少な
い樹脂量では成形が困難となる。硬化剤として
は、ヘキサメチレンテトラミンが使用でき、その
配合量はノボラツク樹脂100重量(以下単に「部」
という)に対し10〜20部の範囲が適当である。 ガラス粉は吸油量が少なく、その粒径は30〜
60μmが適当である。粒径60μm以上では成形品の
平滑さを害するので好ましくない。また粒径
30μm以下になると単位重量あたりの表面積が大
きくなり、樹脂量が少ないために成形品の強度や
平滑性を低下させる。 長さ3mm以下のガラス繊維は、成形品の強度向
上、熱膨張率の低減に効果がある。含有量は、成
形材料全体に対し15〜30重量%の範囲とする。こ
れは、15重量%以下では強度が著しく低下し、熱
膨張率が増大するためである。逆に30重量%を越
えると配向が強くなるため、熱膨張率に方向差を
生じ、成形品のそり、ねじれ、クラツク発生の原
因となる。また、細穴や隅部分への充填性が悪く
なる。 成形材料は着色される場合が多く、本発明でも
流動性を失わない範囲で着色剤を添加することが
できる。その他、離型剤、界面活性剤等は必要に
応じて使用する。 以下、本発明の実施例を説明する。 実施例 1 重量平均分子量1300のノボラツク樹脂20重量
%、ヘキサミン3重量%、粒径40μmのガラス粉
45重量%、長さ3mmのガラス繊維30重量%、着色
剤としてカーボンブラツク、離型剤としてステア
リン酸亜鉛をそれぞれ1重量%含有する混合物を
130℃/90℃のロールで混練し成形材料を得た。 比較例 1 実施例1で、ノボラツク樹脂の重量平均分子量
を800とした。それ以外は実施例1と同じである。 比較例 2 実施例1で、ノボラツク樹脂の重量平均分子量
を2500とした。それ以外は実施例1と同じであ
る。 実施例1および比較例1、2の成形材料を射出
成形機を用いて次のような実験を行なつた。試料
130gを90℃のシリンダ内で3分間保ち、直径5
mmのノズルから600Kg/cm2の射出圧力で空打ち
(型をつけないで射出)した時の射出時間を測定
した。また、金型温度180℃で強度試験片を成形
した。第1表に結果を示す。
The present invention relates to a thermosetting resin molding material containing a filler. In recent years, the use of plastic for metal parts has been promoted in various fields for the purpose of reducing costs and weight, and various thermosetting resins such as phenol resin, epoxy resin, unsaturated polyester resin, and polyimide resin, as well as polyethylene, polystyrene, and nylon are being used. ,
Various thermoplastic resins such as polycarbonate, or materials made by blending these with inorganic fillers and fiber reinforcing materials, are used for various mechanical parts. On the other hand, precision mechanical parts that require a high degree of dimensional accuracy and stability are still mainly manufactured by precision processing of metal materials. The use of plastic for such precision mechanical parts is also being studied, and attempts are being made to use low-shrinkage unsaturated polyester resins that are blended with large amounts of glass fiber and inorganic fillers. However, there were problems with strength, especially rigidity. Phenol resin has characteristics such as an extremely large modulus of elasticity compared to other resins, little change in mechanical and electrical properties over a wide temperature range, and good dimensional accuracy. In particular, molding materials containing glass fibers or long fiber asbestos as fillers have little shrinkage during molding, have good dimensional stability, and are used in electrical parts and the like. However, in the case of thin molded products with complicated holes or notches, the dimensional accuracy deteriorates due to the orientation of the fibers, and there is a drawback that warping and twisting are more likely to occur. Furthermore, the molding shrinkage rate and thermal expansion rate of the molded article largely depend on the proportion of the resin component. The molding shrinkage rate and thermal expansion rate decrease as the amount of resin decreases, and precision molding materials tend to have a lower resin content. In terms of dimensional stability due to water absorption, etc., a smaller amount of resin is advantageous. However, there were problems in that when the amount of resin decreased, the strength decreased and the fluidity deteriorated significantly, making it impossible to mold. An object of the present invention is to produce a molding material that can be injection molded even with a small amount of resin without causing the above-mentioned drawbacks, and the dimensional accuracy of the molded product is good. That is, the present invention is characterized by containing 15 to 30% by weight of novolak resin, 40 to 60% by weight of glass powder, and 15 to 30% by weight of glass fibers having a length of 3 mm or less. The weight average molecular weight of the novolak resin used in the present invention is in the range of 1,000 to 2,000. If it is less than 1,000, curing is slow and gas generation increases. Also, 2000
Above this amount, the fluidity becomes poor and molding becomes difficult with a small amount of resin as in the present invention. As a curing agent, hexamethylenetetramine can be used, and its amount is 100 parts by weight of novolac resin (hereinafter simply "parts").
), a range of 10 to 20 parts is appropriate. Glass powder has low oil absorption and its particle size is 30 ~
60 μm is appropriate. A particle size of 60 μm or more is not preferable because it impairs the smoothness of the molded product. Also particle size
If it is less than 30 μm, the surface area per unit weight becomes large and the amount of resin is small, which reduces the strength and smoothness of the molded product. Glass fibers with a length of 3 mm or less are effective in improving the strength of molded products and reducing the coefficient of thermal expansion. The content is in the range of 15 to 30% by weight based on the entire molding material. This is because if the content is less than 15% by weight, the strength will drop significantly and the coefficient of thermal expansion will increase. On the other hand, if it exceeds 30% by weight, the orientation becomes strong, causing a directional difference in the coefficient of thermal expansion, which causes warping, twisting, and cracking of the molded product. In addition, filling performance into small holes and corner portions becomes poor. Molding materials are often colored, and in the present invention, a coloring agent can be added as long as fluidity is not lost. In addition, a mold release agent, a surfactant, etc. are used as necessary. Examples of the present invention will be described below. Example 1 20% by weight of novolac resin with a weight average molecular weight of 1300, 3% by weight of hexamine, glass powder with a particle size of 40 μm
A mixture containing 45% by weight, 30% by weight of glass fibers with a length of 3 mm, 1% by weight each of carbon black as a coloring agent and 1% by weight of zinc stearate as a mold release agent.
A molding material was obtained by kneading with rolls at 130°C/90°C. Comparative Example 1 In Example 1, the weight average molecular weight of the novolak resin was set to 800. The rest is the same as in Example 1. Comparative Example 2 In Example 1, the weight average molecular weight of the novolak resin was set to 2,500. The rest is the same as in Example 1. The following experiments were conducted using the molding materials of Example 1 and Comparative Examples 1 and 2 using an injection molding machine. sample
130g was kept in a cylinder at 90℃ for 3 minutes, and a diameter of 5
The injection time was measured when blank injection (injection without a mold) was performed from a mm nozzle at an injection pressure of 600 Kg/cm 2 . In addition, strength test pieces were molded at a mold temperature of 180°C. Table 1 shows the results.

【表】 比較例 3 実施例1で、ガラス粉45重量%を30重量%に、
ガラス繊維30重量%を45重量%とした。それ以外
は実施例1と同じである。 比較例 4 実施例1で、ガラス粉45重量%を65重量%に、
ガラス繊維30重量%を10重量%とした。それ以外
は実施例1と同じである。 比較例 5 実施例1で、ノボラツク樹脂20重量%を14重量
%、ヘキサミン3重量%を2.2重量%、ガラス粉
45重量%を51.8重量%とした。それ以外は実施例
1と同じである。 比較例 6 実施例1でノボラツク樹脂20重量%を32重量
%、ヘキサミン3重量%を4.5重量%、ガラス粉
45重量%を31.5重量%とした。それ以外は実施例
1と同じである。 比較例 7 実施例1で、ノボラツク樹脂20重量%を26重量
%、ヘキサミン3重量%を3.8重量%、ガラス粉
45重量%を38.2重量%とした。それ以外は実施例
1と同じである。 実施例1および比較例3〜7の成形材料を用い
て10mm口×120mmの角材を射出成形した。この中
央部より3mm口×4mmの試験片をとり、毎分5℃
の昇温速度で熱膨張率を測定した。また、JIS―
K―6911にしたがつて曲げ強度を測定した。第2
表に結果を示す。
[Table] Comparative Example 3 In Example 1, 45% by weight of glass powder was changed to 30% by weight,
30% by weight of glass fiber was changed to 45% by weight. The rest is the same as in Example 1. Comparative Example 4 In Example 1, 45% by weight of glass powder was changed to 65% by weight,
30% by weight of glass fiber was changed to 10% by weight. The rest is the same as in Example 1. Comparative Example 5 In Example 1, 14% by weight of 20% novolak resin, 2.2% by weight of 3% hexamine, and 2.2% by weight of glass powder were added.
45% by weight was changed to 51.8% by weight. The rest is the same as in Example 1. Comparative Example 6 In Example 1, 20% by weight of novolak resin was added to 32% by weight, 3% by weight to hexamine was added to 4.5% by weight, and glass powder was added to 32% by weight.
45% by weight was changed to 31.5% by weight. The rest is the same as in Example 1. Comparative Example 7 In Example 1, 26% by weight of 20% novolak resin, 3.8% by weight of 3% hexamine, and 3% by weight of glass powder.
45% by weight was changed to 38.2% by weight. The rest is the same as in Example 1. Using the molding materials of Example 1 and Comparative Examples 3 to 7, square pieces of 10 mm opening x 120 mm were injection molded. Take a 3mm opening x 4mm test piece from this central part and test it at 5℃ per minute.
The coefficient of thermal expansion was measured at a heating rate of . Also, JIS-
Bending strength was measured according to K-6911. Second
The results are shown in the table.

【表】 実施例1および比較例3、6、7の成形材料を
用いて第1図に示す形状の成形品を射出成形し、
円筒1の真円度および二つのボス2,2′間の距
離を測定した。第3表に結果を示す。尚、円筒1
の径およびボス2,2′間の距離の設計数値は40
mmφ、72mmである。
[Table] A molded product having the shape shown in FIG. 1 was injection molded using the molding materials of Example 1 and Comparative Examples 3, 6, and 7.
The roundness of the cylinder 1 and the distance between the two bosses 2 and 2' were measured. Table 3 shows the results. Furthermore, cylinder 1
The design values for the diameter and distance between bosses 2 and 2' are 40
mmφ, 72mm.

【表】 以上の実施例と比較例との対比により、重量平
均分子量1000〜2000のノボラツク樹脂15〜30重量
%、ガラス繊維15〜30重量%、ガラス粉40〜60重
量%とこれに適宜、硬化剤、離型剤等を配合した
フエノール樹脂成形材料は射出成形可能な流動性
を持ち、その成形品は、寸法精度に優れているこ
とが明らかである。本発明は、強度と寸法精度の
要求される、各種精密機構部品に適用でき、その
工業的価値は極めて大である。
[Table] By comparing the above examples and comparative examples, 15 to 30% by weight of novolak resin with a weight average molecular weight of 1000 to 2000, 15 to 30% by weight of glass fiber, 40 to 60% by weight of glass powder, and as appropriate, It is clear that the phenolic resin molding material containing a curing agent, a mold release agent, etc. has fluidity that allows injection molding, and the molded product thereof has excellent dimensional accuracy. The present invention can be applied to various precision mechanical parts that require strength and dimensional accuracy, and its industrial value is extremely large.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は寸法精度測定用テストピースの上面
図、第2図は第1図のA−A′線に沿う断面図で
ある。
FIG. 1 is a top view of a test piece for measuring dimensional accuracy, and FIG. 2 is a sectional view taken along line A-A' in FIG. 1.

Claims (1)

【特許請求の範囲】[Claims] 1 重量平均分子量1000〜2000のノボラツク樹脂
15〜30重量%、粒径30〜60μmのガラス粉40〜60
重量%、長さ3mm以下のガラス繊維15〜30重量%
を含有することを特徴とするフエノール樹脂成形
材料。
1 Novolac resin with a weight average molecular weight of 1000 to 2000
15-30% by weight, 40-60 glass powder with particle size 30-60μm
% by weight, glass fiber with a length of 3 mm or less 15-30% by weight
A phenolic resin molding material characterized by containing.
JP16551481A 1981-10-16 1981-10-16 Phenolic resin molding material Granted JPS5867747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16551481A JPS5867747A (en) 1981-10-16 1981-10-16 Phenolic resin molding material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16551481A JPS5867747A (en) 1981-10-16 1981-10-16 Phenolic resin molding material

Publications (2)

Publication Number Publication Date
JPS5867747A JPS5867747A (en) 1983-04-22
JPH0138816B2 true JPH0138816B2 (en) 1989-08-16

Family

ID=15813837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16551481A Granted JPS5867747A (en) 1981-10-16 1981-10-16 Phenolic resin molding material

Country Status (1)

Country Link
JP (1) JPS5867747A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60124646A (en) * 1983-12-09 1985-07-03 Sumitomo Bakelite Co Ltd Phenolic resin composition
JPS6144944A (en) * 1984-08-09 1986-03-04 Sumitomo Bakelite Co Ltd Phenolic resin molding material
JPH0645200B2 (en) * 1988-09-30 1994-06-15 新神戸電機株式会社 Resin pulley
DE4319907C2 (en) * 1993-06-16 1997-03-06 Bosch Gmbh Robert Novolak molding compound and process for its preparation and its use

Also Published As

Publication number Publication date
JPS5867747A (en) 1983-04-22

Similar Documents

Publication Publication Date Title
CA2007956C (en) Epoxy resin composition and semiconductor sealing material comprising same
CA2005900A1 (en) Fiber-reinforced thermoplastic resin composition
US5432227A (en) Phenolic resin molding material
JPH0138816B2 (en)
EP0296611A3 (en) Stamping-moldable material
US5141992A (en) Phenolic resin composition with excellent impact strength
JPS6032847A (en) Reinforced polyamide resin composition having decreased warpage
ATE103622T1 (en) PHENOLIC MOLDING COMPOUND.
EP0383995A3 (en) Aromatic thermosetting resins and preparation thereof
JPH0267326A (en) Fiber-reinforced thermoplastic resin composition with excellent surface flatness
AU611070B2 (en) Injection-molding thermosetting resin composition
JPH10279777A (en) Flaky phenolic resin molding material containing carbon fiber and its production
JP2005048009A (en) Phenolic resin molding compound
JPH11166101A (en) Manufacture of glass-fiber containing phenolic resin molding material
JPH07276408A (en) Manufacture of phenolic resin molding
JPH068385B2 (en) Polycarbonate resin composition
JPS58167607A (en) Molded plate of fiber-reinforced synthetic resin
Lord et al. Phenolic Moulding Compositions
JP2002241577A (en) Glass-fiber reinforced phenolic resin molding material
JPH0349935B2 (en)
JPH07309995A (en) Phenolic resin molding material
JPS59207945A (en) Curable resin composition
Kasai Materials and molding methods for phenol composites
JPS59215350A (en) Phenolic resin molding material
JPH0138140B2 (en)