JPS59207945A - Curable resin composition - Google Patents

Curable resin composition

Info

Publication number
JPS59207945A
JPS59207945A JP8378983A JP8378983A JPS59207945A JP S59207945 A JPS59207945 A JP S59207945A JP 8378983 A JP8378983 A JP 8378983A JP 8378983 A JP8378983 A JP 8378983A JP S59207945 A JPS59207945 A JP S59207945A
Authority
JP
Japan
Prior art keywords
mica flakes
flakes
mica
resin
poor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8378983A
Other languages
Japanese (ja)
Inventor
Ryuhei Ueda
上枝 龍平
Kiyonobu Fujii
藤井 清伸
Akira Kubotsu
窪津 彰
Shunji Kaneda
俊二 金田
Kenji Okuno
奥野 健次
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP8378983A priority Critical patent/JPS59207945A/en
Priority to US06/589,337 priority patent/US4560715A/en
Priority to CA000450568A priority patent/CA1249390A/en
Publication of JPS59207945A publication Critical patent/JPS59207945A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:The titled composition useful for small-sized boats, bathtubs, various kinds of electric parts, and tanks, having improved strength and modulus of elasticity free from poor molding such as poor impregnation, poor deaeration, poor packing, etc., consisting of a thermosetting resin and specific mica flakes. CONSTITUTION:The desired composition obtained by blending a thermosetting resin (preferably unsaturated polyester resin) with 0.03-3 times as much mica flakes having <=2,000mum particle diameter, <=10 aspect ratio, and >=0.76 average shape coefficient (preferably >=0.78) (designated by 4piB/l<2> where S is area of flake of projection chart seen from above and l is length of periphery of it) and <=20 flakes (preferably <=15) with <=0.70 shape coefficient among 100mica flakes as the thermosetting resin. Preferably addition of fiber reinforcing material (e.g., glass fiber, etc.) to the mica flakes provides high impact resistance.

Description

【発明の詳細な説明】 本発明は、高強度、高弾性率の成形物を製造するために
有用な硬化性樹脂組成物に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a curable resin composition useful for producing molded articles having high strength and high modulus of elasticity.

雲母フレークを用いてプラスチックを強化し、高弾性で
耐熱性、耐薬品性、電気絶縁性、バリア性等に冨んだ成
形物を得ることはよく知られている。さらに、繊維状の
強化材を併用して強度、耐衝撃性を改良する方法も又、
良く知られている。
It is well known that mica flakes are used to strengthen plastics to obtain molded products with high elasticity, heat resistance, chemical resistance, electrical insulation, barrier properties, etc. Furthermore, there is also a method of improving strength and impact resistance by using fibrous reinforcing materials together.
well known.

そして、これらの方法は樹脂が熱硬化性樹脂の場合にも
、熱可塑性樹脂の場合にも行われている。
These methods are used both when the resin is a thermosetting resin and when the resin is a thermoplastic resin.

しかしながら、熱硬化性樹脂に雲母フレーク、または雲
母フレークと繊維状の強化材を配合した場合には、混合
物の粘度が著るしく上昇し、流動性が低下し、含浸不良
、脱泡不良、充填不良のトラブルを生じ、成形不良にな
るため所期の特性を有する成形物を得ることは非常に困
難である。この点を改良する試みとして、例えば粉末状
の不飽和ボリエヌテルを雲母フレークとトライブレンド
することによシ上記のトラブルを避ける方法や、雲母フ
レークを繊維状の強化材にはさみ込み、前もって複合強
化材を形成しておき、これに樹脂を含浸することにより
混合時のトラブルを防ぎ、かつ繊維状強化材と雲母のそ
れぞれの特徴を生かして強度、弾性率、耐衝撃性のすぐ
れた成形物を得る方法等が提案されている。しかしなが
ら、まず第1の、不飽和ポリエステルを雲母フレークと
トライブレンドする方法では、粉末状ポリエステル樹脂
がきわめて特殊なものであるため容易に入手しにくく、
またトライブレンドした粉末の成形も平形を除けは困轄
トであシ実用化に到っていない。また、前もって複合強
化材を形成しておく第2の方法は、ハンドレイアップ法
、プリフォームマツチドダイ法、コールドプレス法、連
続パネル法等の成形法によp FRP成形品を成形する
場合や、プリプレグ用の補強材として用いる場合は有用
であるが、スプレーアップ法、プリミックス成形法、S
MC成形法、SMC成形法の場合は適用が回灯となる。
However, when mica flakes or mica flakes and fibrous reinforcing materials are blended into a thermosetting resin, the viscosity of the mixture increases significantly, fluidity decreases, and impregnation, defoaming, and filling occur. It is very difficult to obtain a molded product with the desired characteristics because it causes troubles such as defects and molding defects. Attempts to improve this point have been made, for example, by tri-blending powdered unsaturated Borienether with mica flakes to avoid the above-mentioned troubles, or by sandwiching mica flakes between fibrous reinforcing materials to form composite reinforcements in advance. By impregnating this with resin, troubles during mixing can be prevented, and molded products with excellent strength, elastic modulus, and impact resistance can be obtained by taking advantage of the respective characteristics of fibrous reinforcement and mica. Several methods have been proposed. However, in the first method of tri-blending unsaturated polyester with mica flakes, the powdered polyester resin is extremely special and is difficult to obtain.
Furthermore, molding of tri-blended powder is difficult, except for flat shapes, and it has not been put into practical use. A second method in which composite reinforcement is formed in advance is when forming a p-FRP molded product using a molding method such as a hand lay-up method, preform mated die method, cold press method, or continuous panel method. , is useful when used as a reinforcing material for prepreg, but spray-up method, premix molding method, S
In the case of MC molding method and SMC molding method, turning lamps are applied.

本発明者らは、熱硬化性樹脂液と雲母フレーク、または
熱硬化性樹脂液、雲母フレークおよび繊維状強化材の混
合物の粘度挙動につき種々検討を重ねた結果、雲母フレ
ークの形状係数と雲母フレークを含有する硬化性樹脂混
合物の粘度との間には緊密な関係があり、形状係数が0
.76以上の雲母フレークを用いた場合には該混合物の
粘度が低下し流動性が向上して、含浸不良、脱泡不良、
充填不良等の成形不良がなくなることを見出し本発明に
到った。
The present inventors conducted various studies on the viscosity behavior of a thermosetting resin liquid and mica flakes, or a mixture of a thermosetting resin liquid, mica flakes, and fibrous reinforcing material, and as a result, the shape factor of mica flakes and mica flakes were determined. There is a close relationship between the viscosity of a curable resin mixture containing
.. When using mica flakes of 76 or higher, the viscosity of the mixture decreases and the fluidity improves, resulting in poor impregnation, poor defoaming, and
The present invention was achieved by discovering that molding defects such as filling defects can be eliminated.

すなわち本発明は、熱硬化性樹脂と、形状係数が0.7
6以上の雲母フレークからなる硬化性樹脂組成物である
。本発明において形状係数とは、雲母フレークを上部か
ら見た投影図の面1 (13)に4πを乗じた値と局長
<1>の自乗との比すなわち4πB/12で定義される
ものであシ、例えば円では1、正方形では0.785、
正三角形では0.605である。
That is, the present invention uses a thermosetting resin and a shape factor of 0.7.
This is a curable resin composition consisting of 6 or more mica flakes. In the present invention, the shape factor is defined as the ratio of the value obtained by multiplying plane 1 (13) of the projection view of the mica flake from above by 4π and the square of the length of the head <1>, that is, 4πB/12. For example, 1 for a circle, 0.785 for a square,
For an equilateral triangle, it is 0.605.

該雲母フレーク投影図の面積および局長は次の方法で求
めることができる。まず、雲母フレ二りを走査型電子顕
微鏡写真をとシ投影図とする。ついで該投影図の画像に
沿ってセンサーでなぞシ、局長およびその周で囲まれた
部分の面積を測定する。第1図および第2図は雲母フレ
ークの走査型電子顕微鏡写真(倍率190倍)である。
The area and radius of the mica flake projection can be determined by the following method. First, a scanning electron micrograph of mica ferrite is taken as a projection diagram. Next, the area of the director and the area surrounded by the director is measured using a sensor along the image of the projection map. Figures 1 and 2 are scanning electron micrographs (190x magnification) of mica flakes.

このような方法によシ測定した面積および局長から個々
の雲母フレークの形状係数を算出し、第6図のように、
形状係数の累積頻度曲線を描く。個数の累積が測定個数
の半数に達した点すなわち平均値の形状係数をもってそ
の雲母フレークの形状係数とする。測定する粒子の数は
精度を上げるために300個以上であることが望ましい
。なお、測定サンプlしがもとの試料をなるべく忠実に
反映するためには、回転分割器等を用いて正確に縮分す
ることが好ましい。
The shape factor of each mica flake was calculated from the area and radius measured by this method, and as shown in Figure 6,
Draw the cumulative frequency curve of the shape factor. The point at which the cumulative number of flakes reaches half of the measured number, that is, the shape coefficient of the average value, is taken as the shape coefficient of that mica flake. The number of particles to be measured is desirably 300 or more in order to improve accuracy. In order for the measurement sample to reflect the original sample as faithfully as possible, it is preferable to perform accurate reduction using a rotary divider or the like.

本発明の樹脂組成物は、粒径が2,000μ〃l以下、
アスペクト比が10以上の形状係数が平均値0.76以
上(好ましくは0.78以上)の雲母フレークを熱硬化
性樹脂に配合して得られる。また、該雲母フレーク10
0個中に占める形状係数が0.70以下のものは20個
以下(好ましくは15個以下)であることが望ましい。
The resin composition of the present invention has a particle size of 2,000 μl or less,
It is obtained by blending mica flakes with an aspect ratio of 10 or more and an average shape factor of 0.76 or more (preferably 0.78 or more) into a thermosetting resin. In addition, the mica flakes 10
It is desirable that the number of shapes having a shape factor of 0.70 or less out of 0 is 20 or less (preferably 15 or less).

通常、雲母は例えばジェットミル型粉砕機のように、雲
母に強力な衝撃エネルギーを与える粉砕方法で粉砕され
るが、このような従来の粉砕方法では得られる雲母フレ
ークの形状は第2図に示したように非常に不規則であシ
、従って、形状係数が平均値0.65〜0.76程度の
ものしか得られない。
Usually, mica is crushed using a crushing method that applies strong impact energy to the mica, such as in a jet mill type crusher, but the shape of mica flakes obtained by such a conventional crushing method is shown in Figure 2. As mentioned above, the shape is very irregular, and therefore only a shape factor having an average value of about 0.65 to 0.76 can be obtained.

しかしながら、本発明においては、雲母を弱い衝撃エネ
ルギーで粉砕し、かつ鋭い角をなめらかにする例えばフ
ァインミクロン型粉砕機で粉砕するため第1図に示すよ
うに形状係数が平均値0.76以上のものを得ることが
できるのである。本発明に月いられる雲母フレークは上
述のファインミクロン型粉砕機を使用すれば効率よく形
状係数が平均値0.76以上のものを得ることができる
が、上述の粉砕機を使用することに限定されるものでは
なく、上述の特定形状の雲母フレークを生ずるものであ
れはいかなる粉砕法によってもよい。
However, in the present invention, since the mica is crushed with weak impact energy and is crushed with a fine micron type crusher to smooth out sharp edges, the shape factor is 0.76 or more as shown in Fig. 1. You can get things. The mica flakes used in the present invention can be efficiently obtained with a shape factor of 0.76 or more by using the above-mentioned fine micron type pulverizer, but it is limited to the use of the above-mentioned pulverizer. Any grinding method that produces mica flakes having the specific shape described above may be used.

本発明に用いられる熱硬化性樹脂としては、飽和ホリエ
ステル樹脂、不飽和ポリエステル樹脂、ビニルエステル
樹脂、エポキシ樹脂、フェノール樹脂等があげられる。
Examples of thermosetting resins used in the present invention include saturated polyester resins, unsaturated polyester resins, vinyl ester resins, epoxy resins, and phenol resins.

なかでも不飽和ポリエステル樹脂が好ましく使用される
Among these, unsaturated polyester resins are preferably used.

本発明において用いられる雲母フレークとしては白雲母
、金雲母、黒雲母、合成雲母等のフレークをあげること
ができる。本発明を宍施するにあたシ、雲母フレークと
樹脂の界面の親和性を高めるため、シラン処理等の公知
の表面処理をしてもよい。
The mica flakes used in the present invention include flakes of muscovite, phlogopite, biotite, synthetic mica, and the like. In carrying out the present invention, a known surface treatment such as silane treatment may be carried out in order to increase the affinity of the interface between the mica flakes and the resin.

また、本発明では、高弾性率の他、高度の耐衝撃性が要
求される場合には雲母フレークの他に繊維状強化材を併
用することが好ましいが、かかる繊維状強化材としては
、例えばガラス繊維、炭素繊維、金属繊維、ビニロン、
ポリエステル等の有機繊維、アスベスト、チタン酸バリ
ウム等の天然無機繊維をあげることができる。これらの
繊維は単独または二種類以上併用して用いてもよく、樹
脂との親和性を高めるためシラン処理等の表面処理を施
してもよい。本発明を実施するにあたシ、タルク、炭酸
カルシウム、ワラヌトナイト等各種の補強材、充填材を
使用してもよく、さらに着色剤、滑剤、安定剤、可塑剤
、帯電防止剤等公知の添加物を加えることは何らさしつ
かえない。
Furthermore, in the present invention, when a high degree of impact resistance is required in addition to a high modulus of elasticity, it is preferable to use a fibrous reinforcing material in addition to mica flakes. Glass fiber, carbon fiber, metal fiber, vinylon,
Examples include organic fibers such as polyester, and natural inorganic fibers such as asbestos and barium titanate. These fibers may be used alone or in combination of two or more types, and may be subjected to surface treatment such as silane treatment in order to improve affinity with resin. In carrying out the present invention, various reinforcing materials and fillers such as insulator, talc, calcium carbonate, and wallanutonite may be used, and further known additives such as colorants, lubricants, stabilizers, plasticizers, and antistatic agents may be used. There is nothing wrong with adding things.

また、本発明において雲母フレークは熱硬化性樹脂に対
して0603〜3重量倍含有されて使用されるのが好ま
しい。雲母フレークが0.03重量倍よシ少ないと本発
明の効果が低く、また3重量より多いと成形性が困難に
なる。
Further, in the present invention, the mica flakes are preferably used in an amount of 0603 to 3 times the weight of the thermosetting resin. If the amount of mica flakes is less than 0.03 times by weight, the effect of the present invention will be low, and if it is more than 3 times by weight, moldability will become difficult.

繊維状の強化材の使用量は、成形法によって著るしく変
化するものであシー概には規定できないものであるが、
通常は熱硬化性樹脂に対して0.03〜10重量倍使用
される。
The amount of fibrous reinforcing material to be used varies significantly depending on the molding method and cannot be generally specified.
It is usually used in an amount of 0.03 to 10 times the weight of the thermosetting resin.

雲母フレークと樹脂あるいは雲母フレークと繊維状強化
材と樹脂よシ成る組成物から成形物を成形するにはハン
ドレーアツブ法、スプレーアップ法、プリフォームマツ
チドダイ法、コールドプレヌ法、連続パネル法、SMC
成形法、プリミックス成形法、BMC成形法等が用いら
れる。また、プリプレグを経由した成形法も用いられる
。このような成形法を用いて、形状係数が平均値0.7
6以上の雲母フレークを強化材とした硬化性樹脂組成物
を成形すると、組成物の粘度が著るしく上昇することは
なく、成形中の脱泡も良好であシ、含浸不良、充填不良
等の成形不良を生じるとともなく所期の物性を有する成
形物を得ることができる。さらに本発明の効果として、
このような特定形状の雲母フレークを使用すると、プリ
ミックス成形法、BMC成形法、SMC成形法等のよう
な、増粘後、十分に混練する成形法を用いても雲母フレ
ークの破損がほとんどないことがあげられる。このため
に、きわめてすぐれた性能を有する成形物が得られるの
である。
To mold a molded article from a composition consisting of mica flakes and resin or mica flakes, fibrous reinforcing material, and resin, there are methods such as hand lay-up method, spray-up method, preform matte die method, cold plane method, continuous panel method, SMC.
A molding method, a premix molding method, a BMC molding method, etc. are used. Additionally, a molding method using prepreg is also used. Using this molding method, the shape factor can be reduced to an average value of 0.7.
When molding a curable resin composition using mica flakes of 6 or more as a reinforcing material, the viscosity of the composition does not increase significantly, and defoaming during molding is also good, resulting in poor impregnation, poor filling, etc. A molded product having desired physical properties can be obtained without causing any molding defects. Furthermore, as an effect of the present invention,
When mica flakes with such a specific shape are used, there is almost no damage to the mica flakes even when using a molding method that thoroughly kneads after thickening, such as premix molding, BMC molding, SMC molding, etc. There are many things that can be mentioned. For this reason, molded products with extremely excellent performance can be obtained.

本発明による樹脂組成物は現在熱硬化性樹脂が成形され
ているあらゆる形状に成形可能であシ、構造部品、小型
船舶、バヌタプ、各種電機部品、自動車関連部品、タン
ク類その他種々の用途に適用可能である。
The resin composition according to the present invention can be molded into any shape that thermosetting resins are currently molded into, and can be applied to structural parts, small ships, vanutaps, various electrical parts, automobile-related parts, tanks, and various other uses. It is possible.

以下実施例によシ本発明を具体的に説明するが、本発明
はこれによシ何ら制限されるものではない。
The present invention will be specifically explained below using examples, but the present invention is not limited thereto.

またとくにことわらない限シ、部は重量部をあられす。Unless otherwise specified, parts refer to parts by weight.

実施例1 金雲母をファインミクロン型粉砕機((株)ホソヵワミ
クロン製)で粉砕し、空気分級によシ微粉部分を10%
カットして、平均フレーク径が401部m、形状係数が
平均値で0.80、アスペクト比が60の金雲母フレー
クを得た(第1図)。また、この雲母フレーク100個
中に占める形状係数が0.70以下のものは7個であっ
た。雲母の形状係数は、雲母の走査型電子顕微鏡写真に
画像解析シヌテJ、(英仏精機産業(株) MOP−モ
ジュラ−システム)を使用し、面積および局長を測定し
て求めた。これらの形状係数の累積頻度曲線を第5図に
示す。
Example 1 Phlogopite was pulverized using a fine micron type pulverizer (manufactured by Hosokawa Micron Co., Ltd.), and the fine powder portion was reduced to 10% by air classification.
After cutting, phlogopite flakes having an average flake diameter of 401 parts m, a shape factor of 0.80, and an aspect ratio of 60 were obtained (FIG. 1). Moreover, out of 100 mica flakes, there were 7 flakes with a shape factor of 0.70 or less. The shape factor of mica was determined by measuring the area and thickness of a scanning electron micrograph of mica using image analysis Sinute J (MOP-Modular System, manufactured by Anglo-French Seiki Sangyo Co., Ltd.). The cumulative frequency curve of these shape factors is shown in FIG.

ポリエチレンフィルム上に樹脂液を流延し、その上に該
雲母フレークを振シかけ、さらにその上に樹脂液を流延
した′ポリエチレンフィルムを押シつけ、雲母フレーク
に樹脂液を含浸し増粘してSMCとした。樹脂液として
は、不飽和ポリエステル樹脂(リボラック2053、昭
和高分子(株)i)100部、ステアリン酸アニン1部
、ターシャリブチルパーオキサイド(以下、TB!:′
と記載)1.5部、バラベンゾキノン(以下、PBQ、
と記載)0.04部、酸化マグネシウム1.5部を混合
して用いた。
The resin solution is cast onto a polyethylene film, the mica flakes are sprinkled on top of the film, and the polyethylene film on which the resin solution is cast is pressed onto the film, and the mica flakes are impregnated with the resin solution to increase the viscosity. It was made into SMC. As the resin liquid, 100 parts of unsaturated polyester resin (Revolac 2053, Showa Kobunshi Co., Ltd. i), 1 part of anine stearate, and tertiary butyl peroxide (hereinafter referred to as TB!:'
) 1.5 parts, rosebenzoquinone (hereinafter referred to as PBQ)
) and 1.5 parts of magnesium oxide were mixed together.

雲母フレークの量は組成物中に60重量%含まれる量と
した。このSMCを130℃で15分プレスで加圧成形
し、100℃で2時間、後硬化させて厚さ5mmの平板
とした。この平板につき物性を測定した。その結果を表
1に示す。なお、曲げ性能はASTム4 D 790、
アイゾツト衝撃強度はASTM  D256に準じ、ノ
ツチ付で測定した。
The amount of mica flakes was 60% by weight in the composition. This SMC was press-molded at 130° C. for 15 minutes and post-cured at 100° C. for 2 hours to form a flat plate with a thickness of 5 mm. The physical properties of this flat plate were measured. The results are shown in Table 1. In addition, the bending performance is ASTMu4D790,
Izot impact strength was measured with a notch according to ASTM D256.

比較例1 金雲母をジェットミルによシ粉砕後、空気分級し、平均
フレーク径591tm、アスペクト比29、形状係数0
.70、雲母フレーク100個中に含まれる形状係数0
.70以下の雲母フレークの個数が50個の雲母フレー
クを得た。該雲母フレークと実施例1で用いた熱硬化性
樹脂を用い、他は実施例1と同じ方法で試験を実施した
。本試験においては、樹脂液を雲母フレークに含浸させ
ることがきわめて困難であった。物性測定結果を表1に
示すが、実施例1および比較例1の結果から本発明の効
果は明らかである。
Comparative Example 1 After pulverizing phlogopite with a jet mill, it was air classified, and the average flake diameter was 591 tm, the aspect ratio was 29, and the shape factor was 0.
.. 70, shape factor 0 contained in 100 mica flakes
.. Mica flakes with a number of mica flakes of 70 or less were obtained. The test was carried out in the same manner as in Example 1 except that the mica flakes and the thermosetting resin used in Example 1 were used. In this test, it was extremely difficult to impregnate the mica flakes with the resin liquid. The physical property measurement results are shown in Table 1, and the effects of the present invention are clear from the results of Example 1 and Comparative Example 1.

実施例2 双腕形ニーダ−を用いてBMCを製造した。樹脂液とし
ては、不飽和ポリエステル樹脂(リボラック2053、
昭和高分子(株)製)100部、ステアリン酸アニン1
部、ナフテン酸コバ71zl−0,1部、TBPl、5
部、PBQ O,04部、Myo 3部を混合して用い
た。
Example 2 BMC was manufactured using a double-arm kneader. As the resin liquid, unsaturated polyester resin (Rivolac 2053,
(manufactured by Showa Kobunshi Co., Ltd.) 100 parts, anine stearate 1
parts, naphthenic acid coba 71zl-0,1 parts, TBPl, 5
1 part, 0.4 parts of PBQ O, and 3 parts of Myo were mixed and used.

雲母フレークは白雲母を実施例1と同様の方法で粉砕、
分級して得た平均粒径14 ltm 、形状係数0.8
1、アスペクト比22、さらに雲母フレーク100個中
に含まれる形状係数0.70以下の雲母フレークが5個
のものを用いた。またガラス繊維(1A′チョツプドス
トランド)を併用し、樹脂液と雲母フレークとガラス繊
維の比率を重量で35:5[] ;15とした。双腕形
ニーダ−の攪拌回転数は651”pm 、攪拌時間は1
0分とした。得られたBMCをプレスにより平板に成形
し、130℃で15分硬化させた後、100′℃で2時
間、後硬化させ、強度測定用のサンプルとした。また成
形品を電気炉中で燃焼させ雲母フレークを回収してその
平均粒径およびアスペクト比を測定した。成形品の物性
および回収雲母の物性を表1に示す。
Mica flakes are obtained by crushing muscovite in the same manner as in Example 1.
Average particle size obtained by classification: 14 ltm, shape factor: 0.8
1, an aspect ratio of 22, and 5 mica flakes with a shape factor of 0.70 or less contained in 100 mica flakes were used. Glass fibers (1A' chopped strands) were also used, and the ratio of resin liquid, mica flakes and glass fibers was 35:5[];15 by weight. The stirring rotation speed of the double-arm kneader was 651”pm, and the stirring time was 1
It was set to 0 minutes. The obtained BMC was pressed into a flat plate, cured at 130°C for 15 minutes, and then post-cured at 100'°C for 2 hours to obtain a sample for strength measurement. In addition, the molded product was burned in an electric furnace, mica flakes were recovered, and their average particle size and aspect ratio were measured. Table 1 shows the physical properties of the molded product and the recovered mica.

比較例2 雲母フレークとして白鵞母をジェットミルにより粉砕、
分級して得た平均粒径15μm、形状係数0.74、ア
スペクト比23、さらに雲母フレーク100個中に含ま
れる形状係数が0.74以下の雲母フレークの個数が3
5個の雲母フレークを用い、他は実施例2と同じ方法で
試験を実施した。また成形物中の家母フンークを回収し
てその平均粒径及びアスペクト比を測定した。それらの
結果を表1に示す。本実験では含浸性が悪く、かつニー
ダ−で混線する際の雲母フレークの破損が大きく、その
ため物性が著るしく低下している。
Comparative Example 2 White mica was ground as mica flakes using a jet mill,
The average particle diameter obtained by classification is 15 μm, the shape factor is 0.74, the aspect ratio is 23, and the number of mica flakes with a shape factor of 0.74 or less contained in 100 mica flakes is 3.
The test was conducted in the same manner as in Example 2 except that five mica flakes were used. In addition, the molded material was collected and its average particle size and aspect ratio were measured. The results are shown in Table 1. In this experiment, the impregnating properties were poor, and the mica flakes were severely damaged when mixed in the kneader, resulting in a significant decrease in physical properties.

実施例3 ハンドレイアップ法により積層板を成形した。Example 3 A laminate was formed by a hand lay-up method.

雲母としては、金雲母?:実施例1と同様の方法で粉砕
、分級して得た平均粒径3 D O)tm、アスペクト
比70、形状係数の平均値0.79、雲母フレーク10
0個中に含まれる形状係数0.70以下の個数が10個
である雲母フレークを用いた。樹脂液としては、不飽和
ポリエステル樹脂(ユピカ2035P、日本ユピカg)
  100部、メチルエチルケトンパーオキサイド0.
9部の混合物を用いた。該雲母フレークと樹脂液を重量
で20:80の割合でよく混合し、9.5ボイズの粘度
を有する混合液を得た。該混合液をガラスチョツプドス
トランドマット ((、M−600、旭ファイバーグラ
ス製)に含浸させ、樹脂液と雲母フレークとガラス繊維
の比率が重量で60:15:25の混合物を得た。混合
液の粘度が低いため、含浸性は良好であった。半硬化状
態で三層に積層した後、1思夜常温で硬化させ、さらに
80℃で4時間、後硬化させ、厚さ4.8 mmでガラ
ス繊維25重量%および雲母フレーク15重量%を含む
不飽和ポリエステル積層板を製造した。性能測定結果を
表1に示す。
Phlogopite as mica? : Average particle size 3D O)tm, aspect ratio 70, average shape factor 0.79, mica flakes obtained by crushing and classifying in the same manner as in Example 1, 10
Mica flakes in which the number of mica flakes having a shape factor of 0.70 or less was 10 were used. As the resin liquid, unsaturated polyester resin (Yupica 2035P, Japan Upica G)
100 parts, methyl ethyl ketone peroxide 0.
A 9 part mixture was used. The mica flakes and the resin liquid were thoroughly mixed in a weight ratio of 20:80 to obtain a mixed liquid having a viscosity of 9.5 voids. A glass chopped strand mat (M-600, manufactured by Asahi Fiberglass) was impregnated with the mixed solution to obtain a mixture in which the ratio of resin solution, mica flakes, and glass fibers was 60:15:25 by weight. Since the viscosity of the liquid mixture was low, the impregnating properties were good.After laminating three layers in a semi-cured state, they were cured at room temperature for 1 night, and then post-cured at 80°C for 4 hours, resulting in a thickness of 4. An unsaturated polyester laminate of 8 mm containing 25% by weight of glass fibers and 15% by weight of mica flakes was produced.The performance measurements are shown in Table 1.

比較例6 雲母フレークとして、メゾライト6O−8((株)クラ
レ販売)を用いて、他は実施例3と同じ方法で積層板を
製造した。雲母フレークの平均フレーク径は280 l
tm、アスペクト比75、形状係数0.68、雲母フレ
ーク100個中に含まれる形状係数0.70以下の雲母
フレーク数は52個であった。雲母フレーク20重量%
、樹脂液80重量%を混合した時の増粘性は大きく、4
5ボイズに達した。マットに含浸させる時も含浸性が非
常に悪かった。実施例3と同様にして積層板を製造し、
その物性を測定して表1に記載した。実施例6および比
較例乙の結果から、本発明の効果は明らかである。
Comparative Example 6 A laminate was produced in the same manner as in Example 3 except that Mesolite 6O-8 (sold by Kuraray Co., Ltd.) was used as mica flakes. The average flake diameter of mica flakes is 280 l
tm, aspect ratio 75, shape factor 0.68, and the number of mica flakes with a shape factor of 0.70 or less contained in 100 mica flakes was 52. Mica flakes 20% by weight
, the viscosity increases when 80% by weight of resin liquid is mixed, and 4
Reached 5 voices. Even when impregnating a mat, the impregnating property was very poor. A laminate was produced in the same manner as in Example 3,
Its physical properties were measured and listed in Table 1. The effects of the present invention are clear from the results of Example 6 and Comparative Example B.

実施例4 雲母フレーク、ガラスクロス及びエポキシ樹脂よシ成る
プリプレグを製造した。雲母フレークとしては金雲母を
粉砕して得た粒子径220 /1m、アヌベクト比70
、形状係数0.78で、雲母フレーク100個中、形状
係1i0.70以下の粒子が15個の雲母フレークを用
いた。樹脂液としてはエポキシ樹脂(エピコート828
、シェル化学時)  100部、メチルエチルケトン1
00部、3.3’ジアミノジフ工ニルスルホン20部、
三フッ化ホウ素モノエチルアミン錯塩(B迅−400、
橋本化学工業域)1部よシ成る混合液を用いた。雲母フ
レークと樹脂液を重量で、!10.70の比率で混合し
た液中に、200 g/m2のガラスクロス(WE−1
8K −104BZ−2、日東動域)を含浸した後、ロ
ーラーで絞シ、乾燥してメチルエチルケトンを揮発させ
、雲母フレーク:樹脂ニガラスクロスの組成の重量比率
が20.30゜50であるプリプレグを得た。該プリプ
レグを4層積層して160℃で20分加熱した後、直ち
に160℃、圧力5 Kg/cyn2で60分間プレヌ
した。180℃で2時間、後硬化させ、厚さ1.8mm
のエポキシ積層板を得た。その性能を測定し、結果を表
1に示した。
Example 4 A prepreg consisting of mica flakes, glass cloth and epoxy resin was produced. The mica flakes were obtained by crushing phlogopite with a particle diameter of 220/1 m and an anuvect ratio of 70.
, mica flakes with a shape coefficient of 0.78 and 15 particles having a shape coefficient of 1i0.70 or less out of 100 mica flakes were used. As the resin liquid, epoxy resin (Epicoat 828
, shell chemistry) 100 parts, 1 methyl ethyl ketone
00 parts, 20 parts of 3.3'diaminodiphenyl sulfone,
Boron trifluoride monoethylamine complex salt (B-Jun-400,
A mixed solution consisting of 1 part (Hashimoto Chemical Industry) was used. Mica flakes and resin liquid by weight,! A 200 g/m2 glass cloth (WE-1
After impregnating with 8K-104BZ-2 (Nitto Dokyen), it was squeezed with a roller and dried to volatilize the methyl ethyl ketone to form a prepreg with a mica flake:resin glass cloth weight ratio of 20.30°50. Obtained. The prepreg was laminated in four layers and heated at 160° C. for 20 minutes, and then immediately pre-nulled at 160° C. and a pressure of 5 Kg/cyn2 for 60 minutes. Post-cure at 180℃ for 2 hours to a thickness of 1.8mm.
An epoxy laminate was obtained. Its performance was measured and the results are shown in Table 1.

比較例4 雲母フレークとして金雲母をローラーミルで粉砕した平
均フレーク径230μm5アスペクト比65、形状係数
の平均値が0.68で、雲母フレーク100個中に含ま
れる形状係数0.70以下の雲母フレークが56個であ
る雲母フレークを使用した他は実施例4と同じ方法によ
υ積層板を得た。その物性を測定した結果を表1に記載
した。実施例4および比較例4の結果から、本発明の効
果は明らかである。
Comparative Example 4 Phlogopite was ground as mica flakes using a roller mill, with an average flake diameter of 230 μm, an aspect ratio of 65, an average shape factor of 0.68, and a shape factor of 0.70 or less contained in 100 mica flakes. A υ laminate was obtained in the same manner as in Example 4, except that mica flakes having 56 pieces were used. The results of measuring the physical properties are shown in Table 1. From the results of Example 4 and Comparative Example 4, the effects of the present invention are clear.

比較例5 実施例4と同じ樹脂液およびガラスクロスを用い、樹脂
とガラスクロスの比率が重量で樹脂50、ガラスクロス
50のプリプレグを得た。実施例4と同じ方法で積層板
を得、その物性を測定し、結果を表1に示した。実施例
4と比較例5から、雲母フレークの添加にょシ特に弾性
率が顕著に向上していることが明らかである。
Comparative Example 5 Using the same resin liquid and glass cloth as in Example 4, a prepreg with a resin to glass cloth ratio of 50 resin and 50 glass cloth by weight was obtained. A laminate was obtained in the same manner as in Example 4, and its physical properties were measured. The results are shown in Table 1. From Example 4 and Comparative Example 5, it is clear that the addition of mica flakes significantly improves the elastic modulus in particular.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1で使用した形状係数が平均値で0.8
0の雲母フレークの走査型電子顕微鏡写真であり、第2
図は比較例1で使用した形状係数が平均値0.70の雲
母フレークの走査型電子顕微鏡写真である。第3図は、
実施例1および比較例1で使用した雲母フレークの累積
頻度曲線であり、1は実施例1で使用した尊母フレーク
の、2は比較例1で使用した雲母フレークの累積頻度曲
線である。 特許出願人 株式会社 り ラ し 代理人弁理士本多 堅 第1図 第2図
Figure 1 shows that the average value of the shape factor used in Example 1 is 0.8.
This is a scanning electron micrograph of mica flakes of No.
The figure is a scanning electron micrograph of mica flakes used in Comparative Example 1 and having an average shape factor of 0.70. Figure 3 shows
1 is a cumulative frequency curve of mica flakes used in Example 1 and Comparative Example 1, 1 is a cumulative frequency curve of mica flakes used in Example 1, and 2 is a cumulative frequency curve of mica flakes used in Comparative Example 1. Patent Applicant RiRa Co., Ltd. Representative Patent Attorney Ken Honda Figure 1 Figure 2

Claims (1)

【特許請求の範囲】 (1)熱硬化性樹脂と、形状係数の平均値が0.76以
上の雲母フレークからなる硬化性樹脂組成物。 (2)該雲母フレークは、熱硬化性樹脂に対して0.0
6〜6重景倍含有されてなる特許請求の範囲第(1)項
に記載の硬化性樹脂組成物。 (6)該雲母フレーク100個中、形状係数が0070
以下の雲母フレークの割合が20個以下である特許請求
の範囲第(1)項または第(2)項に記載の硬化性樹脂
組成物。 (4)さらに繊維状強化相が加えられてなる特許請求の
範囲第(1)項、第(2)項または第(3)項に記載の
硬化性樹脂組成物。
[Scope of Claims] (1) A curable resin composition comprising a thermosetting resin and mica flakes having an average shape factor of 0.76 or more. (2) The mica flakes are 0.0% relative to the thermosetting resin.
The curable resin composition according to claim (1), which contains 6 to 6 times a double image. (6) Out of 100 mica flakes, the shape factor is 0070
The curable resin composition according to claim (1) or (2), wherein the proportion of the following mica flakes is 20 or less. (4) The curable resin composition according to claim (1), (2) or (3), further comprising a fibrous reinforcing phase.
JP8378983A 1983-03-31 1983-05-12 Curable resin composition Pending JPS59207945A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP8378983A JPS59207945A (en) 1983-05-12 1983-05-12 Curable resin composition
US06/589,337 US4560715A (en) 1983-03-31 1984-03-14 Mica flake mass and resin composition with the same incorporated therein
CA000450568A CA1249390A (en) 1983-03-31 1984-03-27 Mica flake mass and resin composition with the same incorporated therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8378983A JPS59207945A (en) 1983-05-12 1983-05-12 Curable resin composition

Publications (1)

Publication Number Publication Date
JPS59207945A true JPS59207945A (en) 1984-11-26

Family

ID=13812406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8378983A Pending JPS59207945A (en) 1983-03-31 1983-05-12 Curable resin composition

Country Status (1)

Country Link
JP (1) JPS59207945A (en)

Similar Documents

Publication Publication Date Title
US4560715A (en) Mica flake mass and resin composition with the same incorporated therein
CN105504695B (en) A kind of corrosion-resistant vinyl ester resin SMC sheet shape moulding compound of high-strength and high-modulus and preparation method thereof
WO2018043246A1 (en) Reinforcing filler for resin, and resin compsoition
JPS58127761A (en) High specific gravity composite material reinforced with organic fiber
WO1999061239A1 (en) Material for molding thermosetting resin sheet, production process, and molded product
US5869173A (en) Composite material and method for the preparation thereof
USH1332H (en) Thermal conductive material
JPS59207945A (en) Curable resin composition
JP3954130B2 (en) Low dielectric constant glass powder, printed wiring board using the same, and resin mixed material
JPH06102364B2 (en) Fiber-reinforced plastic molded product using discarded fiber-reinforced plastic as a filler and method for producing the same
EP1138469A2 (en) Material for molded resin articles and molded resin article using the same
JPS5874739A (en) Tetrafluoroethylene resin powder composition for molding
JPH09254156A (en) Building board
Ku et al. Tensile tests of phenol formaldehyde SLG reinforced composites: Pilot study
JPH07112500A (en) Sheet molding compound molded product
JPS6185464A (en) Phenolic resin molding material
US6369150B1 (en) Electromagnetic radiation absorption composition
JP2015183025A (en) Molding material for hot compression molding and molded part thereof
JPH0138816B2 (en)
JPS6341726B2 (en)
JPH06328614A (en) Composite sink
JPS59179639A (en) Mica-filled thermoplastic resin composition
JPH07165850A (en) Resin composition for frp pultrusion
JPS5928347B2 (en) polyester resin composition
JPH0234665A (en) Conductive resin comosition