JPH0137471B2 - - Google Patents

Info

Publication number
JPH0137471B2
JPH0137471B2 JP13389780A JP13389780A JPH0137471B2 JP H0137471 B2 JPH0137471 B2 JP H0137471B2 JP 13389780 A JP13389780 A JP 13389780A JP 13389780 A JP13389780 A JP 13389780A JP H0137471 B2 JPH0137471 B2 JP H0137471B2
Authority
JP
Japan
Prior art keywords
weight
wear
powder
alloy
sintered alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13389780A
Other languages
Japanese (ja)
Other versions
JPS5757860A (en
Inventor
Tsuyoshi Morishita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP13389780A priority Critical patent/JPS5757860A/en
Publication of JPS5757860A publication Critical patent/JPS5757860A/en
Publication of JPH0137471B2 publication Critical patent/JPH0137471B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明は、鋳鉄や鋼に焼結接合可能な耐摩耗性
焼結合金およびその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a wear-resistant sintered alloy that can be sintered and joined to cast iron or steel, and a method for producing the same.

従来より、経済的あるいは強度的な理由によつ
て、基材のうち耐摩耗性の必要な部分にのみ局部
的に耐摩耗性の優れた材料を接合する方法は種々
知られている。それらの方法および欠点を下記に
述べる。
Conventionally, various methods have been known for locally joining a material with excellent wear resistance only to a portion of a base material where wear resistance is required for economical or strength reasons. Those methods and drawbacks are discussed below.

(イ) 銀ロウ、真ちゆうロウ等でのロウ付方法 ロウ材、特に銀ロウでのロウ材が高価であると
ともに、自動化が難しく、大量生産ではコスト高
になる。また、耐摩耗性材料および基材に対して
加熱による悪影響を与える。
(a) Brazing method using silver solder, brass brazing, etc. The soldering material, especially the soldering material used in silver soldering, is expensive and difficult to automate, making mass production expensive. It also has an adverse effect on wear-resistant materials and substrates due to heating.

(ロ) 自溶合金接合法 自溶時の変形により加工代が多くなることによ
りコスト高になる。
(b) Self-fusing alloy joining method The deformation during self-fusing increases the machining allowance, which increases costs.

(ハ) Mo、W等による溶射法 ロツカーアームとカムとの摺動部分等、PV値
(摺動表面に加わる面圧Pと摺動速度Vとの積)
が高い部分には摩耗が多くなつて使用することが
困難である。また、材料歩留りが悪く、コスト高
になる。
(c) Thermal spraying method using Mo, W, etc. PV value (product of surface pressure P applied to the sliding surface and sliding speed V) for sliding parts between the Rocker arm and the cam, etc.
There is a lot of wear in areas with high levels of friction, making them difficult to use. In addition, material yield is poor and costs are high.

(ニ) Cr、Ni−Pメツキ等のメツキ法 使用条件(PV値、潤滑等)が限定され、油膜
が切れるような厳しい条件(ロツカーアームとカ
ムとの摺動部分等)では使用できない。
(d) Plating method for Cr, Ni-P plating, etc. The usage conditions (PV value, lubrication, etc.) are limited, and it cannot be used under severe conditions where the oil film breaks (such as the sliding part between the rocker arm and cam).

また、耐摩耗性材料に限定しなければ、その他
の接合法として粉末冶金法を利用する方法が知ら
れている。それらの方法および欠点を下記に述べ
る。
In addition, as long as the bonding method is not limited to wear-resistant materials, powder metallurgy is known as another joining method. Those methods and drawbacks are discussed below.

(イ) 焼結時の寸法変化を利用して接合する方法 焼結時の膨張あるいは収縮を利用して接合させ
る方法であるから、平坦部の上に接合することが
できない。
(a) A method of joining using dimensional changes during sintering This method uses expansion or contraction during sintering to join, so it cannot be joined on flat parts.

(ロ) 基材へ圧粉時に圧粉体を圧着し焼結する方法 圧粉成形により圧着しなければ充分な強度が得
られないので、基材の形状が限定される。
(b) A method of compressing and sintering the compacted powder onto a base material during compaction Since sufficient strength cannot be obtained unless the powder compact is compacted by compaction, the shape of the base material is limited.

(ハ) 銅系溶浸材やロウ材により焼結と同時に接合
する方法 接合を完全にするためには圧粉体の気孔を充填
するに十分な量の溶浸材あるいはロウ材を必要と
する。その結果、摺動面に対し溶浸材あるいはロ
ウ材の占める面積が多くなり、PV値が高い部分
には焼き付きが起り易いために使用できない。
(c) Method of joining at the same time as sintering using a copper-based infiltrant or brazing material To complete the bonding, a sufficient amount of infiltrating material or brazing material is required to fill the pores of the green compact. . As a result, the area occupied by the infiltration material or the brazing material increases with respect to the sliding surface, and it cannot be used in areas with a high PV value because seizure is likely to occur.

以上が従来から一般に行われている接合方法で
あるが、その他にプロジエクシヨン溶接等の溶接
によつて耐摩耗性材料を基材に溶接する方法等が
あるが、この場合には、耐摩耗性材料が一般的に
Mo、Cr、W、V、Ti、Nb等の炭化物形成元素
や焼入れ性の良い材料(Ni、Cu、Cr、Moを含
み、かつC量が多いもの)であるために、溶接部
に割れを生じ易いという問題がある。
The above are conventional joining methods, but there are other methods such as welding a wear-resistant material to a base material by welding such as projection welding. material is generally
Because it is made of carbide-forming elements such as Mo, Cr, W, V, Ti, and Nb, and materials with good hardenability (containing Ni, Cu, Cr, and Mo, and with a large amount of C), cracks may occur in the weld. There is a problem in that it is easy to occur.

一方、焼結接合するに際し鉄系基材からの限定
条件として、焼結接合時の加熱温度は1120℃以下
でなくてはならない。その理由は、特殊な鋼を除
けば、鋳鉄の場合、共晶温度が約1150℃であるか
ら、工業的には変形を生じない安全な温度は最高
で1120℃である。また、鋼の場合は、加熱温度が
高すぎると、結晶粒の粗大化現象が起こる結果、
衝撃強度および疲労強度が著しく低下するので、
加熱温度は1100℃以下に抑える必要があるためで
ある。
On the other hand, when sintering and bonding, the heating temperature during sintering and bonding must be 1120°C or less, as a limiting condition due to the iron-based base material. The reason for this is that, with the exception of special steels, the eutectic temperature of cast iron is approximately 1150°C, so the safe temperature at which deformation does not occur industrially is at most 1120°C. In addition, in the case of steel, if the heating temperature is too high, the crystal grains will coarsen, resulting in
Impact strength and fatigue strength are significantly reduced, so
This is because the heating temperature needs to be kept below 1100°C.

そこで、本出願人は、先に、以上の従来技術の
欠点を解消し、しかも上記の鉄系基材への焼結接
合時における限定条件(加熱温度条件)を満足す
る耐摩耗性焼結合金を提案している。すなわち、
この提案のものでは、Fe−(5〜30%)Mo−(2.5
〜5.0%)Cの合金粉末とFe−(3.0〜7.0%)P−
(0.5〜2.5%)Cの合金粉末とを混合し、圧粉成
形し、焼結することによつて得られる耐摩耗性焼
結合金を提案している。しかし、この提案のもの
は、PV値が非常に大きく、しかも潤滑が不十分
な部分(例えばピストンリング、ロータリピスト
ンエンジンのアペツクスシール等)に用いること
を目的としたために、硬質相(炭化物相)が占め
る割合を多くした結果、衝撃強度が0.08Kg・m/
cm2以下で小さいとともに、生産面ではFe−Mo−
C合金粉末およびFe−P−C合金粉末は共に硬
さが高く、圧粉成形時に殆んど塑性変形しないた
めに、成形体の強度が不十分であるという欠点を
有している。
Therefore, the present applicant first developed a wear-resistant sintered alloy that eliminates the drawbacks of the above-mentioned conventional technology and also satisfies the limited conditions (heating temperature conditions) during sintering and joining to the above-mentioned iron-based base material. is proposed. That is,
In this proposal, Fe−(5~30%) Mo−(2.5%
~5.0%) C alloy powder and Fe− (3.0~7.0%) P−
We propose a wear-resistant sintered alloy obtained by mixing C (0.5 to 2.5%) with alloy powder, compacting, and sintering. However, this proposal has a very large PV value and is intended to be used in parts with insufficient lubrication (e.g. piston rings, apex seals of rotary piston engines, etc.), so it has a hard phase (carbide phase). ) As a result of increasing the proportion of
In addition to being small (less than cm2 ), Fe−Mo−
Both the C alloy powder and the Fe-P-C alloy powder have high hardness and hardly undergo plastic deformation during compaction, so they have the disadvantage that the strength of the compact is insufficient.

本発明は、斯かる欠点を解消すべく、上記提案
のものをさらに改良したものであり、圧粉体の強
度を確保し、硬質相(硬化層)の量を少なくする
とともに靭性を付与し、さらに気孔を少なく抑え
るようにした鉄系基材に低温度でもつて焼結接合
可能な耐摩耗性焼結合金およびその製造方法を提
供せんとするものである。
The present invention is a further improvement of the above-mentioned proposal in order to eliminate such drawbacks, and it ensures the strength of the green compact, reduces the amount of hard phase (hardened layer), and imparts toughness. Furthermore, it is an object of the present invention to provide a wear-resistant sintered alloy that can be sintered and bonded to iron-based substrates at low temperatures, and a method for manufacturing the same, which has a reduced number of pores.

すなわち、本発明の耐摩耗性焼結合金は、
Mo3.0〜6.5重量%、P0.5〜1.5重量%、C1.0〜3.0
重量%、およびCr単独もしくはCrにNi、Mnのう
ち少なくとも1種を合わせて2.0〜7.0重量%含
み、残部がFeの組成よりなるものである。
That is, the wear-resistant sintered alloy of the present invention is
Mo3.0~6.5wt%, P0.5~1.5wt%, C1.0~3.0
% by weight, and 2.0 to 7.0% by weight of Cr alone or a combination of Cr and at least one of Ni and Mn, with the remainder being Fe.

また、本発明の耐摩耗性焼結合金の製造方法
は、Fe−Mo−P−C合金粉末とFe−Cr系ある
いはFe−Cr−Ni系ステンレス鋼の粉末とを150メ
ツシユ以下の細かい粒径の粉末にして混合し、こ
の混合粉末を圧粉成形し、1000〜1120℃の温度で
焼結することを特徴とするものである。
In addition, the method for producing a wear-resistant sintered alloy of the present invention involves mixing Fe-Mo-P-C alloy powder and Fe-Cr-based or Fe-Cr-Ni-based stainless steel powder with a fine particle size of 150 mesh or less. The method is characterized in that it is mixed into a powder, compacted, and sintered at a temperature of 1000 to 1120°C.

以下、本発明について詳述するに、本発明に係
る耐摩耗性焼結合金は、鋳鉄や鋼の鉄系基材に限
定条件温度(約1120℃)以下でもつて焼結接合可
能なものであつて、その成分範囲は、Feの組成
中に、Mo3.0〜6.5重量%と、P0.5〜1.5重量%と、
C1.0〜3.0重量%と、Cr単独もしくはCrにNi、
Mnのうち少なくとも1種を合わせて2.0〜7.0重
量%とを含有している。この成分範囲によつて、
圧粉体強度が確保され、硬質相の量が少なくなる
とともに、Ni、Cr、Mnによつて靭性が付与さ
れ、衝撃強度が0.1〜0.8Kg・m/cm2に増大し、さ
らに気孔が少なくなるものである。
The present invention will be described in detail below. The wear-resistant sintered alloy according to the present invention can be sintered and bonded to a ferrous base material such as cast iron or steel at a temperature below the limiting condition (approximately 1120°C). Therefore, the composition range of Fe is 3.0 to 6.5% by weight of Mo, 0.5 to 1.5% by weight of P, and
C1.0 to 3.0% by weight, Cr alone or Cr plus Ni,
The total content of at least one kind of Mn is 2.0 to 7.0% by weight. Depending on this range of ingredients,
The strength of the compact is ensured, the amount of hard phase is reduced, toughness is imparted by Ni, Cr, and Mn, the impact strength is increased to 0.1 to 0.8 Kg・m/ cm2 , and there are fewer pores. It is what it is.

そして、上記耐摩耗性焼結合金の成分範囲の限
定理由について述べると、先ず、Moは、基地の
強化および硬質相の形成に寄与するとともに、
Fe、Cと結合して融点を下げる役割をするもの
である。その成分範囲3.0重量%未満では、硬質
相の析出量が少なく、また液相量が少なくなるた
めに密度が上らず、その結果、耐摩耗性が低下す
るとともに、接合が不可能である。一方、6.5重
量%を超えると、上記効果が飽和するとともに、
かえつて液相量が多くなりすぎるために脆くな
る。よつて、3.0〜6.5重量%の範囲に設定されて
いる。
Regarding the reasons for limiting the range of components of the wear-resistant sintered alloy, firstly, Mo contributes to strengthening the base and forming a hard phase, and
It combines with Fe and C to lower the melting point. If the component range is less than 3.0% by weight, the amount of precipitated hard phase is small, and the amount of liquid phase is also small, so the density does not increase, and as a result, wear resistance decreases and bonding is impossible. On the other hand, when it exceeds 6.5% by weight, the above effects are saturated and
On the contrary, it becomes brittle because the amount of liquid phase becomes too large. Therefore, it is set in the range of 3.0 to 6.5% by weight.

また、Pは、Fe、Cと結合して燐共晶を形成
し、耐摩耗性を向上させるとともに、融点を下げ
る役割をするものである。それ故、成分範囲が
0.5重量%未満では上記効果が非常に少ない一方、
1.5重量%を超えると燐共晶がネツト状に晶出し
て、靭性を著しく低下させるので、0.5〜1.5重量
%の範囲に設定されている。
Further, P combines with Fe and C to form a phosphorus eutectic, which serves to improve wear resistance and lower the melting point. Therefore, the component range is
If it is less than 0.5% by weight, the above effects are very small;
If it exceeds 1.5% by weight, the phosphorus eutectic will crystallize into a net shape, significantly reducing toughness, so the content is set in the range of 0.5 to 1.5% by weight.

さらに、Cは、Fe、Mo、Pと結合して、基地
の強化および硬質相の形成を行うとともに、低融
点を形成し、密度の上昇および鉄系基材との接合
に役立つものである。それ故、成分範囲が1.0重
量%未満ではその効果が少なく、3.0重量%を超
えると、硬質相がネツト状に晶出し、結晶粒も粗
大化するために、靭性が著しく低下する。よつ
て、1.0〜3.0重量%の範囲に設定されている。
Furthermore, C combines with Fe, Mo, and P to strengthen the matrix and form a hard phase, and also forms a low melting point, which is useful for increasing density and bonding with iron-based base materials. Therefore, if the component range is less than 1.0% by weight, the effect will be small, and if it exceeds 3.0% by weight, the hard phase will crystallize in a net shape and the crystal grains will become coarse, resulting in a significant decrease in toughness. Therefore, it is set in the range of 1.0 to 3.0% by weight.

また、Cr、NiおよびMnは基地の強化、特に靭
性の向上に役立ち、そのためにCr、Ni、Mnのう
ち少なくとも1種が2.0〜7.0重量%必要である。
しかし、後述のFe−Cr系あるいはFe−Cr−Ni系
ステンレス鋼の粉末には何れもCrが含まれてい
るため、Cr単独もしくはCrにNi、Mnのうち少な
くとも1種を合わせて2.0〜7.0重量%必要とな
る。尚、2.0重量%未満では上記効果が少なく、
また、7.0重量%を超えることは上記効果が飽和
して経済的に必要でない。
Further, Cr, Ni, and Mn are useful for strengthening the matrix, particularly improving toughness, and for this purpose, at least one of Cr, Ni, and Mn is required in an amount of 2.0 to 7.0% by weight.
However, since the powders of Fe-Cr series or Fe-Cr-Ni series stainless steel described below both contain Cr, the powder content of Cr alone or in combination with at least one of Ni and Mn is 2.0 to 7.0. Weight% is required. In addition, if it is less than 2.0% by weight, the above effects will be small;
Moreover, if it exceeds 7.0% by weight, the above effects will be saturated and it is not economically necessary.

また、本発明に係る耐摩耗性焼結合金の製造方
法は、Fe−Mo−P−C合金粉末を結合金属と
し、これを、Fe−Cr系あるいはFe−Cr−Ni系ス
テンレス鋼の粉末を骨子金属として焼結すること
により行われる。しかも、上記両粉末は150メツ
シユ以下の細かい粒径の粉末が用いられ、この両
粉末を混合し、この混合粉末を圧粉成形し、1000
〜1120℃の温度で焼結することにより、上述の如
き成分範囲の耐摩耗性焼結合金が得られるもので
ある。
In addition, the method for manufacturing a wear-resistant sintered alloy according to the present invention uses Fe-Mo-P-C alloy powder as a bonding metal, and combines this with Fe-Cr-based or Fe-Cr-Ni-based stainless steel powder. This is done by sintering the skeleton metal. Furthermore, both of the above powders are powders with a fine particle size of 150 mesh or less, and these two powders are mixed, this mixed powder is compacted, and 1000
By sintering at a temperature of ~1120°C, a wear-resistant sintered alloy having the above-mentioned composition range can be obtained.

ここで、上記Fe−Mo−P−C合金粉末とFe−
Cr系あるいはFe−Cr−Ni系ステンレス鋼の粉末
を使用する理由は、単に、上述の本発明の耐摩耗
性焼結合金の成分範囲になるように鉄粉、クロ
ム、モリブデン、マンガン、燐等のフエロアロイ
粉および黒鉛粉を配合混合し、圧粉成形し、焼結
したのでは、液相が現われる際には大きな気孔
(200μ以上のもの)が生じ、密度の上昇を妨げる
とともに、結晶粒、炭化物の粗大化によつて強度
および耐摩耗性を低下させるからであり、本発明
の如き粉末の使用ではこれらの現象が起らないか
らである。
Here, the above Fe-Mo-P-C alloy powder and Fe-
The reason for using Cr-based or Fe-Cr-Ni-based stainless steel powder is simply to add iron powder, chromium, molybdenum, manganese, phosphorus, etc. to the above-mentioned range of the wear-resistant sintered alloy of the present invention. When ferroalloy powder and graphite powder are mixed, compacted, and sintered, large pores (more than 200μ) are generated when the liquid phase appears, which hinders the increase in density and causes crystal grains and This is because the coarsening of carbides reduces strength and wear resistance, and these phenomena do not occur when powders such as those of the present invention are used.

特に、上記骨子金属のFe−Mo−P−C合金粉
末としては、Mo5〜15重量%、P1.5〜3.0重量%、
C3.0〜4.5重量%、残部がFeの成分範囲のものが
好ましい。すなわち、これらの成分のうち、Mo
は焼結後における基地の強化、Fe、Cとの結合
による硬質相の形成、Fe−Mo−Cの共晶による
液相晶出での密度上昇、および鉄系基材との接合
に役立つもので、5重量%未満では上記効果が少
なく、15重量%を超えると液相量が多くなりすぎ
て脆くなるので、5〜15重量%の範囲が好まし
い。また、PはFe、Cと結合して燐共晶を形成
するのに役立つもので、1.5重量%未満ではその
効果が少なく、3.0重量%を超えると燐共晶がネ
ツト状に晶出して靭性を著しく低下させるので、
1.5〜3.0重量%の範囲が好ましい。さらに、Cは
Fe、Mo、Pと結合して、基地の強化および硬質
相の形成に役立つとともに、低融点相を形成し
て、密度上昇および鉄系基材との接合に役立つも
ので、3.0重量%未満ではその効果が少なく、4.5
重量%を超えると硬質相がネツト状に晶出し、結
晶粒も粗大化して靭性を著しく低下させるので、
3.0〜4.5重量%の範囲が好ましいものである。
In particular, as the Fe-Mo-P-C alloy powder of the skeleton metal, Mo5 to 15% by weight, P1.5 to 3.0% by weight,
Preferably, the composition ranges from 3.0 to 4.5% by weight of C and the balance being Fe. That is, among these components, Mo
is useful for strengthening the base after sintering, forming a hard phase by combining with Fe and C, increasing density in liquid phase crystallization due to Fe-Mo-C eutectic, and bonding with iron-based base materials. If it is less than 5% by weight, the above effect will be small, and if it exceeds 15% by weight, the amount of liquid phase will be too large and it will become brittle, so a range of 5 to 15% by weight is preferable. In addition, P helps form a phosphorus eutectic by combining with Fe and C, and if it is less than 1.5% by weight, the effect is small, and if it exceeds 3.0% by weight, the phosphorus eutectic crystallizes in a net shape, improving toughness. as it significantly reduces
A range of 1.5 to 3.0% by weight is preferred. Furthermore, C is
It combines with Fe, Mo, and P to help strengthen the base and form a hard phase, and also forms a low melting point phase that helps increase density and bond with iron-based substrates. If less than 3.0% by weight, Its effect is less, 4.5
If it exceeds % by weight, the hard phase will crystallize into a net shape and the crystal grains will become coarser, significantly reducing toughness.
A range of 3.0 to 4.5% by weight is preferred.

さらに、上記Fe−Mo−P−C合金粉末および
Fe−Cr系あるいはFe−Cr−Ni系ステンレス鋼の
粉末として150メツシユ以下の細かい粒径のもの
を使用する理由について述べるに、粒径が150メ
ツシユより大きいと、焼結時に液相が現われて収
縮し、密度が上昇する過程で大きな粉末粒子によ
つてブリツジ現象を起こすことにより、大きな気
孔が残存し、結局、密度が上らないことになる。
また、Fe−Mo−P−C合金粉末の方に大きな粒
子が存在すると、焼結時に液相が現われた際、そ
の大きな粒子が存在した部分に大きな気孔が生じ
るからである。それ故に、150メツシユ以下にす
る必要がある。
Furthermore, the above Fe-Mo-P-C alloy powder and
The reason for using Fe-Cr or Fe-Cr-Ni stainless steel powder with a fine particle size of 150 mesh or less is that if the particle size is larger than 150 mesh, a liquid phase will appear during sintering. In the process of shrinking and increasing density, the large powder particles cause a bridging phenomenon, leaving large pores and ultimately preventing the density from increasing.
Furthermore, if larger particles are present in the Fe-Mo-P-C alloy powder, large pores will be created in the areas where the large particles were present when a liquid phase appears during sintering. Therefore, it is necessary to keep it below 150 meters.

また、予め、Ni、Cr、Mnを含んだ合金粉末の
みを使用しないのは、粉末粒子の硬さが高くなり
塑性変形しなくなつて、成形体強度が低下すると
ともに、合金粉末の中の液相が生ずる部分の融点
が上昇して、焼結接合時の加熱温度の限界条件で
ある1120℃を超えてしまうためである。
Also, if you do not use only alloy powder containing Ni, Cr, and Mn in advance, the hardness of the powder particles will increase and they will not deform plastically, resulting in a decrease in the strength of the compact and the liquid in the alloy powder. This is because the melting point of the part where the phase is generated rises and exceeds 1120°C, which is the limit condition for the heating temperature during sintering and joining.

次に、本発明の実施例について説明すると、粒
度が150メツシユ以下のSUS410粉末および同じ
く粒度が150メツシユ以下でMo10.5重量%、P2.4
重量%、C3.6重量%、残部がFeの合金粉末、並
びに黒鉛粉末および潤滑剤を配合して混合し、こ
の混合粉末を5t/cm2の圧縮圧力で圧粉成形した
後、S45Cの基材上に載置し、水素雰囲気中で
1080℃の温度に20分間保持して焼結接合すること
により、基材上に、Mo5.25重量%、P1.2重量%、
C2.05重量%、Cr6.75重量%、残りFeの組成より
なる耐摩耗性焼結合金が焼結接合された複合材が
得られた。この焼結合金の密度は7.53g/cm2、硬
さはHRC58であり、また、その内部の組織写真お
よび接合部の組織写真を第1図および第2図に示
す。第1図に示す焼結合金の内部組織写真(×
200)において、白色部分は炭化物を示し、灰色
部分は微細炭化物を示す。また、第2図に示す接
合部の組織写真(×400)において、白色側の部
分は焼結材を示し、黒色側の部分はS45C基材を
示す。
Next, to explain examples of the present invention, SUS410 powder with a particle size of 150 mesh or less and a particle size of 150 mesh or less with Mo10.5% by weight and P2.4
After blending and mixing an alloy powder of 3.6% by weight, C3.6% by weight, and the balance being Fe, graphite powder, and a lubricant, and compacting this mixed powder at a compression pressure of 5t/ cm2 , the S45C base placed on a material and placed in a hydrogen atmosphere.
By holding at a temperature of 1080℃ for 20 minutes and sintering, 5.25% by weight of Mo, 1.2% by weight of P,
A composite material was obtained in which a wear-resistant sintered alloy having a composition of 2.05% by weight of C, 6.75% by weight of Cr, and the remainder Fe was sintered and joined. This sintered alloy has a density of 7.53 g/cm 2 and a hardness of H RC 58, and photographs of its internal structure and of the joint are shown in FIGS. 1 and 2. A photograph of the internal structure of the sintered alloy shown in Fig. 1 (×
200), white parts indicate carbides and gray parts indicate fine carbides. In addition, in the structure photograph (×400) of the joint shown in FIG. 2, the white part shows the sintered material, and the black part shows the S45C base material.

次いで、上記複合材をロツカーアームの形状に
加工し(本発明例)、このロツカーアームを、カ
ム部をチル化した鋳鉄製カムシヤフトと組合せ
て、耐摩耗性のテストを、回転数が700r.p.mと
2000r.p.mの2種類で、且つオイルとして劣化オ
イルを使用するテスト条件でもつて行い、その結
果を従来例(カムシヤフトと同材質のチル化品
で、FC25に0.45重量%Crを添加した合金鋳鉄よ
りなるロツカーアーム)と比較して第3図および
第4図に示す。
Next, the above composite material was processed into the shape of a rocker arm (an example of the present invention), and this rocker arm was combined with a cast iron camshaft with a chilled cam part, and a wear resistance test was conducted at a rotation speed of 700 r.pm.
2000rpm and under test conditions using degraded oil as the oil, and the results were compared to a conventional example (chilled product made of the same material as the camshaft, alloyed cast iron with 0.45% Cr added to FC25). Figures 3 and 4 show a comparison with the Rocker arm.

第3図はロツカーアームのパツト面の摩耗度を
示し、従来例では、摩耗量は運転時間の経過に従
つて増大して大きく、特に高回転数(2000r.p.
m.)のときには急激に増大するのに対し、本発
明例では、摩耗量は運転時間の経過に対してほと
んど変わらずに小さく、しかも回転数の大小に拘
らずほぼ一定であるため、優れた耐摩耗性を有す
ることが判る。
Figure 3 shows the degree of wear on the part surface of the rocker arm. In the conventional example, the amount of wear increased as the operating time progressed, especially at high rotational speeds (2000 r.p.
In contrast, in the example of the present invention, the amount of wear remains small over the course of operation time, and is almost constant regardless of the number of rotations. It can be seen that it has wear resistance.

また、第4図はカムシヤフトのカム部の摩耗度
を示し、本発明例および従来例共にほぼ同じ摩耗
傾向を示している。つまり、本発明の焼結合金は
優れた耐摩耗性を有するとともに相手部材を損傷
することもない性質を有するものであることが判
る。
Further, FIG. 4 shows the degree of wear of the cam portion of the camshaft, and both the example of the present invention and the conventional example show almost the same wear tendency. In other words, it can be seen that the sintered alloy of the present invention has excellent wear resistance and does not damage the mating member.

以上説明したように、本発明の耐摩耗性焼結合
金によれば、優れた耐摩耗性を有するのは勿論の
こと、圧粉体強度の確保、硬質相の量の減少化、
靭性の付与および気孔の減少化を図りつつ、低温
度でもつて鋳鉄や鋼に焼結接合することができる
焼結合金を提供することができるものである。
As explained above, the wear-resistant sintered alloy of the present invention not only has excellent wear resistance, but also ensures green compact strength, reduces the amount of hard phase, and
It is possible to provide a sintered alloy that can be sintered and joined to cast iron or steel at low temperatures while imparting toughness and reducing pores.

また、本発明の製造方法によれば、上記効果を
発揮する耐摩耗性焼結合金を有効に得ることがで
きるものである。
Further, according to the manufacturing method of the present invention, a wear-resistant sintered alloy that exhibits the above effects can be effectively obtained.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施態様を例示するもので、第
1図は本発明に係る耐摩耗性焼結合金の内部の組
織写真、第2図は接合部の組織写真であり、第3
図および第4図はそれぞれ本発明例と従来例とを
比較したロツカーアームのパツト面およびカムシ
ヤフトのカム部の摩耗度を示すテスト結果図であ
る。
The drawings illustrate embodiments of the present invention, and FIG. 1 is a photograph of the internal structure of the wear-resistant sintered alloy according to the present invention, FIG. 2 is a photograph of the structure of the joint, and FIG.
4 and 4 are test result diagrams showing the degree of wear of the rocker arm pad surface and the cam portion of the camshaft, respectively, comparing the example of the present invention and the conventional example.

Claims (1)

【特許請求の範囲】 1 Mo3.0〜6.5重量%、P0.5〜1.5重量%、C1.0
〜3.0重量%、およびCr単独もしくはCrにNi、
Mnのうち少なくとも1種を合わせて2.0〜7.0重
量%含み、残部がFeの組成よりなることを特徴
とする耐摩耗性焼結合金。 2 Fe−Mo−P−C合金粉末とFe−Cr系ある
いはFe−Cr−Ni系ステンレス鋼の粉末とを150メ
ツシユ以下の細かい粒径の粉末にして混合し、こ
の混合粉末を圧粉成形し、1000〜1120℃の温度で
焼結することにより、Mo3.0〜6.5重量%、P0.5
〜1.5重量%、C1.0〜3.0重量%、およびCr単独も
しくはCrにNi、Mnのうち少なくとも1種を合わ
せて2.0〜7.0重量%含み、残部がFeの組成よりな
る耐摩耗性焼結合金を製造することを特徴とする
耐摩耗性焼結合金の製造方法。
[Claims] 1 Mo3.0-6.5% by weight, P0.5-1.5% by weight, C1.0
~3.0% by weight, and Cr alone or Cr plus Ni,
A wear-resistant sintered alloy comprising a total of 2.0 to 7.0% by weight of at least one type of Mn, with the balance being Fe. 2 Fe-Mo-P-C alloy powder and Fe-Cr-based or Fe-Cr-Ni-based stainless steel powder are mixed into powder with a fine particle size of 150 mesh or less, and this mixed powder is compacted. , Mo3.0~6.5wt%, P0.5 by sintering at a temperature of 1000~1120℃
A wear-resistant sintered alloy comprising ~1.5% by weight, 1.0-3.0% by weight of C, and 2.0-7.0% by weight of Cr alone or a combination of Cr and at least one of Ni and Mn, with the balance being Fe. A method for manufacturing a wear-resistant sintered alloy, characterized by manufacturing.
JP13389780A 1980-09-25 1980-09-25 Wear resistant sintered alloy and its manufacture Granted JPS5757860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13389780A JPS5757860A (en) 1980-09-25 1980-09-25 Wear resistant sintered alloy and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13389780A JPS5757860A (en) 1980-09-25 1980-09-25 Wear resistant sintered alloy and its manufacture

Publications (2)

Publication Number Publication Date
JPS5757860A JPS5757860A (en) 1982-04-07
JPH0137471B2 true JPH0137471B2 (en) 1989-08-07

Family

ID=15115656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13389780A Granted JPS5757860A (en) 1980-09-25 1980-09-25 Wear resistant sintered alloy and its manufacture

Country Status (1)

Country Link
JP (1) JPS5757860A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0699782B2 (en) * 1984-06-06 1994-12-07 住友金属工業株式会社 Sintered stainless steel and its manufacturing method
JPH0699783B2 (en) * 1984-06-06 1994-12-07 住友金属工業株式会社 Sintered stainless steel and its manufacturing method

Also Published As

Publication number Publication date
JPS5757860A (en) 1982-04-07

Similar Documents

Publication Publication Date Title
JP2957180B2 (en) Wear-resistant iron-based sintered alloy and method for producing the same
US4524046A (en) Method for manufacturing a cam-cam shaft assembly
CN100374605C (en) Power-matallurgy valve seat inserts
JP3327663B2 (en) High temperature wear resistant sintered alloy
James Liquid phase sintering in ferrous powder metallurgy
CN101906592B (en) High-wear resistant low-cobalt powder metallurgical valve seat
JPS6053764B2 (en) valve seat ring
JPS599152A (en) Wear-resistant sintered alloy
JP4179550B2 (en) Wear-resistant sintered alloy and method for producing the same
JPH0137471B2 (en)
JP4197751B2 (en) Metallic friction material and method for manufacturing the same
US6712872B2 (en) Powder metallurgy produced valve body and valve fitted with said valve body
GB2157711A (en) Improvements relating to tough material for tools and/or wearing parts
JP3749809B2 (en) Piston ring composite wear-resistant ring with cooling cavity with excellent high-temperature wear resistance and thermal conductivity
JPH0379428B2 (en)
JPH0116905B2 (en)
JP2661045B2 (en) Fe-based sintered alloy with excellent sliding properties
JPS58224154A (en) Sintered fe alloy for valve seat of internal combustion engine
JP3254909B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP3230126B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP3230125B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP3230124B2 (en) Internal-combustion engine tappet member having high joining strength with chip material
JP2571567B2 (en) High temperature wear resistant iron-based sintered alloy
JP2827909B2 (en) Internal combustion engine tappet member with high bonding strength with tip material
JP3230127B2 (en) Internal-combustion engine tappet member having high joining strength with chip material