JPH0137385B2 - - Google Patents

Info

Publication number
JPH0137385B2
JPH0137385B2 JP636988A JP636988A JPH0137385B2 JP H0137385 B2 JPH0137385 B2 JP H0137385B2 JP 636988 A JP636988 A JP 636988A JP 636988 A JP636988 A JP 636988A JP H0137385 B2 JPH0137385 B2 JP H0137385B2
Authority
JP
Japan
Prior art keywords
tert
butylacetic acid
optically active
halo
salt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP636988A
Other languages
Japanese (ja)
Other versions
JPS63211248A (en
Inventor
Yukio Suzuki
Osamu Kirino
Shunichi Hashimoto
Keiji Matsumoto
Hiromichi Ooshio
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP636988A priority Critical patent/JPS63211248A/en
Publication of JPS63211248A publication Critical patent/JPS63211248A/en
Publication of JPH0137385B2 publication Critical patent/JPH0137385B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、除草活性を有する化合物の中間体で
ある光学活性α−ハロ−tert−ブチル酢酸の製造
方法に関する。 本発明者らは、一般式 〔式中、Xはハロゲン原子を表わし、Rは水素
原子またはメチル基を表わし、※は不斉炭素を表
わす。〕 で示されるN−ベンジル−ハロアセトアミド誘導
体が強い除草活性を有することを見出したが、こ
の化合物は一般式〔〕で示したごとく、酸側に
不斉炭素(※で表示)を有するので各々二種類の
光学異性体が存在しうる。 一般式〔〕で示される化合物はベンジルアミ
ン誘導体と光学活性α−ハロ−tert−ブチル酢酸
あるいはその反応性誘導体とを反応させて製造す
ることができるが、そのためには原料化合物とし
て光学活性α−ハロ−tert−ブチル酢酸が必要で
ある。 ところでα−クロル−tert−およびα−ブロム
−tert−ブチル酢酸はすでに知られている(W.G.
Galettoら、J.Chem.Soc.(C),1969,2437−
2438)。 しかしながら、この文献およびE.Abdelhalden
らのZ.physiol.Chem.,228 187−197(1934)に
示されている方法ではα−tert−ブチルグリシン
を合成し、これを光学分割して光学活性α−tert
−ブチルグリシンを得、これを光学活性α−ハロ
−tert−ブチル酢酸に変換する方法であり、工程
数を多く要するものである。α−ハロ−tert−ブ
チル酢酸はtert−ブチル酢酸のハロゲン化によつ
て容易に合成できるから、α−ハロ−tert−ブチ
ル酸を直接光学分割する方法を見出せれば、工程
ははるかに短縮される。 本発明者らは、容易に光学活性α−ハロ−tert
−ブチル酢酸を得るために、α−ハロ−tert−ブ
チル酢酸を光学活性α−メチルベンジルアミン
(以下PEAと略称する)または光学活性1−フエ
ニル−2−(p−トリル)−エチルアミン(以下
PTEと略称する)で光学分割する方法を見出し
た。 α−ハロ−tert−ブチル酢酸を光学分割するに
は光学活性PEAまたはPTEと塩を形成させ、該
塩を溶媒中で一方のジアステレオマー塩を析出さ
せ、あるいは他方のジアステレオマー塩を溶解さ
せて一方のジアステレオマー塩のみを結晶として
得る。 塩を形成させる際には、溶媒中で行なうことが
より好ましい。ラセミのα−ハロ−tert−ブチル
酢酸1molに対して光学活性PEAまたはPTEは0.5
〜1molを通常用いる。溶媒は2つのジアステレ
オマー塩の溶解度差の大きいものがよく、たとえ
ば含水アルコールまたは水がよい。特に含水メタ
ノールまたは含水エタノールが好ましい。得られ
たジアステレオマー塩は必要に応じ再結晶等によ
つて精製することができる。 このようにして得られたジアステレオマー塩は
鉱酸または強塩基によつて分解し、光学活性α−
ハロ−tert−ブチル酢酸とPEAまたはPTEを回
収する。 上記のようにして得られた光学活性α−ハロ−
tert−ブチル酢酸あるいはその反応性誘導体と、
一般式 〔式中、Rは水素原子またはメチル基を表わ
す。〕 で示されるベンジルアミン誘導体とを適当な溶媒
を用いてあるいは無溶媒で反応させることによ
り、一般式〔〕で示される化合物を合成するこ
とができる。 次に実施例をあげ、本発明をさらに詳細に説明
するが、本発明はこれらに限定されるものではな
い。 なお、以下の実施例において光学活性α−ハロ
−tert−ブチル酢酸はα,α−ジメチルベンジル
アミンまたはn−ヘキシルアミンとトルエン中、
N,N′−ジシクロヘキシルカルボジイミドを脱
水剤として反応させて対応したアミドとしたの
ち、下記ガスクロマトグラフ条件により光学純度
を分析した。 カラム;光学活性トリペプチド系液相OA−300
(住友化学商品名)を塗付したWCOTガラ
スキヤピラリーカラム0.25mmφ×40m カラム温度;180℃ キヤリアガス;ヘリウム0.68ml/分 実施例 1 α−ブロム−tert−ブチル酢酸9.75gを30%エ
タノール30gに溶解し、室温(20〜25℃)で撹拌
下、l−PEA6.06gを滴下した。滴下終了後撹拌
を続けると結晶が析出した。これを加熱して溶解
し、ゆつくり撹拌しながら3〜5℃まで冷却し
た。この温度で2時間撹拌し、過してl−α−
ブロム−tert−ブチル酢酸のl−PEA塩2.03gを
得た。 m.p.124〜139℃〔α〕21 D−13.1゜(メタノール、C
=2.0) 上記塩1.31gに10%塩酸5c.c.、トルエン10c.c.お
よび水10c.c.を加え、40℃でよく撹拌したのち分液
した。 油層を水洗したのち、濃縮してl−α−ブロム
−tert−ブチル酢酸0.76gを得た。 〔α〕23 D−12.3゜(クロロホルムC=7.0) または−17.5゜(99.5%エタノールC=1.6) 光学純度77.4% 実施例 2 実施例1と同様にして得たl−α−ブロム−
tert−ブチル酢酸のl−PEA塩1.82gを2倍量の
30%エタノール中で再結晶して、精製された塩
1.07gを得た。 m.p.140〜151℃〔α〕22 D−14.5゜(メタノール、C
=0.5) 実施例1と同様に塩を分解して 〔α〕22 D−11.7゜(クロロホルム、C=2.17) 光学純度 93.4% のl−α−ブロム−tert−ブチル酢酸を得た。 実施例 3 α−ブロム−tert−ブチル酢酸19.51gを80%エ
タノール105gに溶解し、l−PTE21.13gを撹拌
下室温で滴下した。滴下終了後昇温し、環流下結
晶を完溶させたのち、ゆつくり冷却した。26.5℃
で過し、結晶9.22gを得た。 m.p.162〜175℃ 〔α〕21 D−53.9゜(メタノール、C=1.9) この結晶9gを5%水酸化ナトリウム水溶液
35.4gとトルエン10c.c.と共に60℃で1時間撹拌し
たのち分液し、さらに油層を1%水酸化ナトリウ
ム水溶液10gで抽出を2回行なつた(油層の廃
棄)。水層を合わせ、これに10%塩酸22gとトル
エン20c.c.を加え、よく混合したのち分液し水層か
らさらにトルエン10c.c.で2回抽出した。油層を合
わせ、これを水で洗浄したのち濃縮し、d−α−
ブロム−tert−ブチル酢酸2.88gを得た。 〔α〕23 D+10.9゜(クロロホルム、C=2.0) 光学純度 83.2% 実施例 4 α−ブロム−tert−ブチル酢酸39.01gを80%エ
タノール155c.c.に溶解し、還流下d−PTE27.47g
を30分にわたり滴下した。滴下終了後、撹拌下に
冷却し、30℃で過した。l−α−ブロム−tert
−ブチル酢酸のd−PTE塩12.31gを得た。 m.p.160〜173℃ 〔α〕21 D+54.5゜(クロロホルム、C=1.85) 塩中のl−α−ブロム−tert−ブチル酢酸の光
学純度は87.2%であつた。 この塩12gを80%エタノール60g中で加熱した
のち撹拌下冷却し、26℃で過した。より精製さ
れた塩5.16gを得た。 m.p.181〜184℃ 〔α〕21 D+52.3゜(メタノール、C=0.65) 実施例3と同様に塩を分解し、2.62gのl−α
−ブロム−tert−ブチル酢酸を得た。 〔α〕21 D−12.1゜(クロロホルム、C=2.08) 光学純度 98.0% 実施例 5 α−クロム−tert−ブチル酢酸9.04gを80%エ
タノール20gに溶解し、l−PEA7.27gを室温で
滴下した。終了後8℃まで冷却し、そのまま1時
間撹拌したのち過し、4.22gのl−α−クロル
−tert−ブチル酢酸のl−PEA塩を得た。塩中の
l−α−クロル−tert−ブチル酢酸の光学純度は
71.0%であつた。 上記の塩3.99gを2倍量の50%エタノール中で
加熱溶解し(68℃)、そのまま25℃まで冷却した。
過して得た塩は1.79gであつた。 この塩1.53gに10%塩酸3.1g、クロロホルム
3.1g、および水8c.c.を加えて40℃で1時間撹拌
したのち分液し、水層からさらにクロロホルムで
2回抽出したのち、クロロホルム層を集めて濃縮
し、l−α−クロル−tert−ブチル酢酸0.82gを
得た。 〔α〕22 D−25.04゜(クロロホルム、C=2.09) 光学純度 96.4% 実施例 6 実施例5でα−クロル−tert−ブチル酢酸をl
−PEAで分割した液より回収したd−体に富
むα−クロル−tert−ブチル酢酸6.55gを50%エ
タノール13.10gに溶解し、室温(20〜25℃)で
d−PEA5.27gを滴下した。滴下終了後、2時間
撹拌し、過してd−α−クロル−tert−ブチル
酢酸のd−PEA塩2.28gを得た。 この塩2.01gを実施例5と同様に分解し、d−
α−クロル−tert−ブチル酢酸1.08gを得た。 〔α〕22 D+22.46゜(クロロホルム、C=2.08) 光学純度 92.6% さらに、本発明化合物を原料化合物とする光学
活性N−ベンジル−ハロアセトアミド誘導体の製
造例および試験例を参考例として、以下記載す
る。 参考例 1 〔d−N−(α,α−ジメチルベンジル)−α−
ブロム−tert−ブチル酢酸アミドの製造〕 l−α−ブロム−tert−ブチル酢酸(光学純度
98.0%)1gをベンゼン10c.c.に溶解しトリエチル
アミン1滴を加え、塩化チオニル3c.c.を室温で滴
下したのち40℃で4時間撹拌した。そののちベン
ゼンと塩化チオニルとをロータリーエバポレータ
ー(約20mmHg/室温)で留去した。濃縮残分に
撹拌しながらα,α−ジメチルベンジルアミン
1.39gとトリエチルアミン1.97gを5c.c.のトルエ
ンに溶解した溶液を室温で滴下し、そのまま4時
間撹拌した。その後、10%塩酸9.4gを加えその
まま過した。結晶を水と少量のトルエンで洗
い、d−N−(α,α−ジメチルベンジル)−α−
ブロム−tert−ブチル酢酸アミド0.95gを得た。 〔α〕21 D+0.31゜(クロロホルム、C=1.93) m.p.172〜178℃ 光学純度 90.4% 参考例 2 〔d−N−(α,α−ジメチルベンジル)−α−
クロル−tert−ブチル酢酸アミドの製造〕 参考例1と同様にして、l−α−クロル−tert
−ブチル酢酸(光学純度96.4%)0.74gをα,α
−ジメチルベンジルアミンと反応させ、d−N−
(α,α−ジメチルベンジル)−α−クロル−tert
−ブチル酢酸アミド0.49gを得た。 〔α〕22 D+15.9゜(クロロホルム、C=2.03) m.p.150〜155℃ 光学純度 98.6% 参考例3 湛水土壌処理試験 水田土壌1.5Kgずつ詰めた直径14cmのワグネル
ポツトを水田状態にし、3葉期の稲苗を移植し、
さらにヒエ種子、ホタルイ種子を播種し、ウリカ
ワ、ミズガヤツリの塊茎を植え付け、これに所定
量の薬剤を湛水土壌処理した。薬剤処理後25日目
に前記移植または播種植付けした植物および自然
発生したコナギについて除草効力、薬害の程度を
調査した。その結果を表1に示す。 なお、処理方法については、所定量の薬剤を水
和剤の型でポツト当り15c.c.処理した。処理に際し
てはピペツトにて滴下した。除草効力の評価は下
記のように0〜5の数字で表わした。 0……抑草率 0〜9% 1……抑草率 10〜29% 2……抑草率 30〜49% 3……抑草率 50〜69% 4……抑草率 70〜89% 5……抑草率 90〜100% 薬害に関しては、草丈、分げつ数、全量(風乾
重)の対無処理区比を出し、3つの要因のもつと
も値の悪いものをとつて0〜5で評価した。 0……対無処理区比 100% 1……対無処理区比 90〜99% 2……対無処理区比 80〜89% 3……対無処理区比 60〜79% 4……対無処理区比 40〜59% 5……対無処理区比 0〜39%
The present invention relates to a method for producing optically active α-halo-tert-butylacetic acid, which is an intermediate for a compound having herbicidal activity. The inventors have determined that the general formula [In the formula, X represents a halogen atom, R represents a hydrogen atom or a methyl group, and * represents an asymmetric carbon. ] It was discovered that the N-benzyl-haloacetamide derivative represented by the formula [ ] has strong herbicidal activity, but as shown in the general formula [ ], this compound has an asymmetric carbon (indicated by *) on the acid side, so each Two types of optical isomers can exist. The compound represented by the general formula [] can be produced by reacting a benzylamine derivative with optically active α-halo-tert-butyl acetic acid or its reactive derivative. Halo-tert-butylacetic acid is required. By the way, α-chloro-tert- and α-bromo-tert-butylacetic acid are already known (WG
Galetto et al., J. Chem. Soc. (C), 1969 , 2437-
2438). However, this document and E. Abdelhalden
In the method shown in Z.physiol .
This method involves obtaining -butylglycine and converting it into optically active α-halo-tert-butylacetic acid, and requires a large number of steps. Since α-halo-tert-butylacetic acid can be easily synthesized by halogenation of tert-butylacetic acid, if a method could be found to directly optically resolve α-halo-tert-butylacetic acid, the process would be much shorter. Ru. The present inventors readily demonstrated that optically active α-halo-tert
In order to obtain -butylacetic acid, α-halo-tert-butylacetic acid was converted into optically active α-methylbenzylamine (hereinafter abbreviated as PEA) or optically active 1-phenyl-2-(p-tolyl)-ethylamine (hereinafter abbreviated as PEA).
We discovered a method for optical separation using PTE (abbreviated as PTE). To optically resolve α-halo-tert-butylacetic acid, form a salt with optically active PEA or PTE, precipitate one diastereomeric salt in a solvent, or dissolve the other diastereomeric salt. Then, only one diastereomeric salt is obtained as a crystal. When forming a salt, it is more preferable to form the salt in a solvent. Optically active PEA or PTE is 0.5 per mol of racemic α-halo-tert-butyl acetic acid.
~1 mol is usually used. The solvent preferably has a large difference in solubility between the two diastereomeric salts, such as hydrous alcohol or water. Particularly preferred is water-containing methanol or water-containing ethanol. The obtained diastereomeric salt can be purified by recrystallization or the like, if necessary. The diastereomeric salts thus obtained are decomposed with mineral acids or strong bases and optically active α-
Recover halo-tert-butylacetic acid and PEA or PTE. Optically active α-halo obtained as above
tert-butylacetic acid or its reactive derivative;
general formula [In the formula, R represents a hydrogen atom or a methyl group. ] A compound represented by the general formula [ ] can be synthesized by reacting the benzylamine derivative represented by the following with an appropriate solvent or without a solvent. EXAMPLES Next, the present invention will be described in more detail with reference to Examples, but the present invention is not limited thereto. In addition, in the following examples, optically active α-halo-tert-butylacetic acid was mixed with α,α-dimethylbenzylamine or n-hexylamine in toluene,
After reacting N,N'-dicyclohexylcarbodiimide as a dehydrating agent to obtain the corresponding amide, the optical purity was analyzed under the following gas chromatography conditions. Column: optically active tripeptide liquid phase OA-300
(Sumitomo Chemical brand name) WCOT glass capillary column coated with 0.25 mmφ x 40 m Column temperature: 180°C Carrier gas: Helium 0.68 ml/min Example 1 9.75 g of α-bromo-tert-butylacetic acid was dissolved in 30 g of 30% ethanol. After dissolving, 6.06 g of l-PEA was added dropwise to the solution while stirring at room temperature (20 to 25°C). After the dropwise addition was completed, stirring was continued to precipitate crystals. This was heated to dissolve, and slowly cooled to 3 to 5° C. with stirring. Stir at this temperature for 2 hours and filter l-α-
2.03 g of l-PEA salt of bromo-tert-butylacetic acid was obtained. mp124~139℃〔α〕 21 D −13.1゜(methanol, C
= 2.0) To 1.31 g of the above salt were added 5 c.c. of 10% hydrochloric acid, 10 c.c. of toluene, and 10 c.c. of water, and after stirring well at 40° C., the mixture was separated. After washing the oil layer with water, it was concentrated to obtain 0.76 g of l-α-bromo-tert-butylacetic acid. [α] 23 D -12.3° (chloroform C = 7.0) or -17.5° (99.5% ethanol C = 1.6) Optical purity 77.4% Example 2 l-α-brome obtained in the same manner as Example 1
1.82 g of l-PEA salt of tert-butylacetic acid was added in twice the amount.
Purified salt by recrystallization in 30% ethanol
1.07g was obtained. mp140~151℃〔α〕 22 D −14.5゜(methanol, C
= 0.5) The salt was decomposed in the same manner as in Example 1 to obtain l-α-bromo-tert-butylacetic acid having an optical purity of 93.4%. Example 3 19.51 g of α-bromo-tert-butylacetic acid was dissolved in 105 g of 80% ethanol, and 21.13 g of l-PTE was added dropwise at room temperature while stirring. After the dropwise addition was completed, the temperature was raised to completely dissolve the crystals under reflux, and then slowly cooled. 26.5℃
9.22 g of crystals were obtained. mp162-175℃ [α] 21 D -53.9゜ (methanol, C=1.9) Add 9 g of this crystal to 5% aqueous sodium hydroxide solution.
After stirring for 1 hour at 60° C. with 35.4 g of toluene and 10 c.c. of toluene, the layers were separated, and the oil layer was extracted twice with 10 g of a 1% aqueous sodium hydroxide solution (discarding the oil layer). The aqueous layers were combined, 22 g of 10% hydrochloric acid and 20 c.c. of toluene were added, and after mixing well, the layers were separated and the aqueous layer was further extracted twice with 10 c.c. of toluene. The oil layers were combined, washed with water, concentrated, and d-α-
2.88 g of bromo-tert-butylacetic acid was obtained. [α] 23 D +10.9° (Chloroform, C=2.0) Optical purity 83.2% Example 4 39.01 g of α-bromo-tert-butylacetic acid was dissolved in 155 c.c. of 80% ethanol, and d-PTE27 was dissolved under reflux. .47g
was added dropwise over 30 minutes. After the dropwise addition was completed, the mixture was cooled with stirring and filtered at 30°C. l-α-bromo-tert
12.31 g of d-PTE salt of -butylacetic acid was obtained. mp160-173°C [α] 21 D +54.5° (chloroform, C=1.85) The optical purity of l-α-bromo-tert-butylacetic acid in the salt was 87.2%. 12 g of this salt was heated in 60 g of 80% ethanol, cooled with stirring, and filtered at 26°C. 5.16 g of more purified salt was obtained. mp181-184℃ [α] 21 D +52.3゜ (methanol, C = 0.65) Decompose the salt in the same manner as in Example 3, and 2.62g of l-α
-Bromo-tert-butylacetic acid was obtained. [α] 21 D -12.1° (chloroform, C = 2.08) Optical purity 98.0% Example 5 9.04 g of α-chromium-tert-butylacetic acid was dissolved in 20 g of 80% ethanol, and 7.27 g of l-PEA was added dropwise at room temperature. did. After the completion of the reaction, the mixture was cooled to 8° C., stirred for 1 hour, and then filtered to obtain 4.22 g of 1-PEA salt of 1-α-chloro-tert-butylacetic acid. The optical purity of l-α-chloro-tert-butylacetic acid in salt is
It was 71.0%. 3.99 g of the above salt was dissolved by heating in twice the amount of 50% ethanol (68°C), and then cooled to 25°C.
The amount of salt obtained through this process was 1.79g. 1.53g of this salt, 3.1g of 10% hydrochloric acid, chloroform
After adding 3.1 g and 8 c.c. of water and stirring at 40°C for 1 hour, the layers were separated, and the aqueous layer was further extracted twice with chloroform. The chloroform layer was collected and concentrated to obtain l-α-chloro- 0.82 g of tert-butylacetic acid was obtained. [α] 22 D −25.04° (Chloroform, C = 2.09) Optical purity 96.4% Example 6 In Example 5, α-chloro-tert-butylacetic acid was
- 6.55 g of α-chloro-tert-butylacetic acid rich in d-isomer recovered from the solution separated with PEA was dissolved in 13.10 g of 50% ethanol, and 5.27 g of d-PEA was added dropwise at room temperature (20 to 25°C). . After the addition was completed, the mixture was stirred for 2 hours and filtered to obtain 2.28 g of d-PEA salt of d-α-chloro-tert-butylacetic acid. 2.01 g of this salt was decomposed in the same manner as in Example 5, and d-
1.08 g of α-chloro-tert-butylacetic acid was obtained. [α] 22 D +22.46° (Chloroform, C=2.08) Optical purity 92.6% Furthermore, the production examples and test examples of optically active N-benzyl-haloacetamide derivatives using the compound of the present invention as a raw material compound are used as reference examples. It is described below. Reference example 1 [d-N-(α,α-dimethylbenzyl)-α-
Production of bromo-tert-butylacetic acid amide] l-α-bromo-tert-butylacetic acid (optical purity
98.0%) was dissolved in 10 c.c. of benzene, 1 drop of triethylamine was added, 3 c.c. of thionyl chloride was added dropwise at room temperature, and the mixture was stirred at 40°C for 4 hours. Thereafter, benzene and thionyl chloride were distilled off using a rotary evaporator (approximately 20 mmHg/room temperature). Add α,α-dimethylbenzylamine to the concentrated residue while stirring.
A solution of 1.39 g and 1.97 g of triethylamine dissolved in 5 c.c. of toluene was added dropwise at room temperature, and the mixture was stirred for 4 hours. Thereafter, 9.4 g of 10% hydrochloric acid was added and the mixture was filtered. The crystals were washed with water and a small amount of toluene, and dN-(α,α-dimethylbenzyl)-α-
0.95 g of bromo-tert-butyl acetate amide was obtained. [α] 21 D +0.31° (chloroform, C = 1.93) mp172-178°C Optical purity 90.4% Reference example 2 [d-N-(α,α-dimethylbenzyl)-α-
Production of chloro-tert-butylacetamide] In the same manner as in Reference Example 1, l-α-chloro-tert
-butyl acetic acid (optical purity 96.4%) 0.74g α, α
- reacted with dimethylbenzylamine, d-N-
(α,α-dimethylbenzyl)-α-chloro-tert
-0.49 g of butyl acetate amide was obtained. [α] 22 D +15.9° (Chloroform, C = 2.03) mp150-155°C Optical purity 98.6% Reference example 3 Flooded soil treatment test A Wagner pot with a diameter of 14 cm filled with 1.5 kg of paddy soil was placed in a paddy state, and three leaves were placed. Transplant the rice seedlings of the season,
In addition, barnyard grass seeds and firefly seeds were sown, and tubers of Urikawa and Japanese cypress were planted, and a predetermined amount of the chemical was applied to the flooded soil. On the 25th day after the chemical treatment, the herbicidal efficacy and the degree of chemical damage were investigated for the transplanted or sown plants and the naturally-occurring coryza. The results are shown in Table 1. Regarding the treatment method, a predetermined amount of the drug was treated in the form of a wettable powder at a rate of 15 c.c. per pot. During the treatment, the solution was added dropwise using a pipette. Evaluation of herbicidal efficacy was expressed as a number from 0 to 5 as shown below. 0...Weed suppression rate 0-9% 1...Weed suppression rate 10-29% 2...Weed suppression rate 30-49% 3...Weed suppression rate 50-69% 4...Weed suppression rate 70-89% 5...Weed suppression rate 90-100% Regarding chemical damage, the ratio of plant height, number of tillers, and total amount (air-dry weight) to the untreated plot was calculated, and the worst value of the three factors was taken and evaluated on a scale of 0 to 5. 0...Ratio to untreated area 100% 1...Ratio to untreated area 90~99% 2...Ratio to untreated area 80~89% 3...Ratio to untreated area 60~79% 4...Ratio to untreated area Ratio to untreated area 40-59% 5...Ratio to untreated area 0-39%

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 一般式 (式中、Xはハロゲン原子を表わす。) で示されるα−ハロ−tert−ブチル酢酸と光学活
性α−メチルベンジルアミンまたは光学活性1−
フエニル−2−(p−トリル)−エチルアミンとを
反応させ、溶媒中で一方の光学活性α−ハロ−
tert−ブチル酢酸の該塩基との塩を選択的に析出
分離し、しかるのち該塩より光学活性α−ハロ−
tert−ブチル酢酸を回収することを特徴とする光
学活性α−ハロ−tert−ブチル酢酸の製造方法。 2 Xが臭素原子である特許請求の範囲第1項に
記載の製造方法。 3 Xが塩素原子である特許請求の範囲第1項に
記載の製造方法。 4 光学活性アミンがl−α−メチルベンジルア
ミンである特許請求の範囲第1項、第2項または
第3項に記載の製造方法。 5 光学活性アミンがd−1−フエニル−2−
(p−トリル)−エチルアミンである特許請求の範
囲第1項、第2項または第3項に記載の製造方
法。 6 溶媒が含水アルコールまたは水である特許請
求の範囲第1項、第2項、第3項、第4項または
第5項に記載の製造方法。 7 溶媒が含水メタノールまたは含水エタノール
である特許請求の範囲第6項に記載の製造方法。
[Claims] 1. General formula (In the formula, X represents a halogen atom.) α-halo-tert-butylacetic acid and optically active α-methylbenzylamine or optically active 1-
phenyl-2-(p-tolyl)-ethylamine is reacted with one optically active α-halo-
The salt of tert-butylacetic acid with the base is selectively precipitated and separated, and then optically active α-halo-
A method for producing optically active α-halo-tert-butylacetic acid, which comprises recovering tert-butylacetic acid. 2. The manufacturing method according to claim 1, wherein X is a bromine atom. 3. The manufacturing method according to claim 1, wherein X is a chlorine atom. 4. The manufacturing method according to claim 1, 2 or 3, wherein the optically active amine is l-α-methylbenzylamine. 5 The optically active amine is d-1-phenyl-2-
The manufacturing method according to claim 1, 2 or 3, wherein (p-tolyl)-ethylamine is used. 6. The manufacturing method according to claim 1, 2, 3, 4, or 5, wherein the solvent is hydrous alcohol or water. 7. The manufacturing method according to claim 6, wherein the solvent is aqueous methanol or aqueous ethanol.
JP636988A 1988-01-13 1988-01-13 Production of optically active alpha-halo-tert-butylacetic acid Granted JPS63211248A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP636988A JPS63211248A (en) 1988-01-13 1988-01-13 Production of optically active alpha-halo-tert-butylacetic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP636988A JPS63211248A (en) 1988-01-13 1988-01-13 Production of optically active alpha-halo-tert-butylacetic acid

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3440180A Division JPS56131553A (en) 1980-03-17 1980-03-17 Optically active n-benzyl-haloacetamide derivative, its preparation, and herbicide containing said derivative as effective component

Publications (2)

Publication Number Publication Date
JPS63211248A JPS63211248A (en) 1988-09-02
JPH0137385B2 true JPH0137385B2 (en) 1989-08-07

Family

ID=11636454

Family Applications (1)

Application Number Title Priority Date Filing Date
JP636988A Granted JPS63211248A (en) 1988-01-13 1988-01-13 Production of optically active alpha-halo-tert-butylacetic acid

Country Status (1)

Country Link
JP (1) JPS63211248A (en)

Also Published As

Publication number Publication date
JPS63211248A (en) 1988-09-02

Similar Documents

Publication Publication Date Title
JPS61251650A (en) Manufacture of (z)-1-phenyl-1-diethylaminocarbonyl-2- aminomethylcyclopropanehydrochloride
JPS62187440A (en) Manufacture of 4-aminohex-5-enoic acid
EP0406112B1 (en) 1-Benzhydrylazetidines, their preparation and their use as intermediates for the preparation of compounds with antimicrobial activity
JPS6215057B2 (en)
JPS61289057A (en) Optical resolution of racemic mixture of alpha-naphthylpropionic acid
JP2009518380A (en) Preparation of 2-chloroethoxy-acetic acid-N, N-dimethylamide
JPH0137385B2 (en)
WO2008096373A2 (en) Process for synthesizing highly pure nateglinide polymorphs
JP3207017B2 (en) Method for producing benzylsuccinic acid derivative and intermediate for producing the same
JPH02256655A (en) Production of optically active threo-dihydroxyphenylserine derivative
JP2001521498A (en) Method for producing O- (3-amino-2-hydroxy-propyl) -hydroxymic acid halide
JP3845884B2 (en) Process for producing N- [1- (2,4-dichlorophenyl) ethyl] -2-cyano-3,3-dimethylbutanamide
JP2905931B2 (en) Process for producing optically active 2-cyclopentenones
JPH09132554A (en) Production of 4-alkoxy-1,1,1-trifluoro-3-buten-2-one
JP2812761B2 (en) Process for the preparation of anilino fumarate via chloromaleate or chlorofumarate or mixtures thereof
JPH0399084A (en) Separating agent for organic compound
JPH06340623A (en) Production of benzylsuccinic acid derivative and intermediate for its synthesis
US5151544A (en) Intermediates in the preparation of chiral spirofluorenehydantoins
US5475118A (en) 1-phenylpyrrolidone derivatives having optical activity, intermediate for the preparation thereof and processes for their preparation
JP2801768B2 (en) Novel optically active metoprolol / tartaric acid derivative salt and method for producing the same, and method for producing optically active metoprolol using this salt
US5041620A (en) Method for producing optically active 2-cyclopenten-4-one-1-ol esters, 2-cyclopenteno-4-one-1-ol ester and complexes thereof with optically active 1,6-diphenyl-2,4-hexadiyne-1,6-diol
JP2671401B2 (en) .ALPHA.-Aminothioacetamide derivative and its production method
JPH0395138A (en) Optical resolution of 3-methylheptanoic acid
JP3013760B2 (en) Method for producing 4-hydroxy-2-pyrrolidone
EP0179487A1 (en) 2-Phenylpropionic acid esters, method for optical resolution thereof and optically active substance thereof