JPH0137348B2 - - Google Patents

Info

Publication number
JPH0137348B2
JPH0137348B2 JP55176247A JP17624780A JPH0137348B2 JP H0137348 B2 JPH0137348 B2 JP H0137348B2 JP 55176247 A JP55176247 A JP 55176247A JP 17624780 A JP17624780 A JP 17624780A JP H0137348 B2 JPH0137348 B2 JP H0137348B2
Authority
JP
Japan
Prior art keywords
zirconium oxide
oxide
zro
aluminum oxide
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55176247A
Other languages
Japanese (ja)
Other versions
JPS57100976A (en
Inventor
Akira Yamakawa
Takeshi Asai
Akira Doi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP55176247A priority Critical patent/JPS57100976A/en
Publication of JPS57100976A publication Critical patent/JPS57100976A/en
Publication of JPH0137348B2 publication Critical patent/JPH0137348B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は酸化アルミニウムを基質とし、室温で
準安定な正方晶酸化ジルコニウム及び又は酸化ハ
フニウムを含む、主として工具材料として使用す
る強靭セラミツク材料に関する。 従来、高速切削用材質として酸化アルミニウム
を主体とした白いセラミツクや酸化アルミニウム
に炭化チタンを添加した黒いセラミツクが実用さ
れている。しかしながら、高速仕上げ用として
は、十分な性能が得られているが、粗加工あるい
は断続切削用としては、その低い靭性のゆえに一
般に使用されない。 黒いセラミツクはこの点で白いセラミツクに比
較し、改良はされているが、鋼の高速切削で耐摩
耗が劣るのみならず、粗加工あるいは断続切削用
としては、未だ靭性が不足し、広く使用されるに
は至つていない。 一方、最近酸化アルミニウムに酸化ジルコニウ
ムを添加したセラミツク工具が発表されている
が、酸化ジルコニウムがどのような作用をしてい
るか明らかではないし、また得られている材料も
従来のセラミツク工具の性能を大巾に上回るもの
ではない。 例えば、特開昭56−61215号公報には酸化アル
ミニウム又はこれにTiC,TiN粉末を混合したも
のに、単斜晶系のZrO2を添加して焼結する例が
記載されているが、曲げ強さ750N/mm2(75Kg/
mm2)、破壊靭性値(KIC)が300N/mm3/2程度し
かない。この場合は、ZrO2が50容量%以下が準
安定の正方晶の状態で含まれていると記載されて
いる。 本発明者らは、酸化ジルコニウムの挙動を詳細
に研究したところ、酸化アルミニウムを基質と
し、室温で準安定状態の正方晶酸化ジルコニウム
を分散させることによつて、高靭性なセラミツク
工具が得られることを見出した。また酸化ハフニ
ウムによつても同様な効果を確認したが、以下酸
化ジルコニウムを用いて説明する。すなわち、酸
化アルミニウム基質中に分散させた室温で準安定
な正方晶酸化ジルコニウムは、酸化アルミニウム
基質に外部応力または内蔵された欠陥によつて導
入された亀裂先端の応力集中によつて容易に室温
安定な単斜晶へ転移し、応力を緩和してしまうと
考えられる。また、準安定な正方晶酸化ジルコニ
ウムは、研削加工応力によつても単斜晶へ転移
し、その時に体積増加を伴なうことから、研削面
に加工応力だけでなく、転移による圧縮応力が残
留し、靭性向上に作用すると考えられる。 しかしながら、このような準安定状態の正方晶
酸化ジルコニウムによる靭性の向上を最も効果的
に得るためには、厳重な製造方法の管理のみなら
ず、酸化ジルコニウム原料の性状、添加量、粒成
長抑制剤の選択等が不可欠であり、すでに発表さ
れた酸化ジルコニウム添加型セラミツク材料の強
度が不十分であるゆえんである。 本発明者らの研究によれば、添加分散させる酸
化ジルコニウム量は焼結体の体積の25%以上で
は、かえつて強度の低下がおこる。これは、冷却
途中に正方晶酸化ジルコニウムの単斜晶酸化ジル
コニウム(以下M―ZrO2と表記)へ転移する量
が多くなり、準安定正方晶酸化ジルコニウム(以
下T―ZrO2と表記)の量が減少するため、T―
ZrO2による強化効果が少なくなるばかりか、M
―ZrO2への転移による体積膨張によつて亀裂が
発生するためと考えられる。また1体積%以下の
添加量は効果が小さく、意味がない。すなわち、
酸化ジルコニウムは1乃至25体積パーセントの添
加でなければ靭性向上の効果が小さい。 また、酸化ジルコニウムは酸化アルミニウムと
十分に混合し、酸化アルミニウム中に均一に分散
させなければならない。 すなわち、T―ZrO2の偏在は工具材料の強度
分布としては好ましくないし、しかも混合後の酸
化ジルコニウムの偏在は焼結中に酸化ジルコニウ
ムが粒成長をおこすために、1μ以上の正方晶酸
化ジルコニウムとなり、冷却中にM―ZrO2へ転
移してしまう。これは最も好ましくない結果をも
たらす。 さらに、焼結体中の酸化ジルコニウムは平均粒
径で1μ以下である事が必要である。 これは、すでに述べたように、1μ以上の正方
晶酸化ジルコニウムは冷却中に体積膨張を伴う転
移を防ぐ酸化アルミニウムの抵抗にうち勝ちM―
ZrO2へ転移してしまうからであり、望ましくは
全ての酸化ジルコニウムが1μ以下であることが
高強度な焼結体をうる。 この酸化ジルコニウムの粒径の規定を満たすた
めには、原料酸化ジルコニウムの選定のみなら
ず、混合方法、焼結条件他に注意を要する。すな
わち、入手可能な最も微細な原料酸化ジルコニウ
ムを使用することが望ましく、また、混合におい
ても界面活性剤の使用あるいは長時間の湿式ボー
ルミル、混合又はアトライター混合が必要であ
る。焼結条件としては、酸化ジルコニウムの粒成
長をさけるために酸化ジルコニウムは正方晶とな
る温度以上でできるだけ低温焼結が望ましい。そ
のためには焼結によつて非通気性の焼結体を得る
程度にとどめ、その後熱間静水圧プレスによつて
緻密化する方法が効果的である。 これらの方法によつて焼結体中の酸化ジルコニ
ウムの体積比50%以上をT―ZrO2に保持するこ
とで、高強度な焼結体を得るが、T―ZrO2量は
多くなるほど望ましい。 さらに、焼結体中には酸化アルミニウムの粒成
長抑制剤として、MgO,Y2O3,Cr2O3,NiOの
1種又は2種以上が含まれることが必要である
が、それらの量は0.05重量パーセント以下では効
果がないし、3.00重量パーセントでは粒界に好ま
しくない結晶物がつくられることから、0.05重量
パーセント乃至3.00重量パーセントが望ましい。 また、原料混合中に混入する不純物(主としてボ
ール・ポツトなどから混入)も2重量パーセント
以下に抑えることが必要である。 また、酸化アルミニウムの平均粒径を2μ以下
に抑えることによつて、酸化アルミニウム基質の
強化とともに正方晶酸化ジルコニウムのM―
ZrO2への転移を阻止できるので、より高強度の
焼結体が得られ、その場合の抗折力は80Kg/mm2
越え、破壊靭性値が5MN/mm3/2以上となる。 今まで述べてきたように、本発明のセラミツク
焼結体は酸化アルミニウムを基質として、平均粒
径1μ以下の1乃至25体積パーセントの均一に分
散した酸化ジルコニウムを含み、その体積比50%
以上がT―ZrO2であり、T―ZrO2からM―ZrO2
への転移を利用した、従来にない高強度なセラミ
ツク焼結体であり、特に切削工具として、高い耐
摩耗性と靭性によつて粗切削、断続切削に使用さ
れる極めて有用な材料である。 以下実施例をあげて説明する。 実施例 1 平均粒子サイズ(透過型電顕による測定)0.5μ
の高純度酸化アルミニウムと平均粒子サイズ
0.05μの高純度酸化ジルコニウムを第1表に示し
た比率に配合し、0.1重量%の酸化マグネシウム
を添加後、湿式ボールミルで48時間混合後、乾燥
し、1t/cm2で型押後、1500℃で1時間真空焼結し
た。得られた焼結体は、熱膨張測定法によつてT
―ZrO2の比率、走査型電顕によつて、ZrO2の平
均粒径を測定した。 さらに、以下の切削条件で切削テストとSENB
法によつて破壊靭性値、KICを測定した。その結
果を第1表に示す。 切削テスト条件 被削材 長手方向溝付き材
The present invention relates to a tough ceramic material mainly used as a tool material, which has an aluminum oxide substrate and contains tetragonal zirconium oxide and/or hafnium oxide, which is metastable at room temperature. Conventionally, white ceramics mainly made of aluminum oxide and black ceramics made of aluminum oxide with titanium carbide have been used as materials for high-speed cutting. However, although sufficient performance has been obtained for high-speed finishing, it is generally not used for rough machining or interrupted cutting due to its low toughness. Although black ceramic has been improved in this respect compared to white ceramic, it is not only inferior in wear resistance during high-speed cutting of steel, but also lacks toughness for rough machining or interrupted cutting, so it is not widely used. It has not yet been reached. On the other hand, ceramic tools made by adding zirconium oxide to aluminum oxide have recently been announced, but it is not clear what effect the zirconium oxide has, and the materials obtained do not significantly improve the performance of conventional ceramic tools. It's not much bigger than that. For example, JP-A-56-61215 describes an example in which monoclinic ZrO 2 is added to aluminum oxide or a mixture of aluminum oxide and TiC or TiN powder and sintered. Strength 750N/mm 2 (75Kg/
mm 2 ), and the fracture toughness value (K IC ) is only about 300N/mm 3/2 . In this case, it is stated that less than 50% by volume of ZrO 2 is contained in a metastable tetragonal state. The present inventors conducted a detailed study on the behavior of zirconium oxide and found that a ceramic tool with high toughness can be obtained by dispersing tetragonal zirconium oxide, which is metastable at room temperature, using aluminum oxide as a substrate. I found out. A similar effect was also confirmed using hafnium oxide, but the following description will be made using zirconium oxide. That is, tetragonal zirconium oxide, which is metastable at room temperature and dispersed in an aluminum oxide matrix, is easily stabilized at room temperature by stress concentration at the crack tip introduced by external stress or built-in defects in the aluminum oxide matrix. It is thought that this transition to a monoclinic crystal structure relieves stress. In addition, metastable tetragonal zirconium oxide transforms into monoclinic crystal due to grinding stress and is accompanied by an increase in volume, so that not only processing stress but also compressive stress due to the transition is applied to the ground surface. It is thought that it remains and acts to improve toughness. However, in order to most effectively obtain the improvement in toughness due to tetragonal zirconium oxide in a metastable state, it is necessary not only to strictly control the manufacturing method, but also to carefully control the properties of the zirconium oxide raw material, the amount added, and the grain growth inhibitor. This is because the strength of the zirconium oxide-added ceramic materials that have already been announced is insufficient. According to research conducted by the present inventors, when the amount of zirconium oxide added and dispersed exceeds 25% of the volume of the sintered body, the strength actually decreases. This is because a large amount of tetragonal zirconium oxide transforms into monoclinic zirconium oxide (hereinafter referred to as M-ZrO 2 ) during cooling, and the amount of metastable tetragonal zirconium oxide (hereinafter referred to as T-ZrO 2 ) increases. decreases, so T-
Not only does the strengthening effect of ZrO 2 decrease, but M
-This is thought to be due to the cracks occurring due to volume expansion due to transition to ZrO 2 . Further, if the amount added is less than 1% by volume, the effect is small and meaningless. That is,
Zirconium oxide has little effect on improving toughness unless it is added in an amount of 1 to 25 percent by volume. Also, the zirconium oxide must be thoroughly mixed with the aluminum oxide and must be uniformly dispersed in the aluminum oxide. In other words, uneven distribution of T-ZrO 2 is unfavorable for the strength distribution of the tool material, and uneven distribution of zirconium oxide after mixing causes grain growth of zirconium oxide during sintering, resulting in tetragonal zirconium oxide with a size of 1μ or more. , it transforms into M-ZrO 2 during cooling. This gives the most unfavorable results. Furthermore, the average particle size of the zirconium oxide in the sintered body must be 1 μ or less. This is because, as already mentioned, tetragonal zirconium oxide with a diameter of 1μ or more overcomes the resistance of aluminum oxide, which prevents the transition accompanied by volume expansion during cooling.
This is because the zirconium oxide is transferred to ZrO 2 , and preferably all zirconium oxide has a size of 1 μm or less to obtain a high-strength sintered body. In order to meet the particle size regulations for zirconium oxide, care must be taken not only in selecting the raw material zirconium oxide, but also in the mixing method, sintering conditions, and other factors. That is, it is desirable to use the finest available raw material zirconium oxide, and mixing also requires the use of a surfactant or long-term wet ball milling, mixing, or attritor mixing. As for the sintering conditions, in order to avoid grain growth of zirconium oxide, it is desirable to sinter at a temperature as low as possible, above the temperature at which zirconium oxide becomes tetragonal. For this purpose, it is effective to sinter the material to a degree that only obtains an air-impermeable sintered body, and then densify it by hot isostatic pressing. By keeping 50% or more of the volume ratio of zirconium oxide in the sintered body as T--ZrO 2 by these methods, a high-strength sintered body can be obtained, but it is preferable that the amount of T--ZrO 2 increases. Furthermore, it is necessary that the sintered body contains one or more of MgO, Y 2 O 3 , Cr 2 O 3 , and NiO as a grain growth inhibitor of aluminum oxide, but the amount of these If it is less than 0.05 weight percent, it is ineffective, and if it is 3.00 weight percent, undesirable crystals are formed at the grain boundaries, so a range of 0.05 weight percent to 3.00 weight percent is preferable. It is also necessary to suppress impurities (mainly introduced from balls, pots, etc.) during mixing of raw materials to 2% by weight or less. In addition, by suppressing the average particle size of aluminum oxide to 2μ or less, we can strengthen the aluminum oxide matrix and improve the M-
Since the transformation to ZrO 2 can be prevented, a sintered body with higher strength can be obtained, with a transverse rupture strength exceeding 80 Kg/mm 2 and a fracture toughness value of 5 MN/mm 3/2 or more. As described above, the ceramic sintered body of the present invention uses aluminum oxide as a matrix and contains 1 to 25 volume percent of uniformly dispersed zirconium oxide with an average particle size of 1 μm or less, and the volume ratio is 50%.
The above is T-ZrO 2 , and from T-ZrO 2 M-ZrO 2
This is an unprecedented high-strength ceramic sintered body that utilizes the transition to , and is an extremely useful material used for rough cutting and interrupted cutting, especially as cutting tools, due to its high wear resistance and toughness. This will be explained below by giving examples. Example 1 Average particle size (measured by transmission electron microscope) 0.5μ
High purity aluminum oxide and average particle size
0.05μ high purity zirconium oxide was blended in the ratio shown in Table 1, 0.1% by weight of magnesium oxide was added, mixed in a wet ball mill for 48 hours, dried, embossed at 1t/ cm2 , 1500g Vacuum sintering was performed at ℃ for 1 hour. The obtained sintered body was determined to have T
- The ratio of ZrO 2 and the average particle size of ZrO 2 were measured by scanning electron microscopy. In addition, cutting tests and SENB with the following cutting conditions
The fracture toughness value, K IC , was measured by the method. The results are shown in Table 1. Cutting test conditions Work material Longitudinal grooved material

【表】 ム
ホルダー FN11R―44 チツプ SNG452(CIS規格) 切削条件 切削速度 300m/min 切込み 2mm 送 り 0.2mm/刃 実施例 2 実施例1のに示した配合物を実施例1と同様
に型押まで行ない、1700℃で焼結したところ、全
ての酸化ジルコニウムはM―ZrO2となり、平均
粒径は2μであつた。KICは3.8MN/m3/2で切削に
は耐えなかつた。この様に焼結温度が不適切であ
ると、酸化ジルコニウムが粒成長し、T―ZrO2
が存在できなくなるため、切削性能が著しく低下
する。 実施例 3 実施例1のに示した配合比で、酸化ジルコニ
ウム原料として、10μのものを使用し、実施例1
と同じ条件で焼結体を得た。焼結体中の全ての酸
化ジルコニウムはM―ZrO2であり、平均粒径は
4μであつた。KICは4.0MN/m3/2で3秒間の切削
で欠損した。この様に酸化ジルコニウムの粒径に
よつて、得られる焼結体の性能が影響される。 実施例 4 実施例1のに示した配合物を実施例1と同様
に型押まで行ない、1450℃で焼結後、1400℃×1
時間×1t/cm2の条件で熱間静水圧プレスした。そ
れによつて得た焼結体中の酸化ジルコニウムのう
ち80体積%はT―ZrO2でありZrO2の粒径は0.6μ.
KICは9.0MN/m3/2を示した。 実施例 5 実施例4で得た焼結体の酸化アルミニウムの平
均粒径は1.5μで、曲げ強さは85Kg/mm2を得たが、
実施例2ので得た焼結体の酸化アルミニウムの
平均粒径は3.0μで抗折力は70Kg/mm2であつた。切
削性能としては、破壊靭性と同時に高い抗折力が
必要であり、酸化アルミニウムの平均粒径を2.0μ
以下におさえた場合、特に特徴ある工具材料が得
られることがわかる。
[Table] Mu holder FN11R-44 Chip SNG452 (CIS standard) Cutting conditions Cutting speed 300m/min Depth of cut 2mm Feed 0.2mm/blade Example 2 The compound shown in Example 1 was stamped in the same manner as in Example 1. When the zirconium oxide was sintered at 1700°C, all the zirconium oxide became M-ZrO 2 and the average particle size was 2μ. K IC was 3.8MN/m 3/2 and could not withstand cutting. If the sintering temperature is inappropriate in this way, zirconium oxide grains will grow and T-ZrO 2
can no longer exist, resulting in a significant decrease in cutting performance. Example 3 At the compounding ratio shown in Example 1, 10 μm of zirconium oxide was used as the raw material for zirconium oxide.
A sintered body was obtained under the same conditions. All the zirconium oxide in the sintered body is M- ZrO2 , and the average particle size is
It was 4μ. K IC was broken by cutting for 3 seconds at 4.0 MN/m 3/2 . In this way, the performance of the obtained sintered body is influenced by the particle size of zirconium oxide. Example 4 The formulation shown in Example 1 was subjected to embossing in the same manner as in Example 1, and after sintering at 1450°C, 1400°C x 1
Hot isostatic pressing was carried out under the conditions of time x 1 t/cm 2 . 80% by volume of the zirconium oxide in the sintered body thus obtained is T-ZrO 2 and the particle size of ZrO 2 is 0.6μ.
K IC showed 9.0MN/m 3/2 . Example 5 The average grain size of aluminum oxide in the sintered body obtained in Example 4 was 1.5μ, and the bending strength was 85Kg/ mm2 .
The average grain size of aluminum oxide in the sintered body obtained in Example 2 was 3.0μ, and the transverse rupture strength was 70Kg/mm 2 . For cutting performance, high transverse rupture strength is required as well as fracture toughness, and the average grain size of aluminum oxide is 2.0μ.
It can be seen that a particularly distinctive tool material can be obtained if the following conditions are met.

Claims (1)

【特許請求の範囲】[Claims] 1 酸化アルミニウムを主成分とし、1乃至25体
積%までの酸化ジルコニウム及び又は酸化ハフニ
ウムを含みMgO,Y2O3,Cr2O3,NiOの1種ま
たは2種以上を0.05乃至3.00重量%、不可避不純
物を2重量%以下含むセラミツク材料において、
酸化アルミニウムの平均粒径が0.1μ以上2μ以下で
あり、均一に分散した酸化ジルコニウム及び又は
酸化ハフニウムの平均粒径が0.1μ以上1μ以下であ
り、その体積比で50%以上が室温で準安定な正方
晶で存在し、曲げ強さが80Kg/mm2以上で、かつ破
壊靭性値が5MN/m3/2以上であることを特徴と
する強靭セラミツク材料。
1 The main component is aluminum oxide, contains 1 to 25% by volume of zirconium oxide and/or hafnium oxide, and 0.05 to 3.00% by weight of one or more of MgO, Y 2 O 3 , Cr 2 O 3 , NiO, In ceramic materials containing 2% by weight or less of unavoidable impurities,
The average particle size of aluminum oxide is 0.1μ or more and 2μ or less, and the average particle size of uniformly dispersed zirconium oxide and/or hafnium oxide is 0.1μ or more and 1μ or less, and 50% or more of the volume ratio is metastable at room temperature. A strong ceramic material that exists in a tetragonal crystal structure, has a bending strength of 80 Kg/mm 2 or more, and a fracture toughness value of 5 MN/m 3/2 or more.
JP55176247A 1980-12-12 1980-12-12 Tenacious ceramic material Granted JPS57100976A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55176247A JPS57100976A (en) 1980-12-12 1980-12-12 Tenacious ceramic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55176247A JPS57100976A (en) 1980-12-12 1980-12-12 Tenacious ceramic material

Publications (2)

Publication Number Publication Date
JPS57100976A JPS57100976A (en) 1982-06-23
JPH0137348B2 true JPH0137348B2 (en) 1989-08-07

Family

ID=16010215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55176247A Granted JPS57100976A (en) 1980-12-12 1980-12-12 Tenacious ceramic material

Country Status (1)

Country Link
JP (1) JPS57100976A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6230655A (en) * 1985-07-31 1987-02-09 大豊工業株式会社 Ceramic sliding material
CA1259080A (en) * 1985-09-06 1989-09-05 Nobuo Kimura High density alumina zirconia ceramics and a process for production thereof
JPS63236756A (en) * 1987-03-26 1988-10-03 東陶機器株式会社 Polycrystal artificial ruby and manufacture
JPH0688832B2 (en) * 1987-03-26 1994-11-09 東陶機器株式会社 Polycrystalline ceramic product and manufacturing method thereof
JPS63236755A (en) * 1987-03-26 1988-10-03 東陶機器株式会社 Composite ceramics and manufacture
JPS63239154A (en) * 1987-03-26 1988-10-05 東陶機器株式会社 Colored light-permeable polycrystal ceramics product and manufacture
SE460665B (en) * 1987-06-09 1989-11-06 Sandvik Ab WITH CRYSTAL SHEETS STRENGTHENED CERAMIC CUTTING MATERIAL
WO2019065372A1 (en) 2017-09-27 2019-04-04 日本特殊陶業株式会社 Ceramic sintered body, insert, cutting tool, and friction stir welding tool
JP7035220B2 (en) * 2018-12-06 2022-03-14 日本碍子株式会社 Ceramic sintered body and substrate for semiconductor devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425908A (en) * 1977-07-28 1979-02-27 Sumitomo Electric Industries Ceramic material for use as tools and method of making same
JPS5461215A (en) * 1977-10-05 1979-05-17 Feldmuehle Ag Sintering material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5425908A (en) * 1977-07-28 1979-02-27 Sumitomo Electric Industries Ceramic material for use as tools and method of making same
JPS5461215A (en) * 1977-10-05 1979-05-17 Feldmuehle Ag Sintering material

Also Published As

Publication number Publication date
JPS57100976A (en) 1982-06-23

Similar Documents

Publication Publication Date Title
JP3080873B2 (en) Abrasion resistant alumina ceramics and method for producing the same
US4543343A (en) Ceramics for cutting tools
US4331048A (en) Cutting tip for metal-removing processing
KR910005053B1 (en) High toughness zro2 sintered body and method of producing the same
EP0199178B1 (en) Process for preparation of sintered silicon nitride
JPH0137348B2 (en)
JP2972487B2 (en) Sintered composite abrasive grits, their production and use
JPH06298573A (en) Ceramic cutting tool material
EP0468486B1 (en) A ceramic material, reinforced by the incorporation of alumina fibers and process for production thereof
JPH04223808A (en) Silicon nitride sintered body tool
JPS6041020B2 (en) Alumina ceramic with high strength and hardness
WO2021124690A1 (en) Cutting tool
JPH02160674A (en) Inserted cutting blade made of oxide-based ceramic
JP2650049B2 (en) Ceramic cutting tool and its manufacturing method
JPH0813702B2 (en) Composite ceramics
JP2581936B2 (en) Alumina sintered body and method for producing the same
JPS6259568A (en) Ceramic material excellent in precise processability
JP3043028B2 (en) Milling cutter
JP2997320B2 (en) Fiber reinforced ceramics
JP2003200307A (en) Titanium carbide group ceramics tool and manufacturing method therefor
JPH0122224B2 (en)
JPS62108765A (en) Manufacture of tough ceramic material
JP2964830B2 (en) Aluminum oxide based ceramics with excellent toughness
JPH0663811A (en) Ceramic end mill and manufacture thereof, and machining method using it
JPH03126659A (en) Superhard ceramics