JPH0136979B2 - - Google Patents

Info

Publication number
JPH0136979B2
JPH0136979B2 JP1268384A JP1268384A JPH0136979B2 JP H0136979 B2 JPH0136979 B2 JP H0136979B2 JP 1268384 A JP1268384 A JP 1268384A JP 1268384 A JP1268384 A JP 1268384A JP H0136979 B2 JPH0136979 B2 JP H0136979B2
Authority
JP
Japan
Prior art keywords
wafer
molecular beam
molybdenum block
molybdenum
chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1268384A
Other languages
Japanese (ja)
Other versions
JPS60157216A (en
Inventor
Juji Ishida
Haruo Tanaka
Masahito Mushigami
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP1268384A priority Critical patent/JPS60157216A/en
Publication of JPS60157216A publication Critical patent/JPS60157216A/en
Publication of JPH0136979B2 publication Critical patent/JPH0136979B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は、超高真空のチヤンバ内にウエハを装
填し、このウエハには分子線の形でGa、Al、As
等の材料を入射して膜成長させる分子線エピタキ
シヤル装置におけるウエハ装着構造に係り、特に
はモリブデンブロツクにウエハを張り付けてなる
ウエハ装着構造に関する。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, a wafer is loaded in an ultra-high vacuum chamber, and this wafer contains Ga, Al, and As in the form of molecular beams.
The present invention relates to a wafer mounting structure in a molecular beam epitaxial apparatus that grows a film by injecting a material such as the like, and particularly relates to a wafer mounting structure in which a wafer is attached to a molybdenum block.

分子線エピタキシヤル装置は、一般に原理的に
は第1図に示すようになつている。第1図におい
て、符号1は内部が超高真空のチヤンバ、2はこ
のチヤンバ1内に装填されたGaAsのウエハ、3
はウエハ加熱用のヒータ、4はウエハ2に分子線
の形で入射されるGa、Al、As等の材料供給源、
5はヒータ線、6はシヤツタ7は電子銃、8は質
量分析器、9はRHEED(高速反射電子回折の略
称)スクリーンである。そこで、このエピタキシ
ヤル装置における分子線源は、材料供給源4、ヒ
ータ線5およびシヤツタ6によつて構成されるこ
とになる。第2図は、チヤンバ1の一部破断斜視
図である。第2図において、符号9はシヤツタ6
の操作用ノブ、10は液体窒素の容器、11はチ
ヤンバ1のウエハ装填穴からチヤンバ1内に装填
されたウエハ2を分子線入射側に向けるなどの操
作用ノブである。このような分子線エピタキシヤ
ル装置では、ウエハ2上の膜成長の厚さを精度良
く制御できるものであるが、従来、このウエハ2
は第3図に示すように、モリブデンブロツク13
の表面14にインジウム等の張り付け材料15を
介して張り付けられた状態でチヤンバ1内に装填
される。一方、チヤンバ1内には、前記装填位置
にあるモリブデンブロツク13を支持する部材1
6とヒータ3および感温素子としての熱電対17
とが設けられる。したがつて、モリブデンブロツ
ク13がチヤンバ1内の所定の位置に装填される
と、モリブデンブロツク13の裏面18側にはヒ
ータ3と熱電対17とが配置されることになる。
この熱電対17はヒータ3により加熱されるウエ
ハ2の温度を検知し、その検知出力を図示しない
温度制御回路に与えるものである。また、この温
度制御回路はこの検知出力に応答してヒータ3の
加熱動作を制御し、ウエハ2が常に摂氏550度な
いし700度程度の温度に保たれるようにする。
A molecular beam epitaxial apparatus is generally designed in principle as shown in FIG. In FIG. 1, reference numeral 1 indicates a chamber with an ultra-high vacuum inside, 2 indicates a GaAs wafer loaded in this chamber 1, and 3
4 is a heater for heating the wafer, 4 is a material supply source such as Ga, Al, As, etc. that is incident on the wafer 2 in the form of a molecular beam;
5 is a heater wire, 6 is a shutter 7 is an electron gun, 8 is a mass spectrometer, and 9 is an RHEED (abbreviation for high-speed reflection electron diffraction) screen. Therefore, the molecular beam source in this epitaxial apparatus is composed of the material supply source 4, the heater wire 5, and the shutter 6. FIG. 2 is a partially cutaway perspective view of the chamber 1. FIG. In FIG. 2, reference numeral 9 indicates the shutter 6.
10 is a liquid nitrogen container; 11 is an operating knob for directing the wafer 2 loaded into the chamber 1 from the wafer loading hole of the chamber 1 toward the molecular beam incident side. In such a molecular beam epitaxial apparatus, the thickness of the film grown on the wafer 2 can be controlled with high precision.
As shown in Fig. 3, the molybdenum block 13
It is loaded into the chamber 1 while being attached to the surface 14 of the chamber 1 with an attaching material 15 such as indium interposed therebetween. On the other hand, inside the chamber 1 is a member 1 that supports the molybdenum block 13 in the loading position.
6, heater 3, and thermocouple 17 as a temperature sensing element.
and is provided. Therefore, when the molybdenum block 13 is loaded in a predetermined position in the chamber 1, the heater 3 and the thermocouple 17 are arranged on the back surface 18 side of the molybdenum block 13.
This thermocouple 17 detects the temperature of the wafer 2 heated by the heater 3, and provides its detection output to a temperature control circuit (not shown). Further, this temperature control circuit controls the heating operation of the heater 3 in response to this detection output, so that the wafer 2 is always maintained at a temperature of about 550 to 700 degrees Celsius.

ところで、モリブデンブロツク13の熱ふく射
率は0.28であるのに対し、ウエハ2に成長する
GaAsの成長層のそれは、0.7である。また、モリ
ブデンブロツク13のウエハ2を除く表面にも
GaAsの成長層が生成されてくる。したがつて、
膜成長開始時のウエハ温度は、モリブデンブロツ
ク13の該表面14にGaAs成長層が生成されて
くるにしたがつて低下し、成長終了時のそれと比
較して摂氏40度ないし50度あるいはそれ以上低下
してくる。しかるに、熱電対17は、モリブデン
ブロツク13の局部的な温度をウエハ温度として
いる。このため、実際のウエハ温度が大きく低下
しているのに、モリブデンブロツク13の局部的
な温度が一定であることによりウエハ温度も一定
であるとしてウエハ温度を制御するおそれがあつ
た。このような不安定な温度制御では、ウエハ上
に所定の諸特性を満足するGaAs成長を得ること
ができないという難点があつた。このような難点
を解決するため、本出願人は特願昭58−160071号
(特開昭60−51696号)の発明「分子線エピタキシ
ヤル装置のウエハ装着構造」を提案している。こ
の提案に係る発明は、第4図に示すようにモリブ
デンブロツク13には、ウエハを張り付ける部分
を除く該モリブデンブロツク13の表面を覆うよ
うにして遮蔽板19(防着板)をねじ20などで
取り付け、この遮蔽板19により分子線の形で入
射されてくる膜成長用の材料が該表面に付着する
ことを防止するようにしている。したがつて、本
出願人が提案した発明により従来の難点の解消が
図れたが、その代わり遮蔽板19がウエハ2の表
面よりも上側に位置するので、モリブデンブロツ
ク13上のウエハ2の成長中の表面状態の観察が
困難になるとともに、該モリブデンブロツク13
へのウエハ2の張り付けが困難になるという新た
な問題点が発生した 本発明は、前述の従来例の難点を解消するとと
もに、本出願人が提案した前記発明の問題点の解
消を図ることを目的とする。
By the way, the thermal radiation coefficient of molybdenum block 13 is 0.28, whereas
That of the GaAs growth layer is 0.7. Also, on the surface of the molybdenum block 13 except for the wafer 2,
A growth layer of GaAs is generated. Therefore,
The wafer temperature at the start of film growth decreases as the GaAs growth layer is formed on the surface 14 of the molybdenum block 13, and decreases by 40 to 50 degrees Celsius or more compared to the temperature at the end of growth. I'll come. However, the thermocouple 17 uses the local temperature of the molybdenum block 13 as the wafer temperature. Therefore, even though the actual wafer temperature has significantly decreased, since the local temperature of the molybdenum block 13 is constant, there is a risk that the wafer temperature may be controlled assuming that the wafer temperature is also constant. Such unstable temperature control has the disadvantage that it is not possible to grow GaAs on the wafer that satisfies predetermined characteristics. In order to solve these difficulties, the present applicant has proposed the invention ``Wafer mounting structure for molecular beam epitaxial apparatus'' in Japanese Patent Application No. 58-160071 (Japanese Unexamined Patent Publication No. 60-51696). In the invention according to this proposal, as shown in FIG. 4, a shielding plate 19 (adhesion prevention plate) is installed on the molybdenum block 13 so as to cover the surface of the molybdenum block 13 except for the part to which the wafer is attached. The shielding plate 19 prevents film growth material incident in the form of molecular beams from adhering to the surface. Therefore, although the invention proposed by the present applicant has solved the conventional drawbacks, since the shielding plate 19 is located above the surface of the wafer 2, the shielding plate 19 is located above the surface of the wafer 2, so that during the growth of the wafer 2 on the molybdenum block 13, It becomes difficult to observe the surface condition of the molybdenum block 13.
A new problem has arisen in that it becomes difficult to attach the wafer 2 to the wafer 2.The present invention aims to solve the problems of the conventional example described above, as well as the problems of the invention proposed by the present applicant. purpose.

以下、本発明を図面に示す実施例に基づいて詳
細に説明する。第5図は本発明の実施例の要部の
断面図であり、第3図および第4図と対応する部
分には同一の符号を付す。第5図において、2は
GaAsのウエハ、3はヒータ、13はモリブデン
ブロツク、15は張り付け用部材、16は支持部
材、17は熱電対、19は防着板、20はねじで
ある。ここで、この防着板19はモリブデンブロ
ツク13上のウエハ張り付け部22に対応して形
成された分子線入射窓21を有しかつ、このウエ
ハ張り付け部22を除く該モリブデンブロツク1
3の表面14を覆つて分子線の形で入射される膜
成長用の材料が該表面に付着することを防止する
ものである。この構成までは第4図と同様であ
り、したがつて前記従来例の難点が解消される。
Hereinafter, the present invention will be described in detail based on embodiments shown in the drawings. FIG. 5 is a sectional view of essential parts of an embodiment of the present invention, and parts corresponding to those in FIGS. 3 and 4 are given the same reference numerals. In Figure 5, 2 is
A GaAs wafer, 3 a heater, 13 a molybdenum block, 15 an attachment member, 16 a support member, 17 a thermocouple, 19 an adhesion prevention plate, and 20 a screw. Here, this adhesion prevention plate 19 has a molecular beam entrance window 21 formed corresponding to the wafer sticking part 22 on the molybdenum block 13, and has a molecular beam entrance window 21 formed corresponding to the wafer sticking part 22 on the molybdenum block 13, and the molybdenum block 1 except this wafer sticking part 22.
This is to prevent the material for film growth, which is applied in the form of a molecular beam, covering the surface 14 of 3 from adhering to the surface. The configuration up to this point is the same as that shown in FIG. 4, and therefore the drawbacks of the conventional example described above are solved.

この実施例で注目すべきは、モリブデンブロツ
ク13の構成にある。即ち、このモリブデンブロ
ツク13のウエハ張り付け部22は、前記防着板
19に形成された分子線入射窓21に向かつて台
状に盛り上げて形成されており、そのウエハ2が
張り付けられる表面は分子線入射窓21の内面近
傍まで接近している。そこで、このウエハ張り付
け部22の表面にウエハ2を張り付けたとき、こ
のウエハ2の表面は防着板19の表面よりも前述
した分子線源側に向かつて突出することになる。
What should be noted in this embodiment is the structure of the molybdenum block 13. That is, the wafer attachment portion 22 of this molybdenum block 13 is formed in a raised platform-like manner facing the molecular beam incidence window 21 formed in the adhesion prevention plate 19, and the surface on which the wafer 2 is attached is exposed to molecular beams. It approaches close to the inner surface of the entrance window 21. Therefore, when the wafer 2 is attached to the surface of the wafer attaching portion 22, the surface of the wafer 2 protrudes from the surface of the adhesion prevention plate 19 toward the above-mentioned molecular beam source side.

したがつて、このウエハ2上の膜成長を観察す
る場合に、ウエハ2の表面が防着板19の表面よ
りも突出しているので、RHEEDの入射電子およ
び散乱電子が防着板に妨げられることがなくスク
リーン9から前記観察を容易に行なうことができ
るとともに、ウエハ2のモリブデンブロツク13
への張り付けも容易に行なうことができ、これに
より本出願人が提案した前記発明の問題点を解消
することができる。
Therefore, when observing film growth on this wafer 2, since the surface of the wafer 2 protrudes beyond the surface of the adhesion prevention plate 19, the incident electrons and scattered electrons of RHEED will be blocked by the adhesion prevention plate. The observation can be easily carried out from the screen 9 without the molybdenum block 13 of the wafer 2.
It is also possible to easily attach the paper to the paper, thereby solving the problems of the above-mentioned invention proposed by the present applicant.

以上のように、本発明によれば、超高真空のチ
ヤンバ内に、モリブデンブロツクの表面のウエハ
張り付け部に張り付けられたウエハが装填される
一方、このチヤンバ内には該チヤンバ内のモリブ
デンブロツクの裏面側に位置してヒータおよびウ
エハの加熱温度を検知する感温素子が設けられる
分子線エピタキシヤル装置に適用されるものであ
つて、モリブデンブロツク上のウエハ張り付け部
に対応して形成された分子線入射窓を有しかつ、
このウエハ張り付け部を除く該モリブデンブロツ
クの表面を覆つて分子線の形で入射される膜成長
用の材料が該表面に付着することを防止する防着
板を、モリブデンブロツク上に配置し、モリブデ
ンブロツク上のウエハ張り付け部を前記分子線入
射窓方向に台状に形成し、台状のウエハ張り付け
部にウエハを張り付けたとき、このウエハの表面
が防着板表面より分子線源側に突出しているの
で、この防着板により分子線の形で入射される膜
成長用の材料がウエハを除くその表面に付着する
ことが防止され、更にモリブデンブロツク上のウ
エハ張り付け部に張り付けられたウエハが防着板
よりも上方に位置することになり、ウエハの前記
張り付け部への張り付けとそのウエハ上の膜成長
の観察とを容易に行なうことができる。
As described above, according to the present invention, a wafer stuck to the wafer sticking part on the surface of a molybdenum block is loaded into an ultra-high vacuum chamber, and a wafer stuck to the wafer sticking part on the surface of a molybdenum block is loaded into the chamber. It is applied to a molecular beam epitaxial device that is equipped with a heater and a temperature sensing element located on the back side to detect the heating temperature of the wafer. has a line entrance window, and
An anti-adhesion plate is placed on the molybdenum block to cover the surface of the molybdenum block except for the wafer attachment area and to prevent the material for film growth incident in the form of a molecular beam from adhering to the surface. The wafer attachment portion on the block is formed into a table shape in the direction of the molecular beam incidence window, and when a wafer is attached to the table-shaped wafer attachment portion, the surface of the wafer protrudes from the surface of the adhesion prevention plate toward the molecular beam source. Therefore, this adhesion prevention plate prevents the film growth material incident in the form of molecular beams from adhering to the surface of the wafer except for the wafer, and further prevents the wafer attached to the wafer attachment part on the molybdenum block. Since it is located above the mounting plate, it is possible to easily attach a wafer to the attachment portion and observe the film growth on the wafer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、分子線エピタキシヤル装置の原理説
明に供する該装置の模式図、第2図はこの装置の
チヤンバの一部切欠斜視図、第3図は従来例の断
面図、第4図は前記従来例の難点を解消した装置
の断面図、第5図は本発明の実施例の装置の断面
図である。 1はチヤンバ、2はウエハ、3はヒータ、13
はモリブデンブロツク、17は熱電対、19は防
着板、21は窓、22はウエハ張り付け部。
FIG. 1 is a schematic diagram of a molecular beam epitaxial device used to explain the principle of the device, FIG. 2 is a partially cutaway perspective view of the chamber of this device, FIG. 3 is a cross-sectional view of a conventional example, and FIG. FIG. 5 is a cross-sectional view of an apparatus that solves the problems of the conventional example, and FIG. 5 is a cross-sectional view of an apparatus according to an embodiment of the present invention. 1 is the chamber, 2 is the wafer, 3 is the heater, 13
17 is a molybdenum block, 17 is a thermocouple, 19 is an anti-adhesion plate, 21 is a window, and 22 is a wafer attachment part.

Claims (1)

【特許請求の範囲】 1 超高真空のチヤンバ内に、モリブデンブロツ
クの表面のウエハ張り付け部に張り付けられたウ
エハが装填される一方、このチヤンバ内には該チ
ヤンバ内のモリブデンブロツクの裏面側に位置し
てヒータおよびウエハの加熱温度を検知する感温
素子が設けられる分子線エピタキシヤル装置に適
用されるものであつて、 モリブデンブロツク上のウエハ張り付け部に対
応して形成された分子線入射窓を有し、かつ、こ
のウエハ張り付け部を除く該モリブデンブロツク
の表面を覆つて分子線の形で入射される膜成長用
の材料が該表面に付着することを防止する防着板
をモリブデンブロツク上に配置し、 モリブデンブロツク上のウエハ張り付け部を前
記分子線入射窓方向に台状に形成し、台状のウエ
ハ張り付け部にウエハを張り付けたときに該ウエ
ハの表面が防着板表面より分子線源側に突出する
分子線エピタキシヤル装置のウエハ装着構造。
[Claims] 1. A wafer attached to the wafer attaching portion on the front surface of a molybdenum block is loaded into an ultra-high vacuum chamber, while a wafer attached to the wafer attaching portion on the front surface of the molybdenum block is placed inside the chamber. This device is applied to a molecular beam epitaxial device that is equipped with a heater and a temperature sensing element that detects the heating temperature of the wafer. and an adhesion prevention plate is provided on the molybdenum block to cover the surface of the molybdenum block except for the wafer attachment area and to prevent a film growth material incident in the form of a molecular beam from adhering to the surface. The wafer attachment part on the molybdenum block is formed into a table-like shape in the direction of the molecular beam incidence window, and when a wafer is attached to the table-shaped wafer attachment part, the surface of the wafer is closer to the molecular beam source than the surface of the adhesion prevention plate. Wafer mounting structure of molecular beam epitaxial equipment protruding from the side.
JP1268384A 1984-01-26 1984-01-26 Wafer-mounting structure of molecular-beam epitaxial device Granted JPS60157216A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1268384A JPS60157216A (en) 1984-01-26 1984-01-26 Wafer-mounting structure of molecular-beam epitaxial device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1268384A JPS60157216A (en) 1984-01-26 1984-01-26 Wafer-mounting structure of molecular-beam epitaxial device

Publications (2)

Publication Number Publication Date
JPS60157216A JPS60157216A (en) 1985-08-17
JPH0136979B2 true JPH0136979B2 (en) 1989-08-03

Family

ID=11812169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1268384A Granted JPS60157216A (en) 1984-01-26 1984-01-26 Wafer-mounting structure of molecular-beam epitaxial device

Country Status (1)

Country Link
JP (1) JPS60157216A (en)

Also Published As

Publication number Publication date
JPS60157216A (en) 1985-08-17

Similar Documents

Publication Publication Date Title
US5098198A (en) Wafer heating and monitor module and method of operation
JPH0136979B2 (en)
JPS6337079B2 (en)
JP2771215B2 (en) Crucible for molecular beam source and method for forming molecular beam epitaxial growth film using the same
JPS6142125A (en) Mbe substrate and method for measuring temperature thereof
JP3600873B2 (en) Substrate temperature measurement unit
JPS62118519A (en) Semiconductor substrate heating device
US5462012A (en) Substrates and methods for gas phase deposition of semiconductors and other materials
JP3323522B2 (en) Molecular beam cell
JP2823746B2 (en) Substrate heating mechanism for molecular beam epitaxial growth equipment
Skauli et al. Improved substrate temperature control for growth of twin‐free cadmium mercury telluride by molecular beam epitaxy
KR100190357B1 (en) Wafer heating and monitor module and method of operation
JPH0237691B2 (en)
JPH08181071A (en) Film forming method and manufacture of semiconductor device using thereof
JP2526036B2 (en) Shutter structure of molecular beam epitaxy equipment
JPS61220414A (en) Apparatus for generating molecular beam
JPS61176131A (en) Measurement of substrate temperature
JPS61139021A (en) Temperature measurement of mbe base board
JPH0113214B2 (en)
JPH05887A (en) Molecular beam crystal growing device
JPH0554253B2 (en)
JPH05170590A (en) Molecular beam cell
JPH09166501A (en) Temperature measuring device and temperature measuring method
JPH06177038A (en) Formation method for mercury cadmium tellurium thin film based on molecular beam and substrate holder thereof
JPS5893320A (en) Method for measuring temperature of device for molecular beam epitaxial growth