JPH0136597B2 - - Google Patents

Info

Publication number
JPH0136597B2
JPH0136597B2 JP56082185A JP8218581A JPH0136597B2 JP H0136597 B2 JPH0136597 B2 JP H0136597B2 JP 56082185 A JP56082185 A JP 56082185A JP 8218581 A JP8218581 A JP 8218581A JP H0136597 B2 JPH0136597 B2 JP H0136597B2
Authority
JP
Japan
Prior art keywords
circuit
integrated circuit
frequency
signal
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56082185A
Other languages
Japanese (ja)
Other versions
JPS57197831A (en
Inventor
Masaaki Yano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP56082185A priority Critical patent/JPS57197831A/en
Publication of JPS57197831A publication Critical patent/JPS57197831A/en
Publication of JPH0136597B2 publication Critical patent/JPH0136597B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F11/00Error detection; Error correction; Monitoring
    • G06F11/22Detection or location of defective computer hardware by testing during standby operation or during idle time, e.g. start-up testing
    • G06F11/24Marginal checking or other specified testing methods not covered by G06F11/26, e.g. race tests

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Electronic Circuits (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Description

【発明の詳細な説明】 本発明は、検査に適した集積回路チツプに関す
る。特に、大規模集積論理回路の信号伝播遅延時
間の検査に適した集積回路チツプに関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to integrated circuit chips suitable for testing. In particular, the present invention relates to an integrated circuit chip suitable for testing signal propagation delay times of large-scale integrated logic circuits.

従来、この種の大規模集積回路チツプにおける
伝播遅延時間の検査に関しては、二通りの方法が
行われている。
Conventionally, two methods have been used to test propagation delay times in large scale integrated circuit chips of this type.

すなわち、第1の方法は、被検査集積回路チツ
プの信号伝播径路に沿つて伝播遅延時間を直接測
定する方法である。これは、従来より行われてき
た方法であるが、集積回路チツプの集積度および
入出力ピン数の向上にともなつて、検査すべき信
号伝播径路の数が急激に増加し、検査時間そのも
のが増大するのみでなく、被検査径路を活性化す
る入力信号系列の生成に多大の時間を必要とす
る。これを解決するため、経済的に代表的被検査
径路についてのみ検査する方法が考えられる。し
かし、集積回路技術の進歩は素子の高性能化をと
もなつているため、集積回路チツプの伝播遅延時
間が、汎用の集積回路検査機の測定誤差とほぼ同
じ時間領域になり精度良く伝播遅延時間を測定す
ることは難しい。
That is, the first method is to directly measure the propagation delay time along the signal propagation path of the integrated circuit chip under test. This has been a conventional method, but as the degree of integration and the number of input/output pins of integrated circuit chips improve, the number of signal propagation paths to be inspected increases rapidly, and the inspection time itself increases. Not only does this increase the amount of time required, but it also requires a large amount of time to generate the input signal sequence that activates the path under test. In order to solve this problem, an economical method of testing only representative routes to be tested may be considered. However, advances in integrated circuit technology are accompanied by improved performance of devices, so the propagation delay time of integrated circuit chips has become almost the same time domain as the measurement error of general-purpose integrated circuit testing machines, and the propagation delay time has become more accurate. is difficult to measure.

また、第2の方法は集積回路チツプの製造工程
でウエーハー上の特定位置に、そのウエーハー上
の集積回路を形成しているのと同じ基本回路を用
いた検査用チツプを配置し、その検査用チツプの
伝播遅延時間特性の検査によつて、そのウエーハ
ー全体の集積回路チツプの伝播遅延時間の合否を
判定するものである。この方法は、一般に同一ウ
エーハー上の集積回路チツプの特性上のバラツキ
が非常に小さいという事実に基く方法である。こ
の方法による伝播遅延時間特性の検査は、汎用集
積回路検査機の測定精度を許容し得る程度の、多
数段の基本回路列を検査用チツプ上に形成してお
き、その基本回路列の伝播遅延時間を測定するこ
とにより行われる。または、信号が自走し得るよ
うな基本回路の閉ループを検査用チツプに形成し
ておき、その発振周波数を測定することによつて
行われる。
The second method is to place a test chip using the same basic circuit as that forming the integrated circuit on the wafer at a specific location on the wafer during the integrated circuit chip manufacturing process. By inspecting the propagation delay time characteristics of the chips, it is determined whether the propagation delay time of the integrated circuit chips of the entire wafer is acceptable. This method is based on the fact that variations in the characteristics of integrated circuit chips on the same wafer are generally very small. To test propagation delay time characteristics using this method, a multi-stage basic circuit array is formed on a test chip to an extent that allows the measurement accuracy of a general-purpose integrated circuit tester, and the propagation delay of the basic circuit array is This is done by measuring time. Alternatively, this can be done by forming a closed loop of a basic circuit in which the signal can run freely on a test chip and measuring its oscillation frequency.

この方法は集積回路チツプを組立てる以前の合
否の判定には有効であるが、最終的な製品におい
て伝播遅延時間に基いて集積回路チツプのクラス
分けを行う場合には、もはや適用できない。
Although this method is effective for determining pass/fail before assembly of integrated circuit chips, it is no longer applicable when classifying integrated circuit chips based on propagation delay time in the final product.

このため、集積回路チツプ内に制御信号によつ
て論理回路内に発振を生ぜしめるような閉ループ
を形成する回路を備え、その発振周波数を外部よ
り観測することによつて間接的に信号伝播遅延時
間を検査する方法が考えられる。しかし、この方
法は汎用の集積回路検査機ではこのような高周波
の発振周波数を検査することができず、専用の周
波数測定器が必要となる欠点を有する。
For this reason, the integrated circuit chip is equipped with a circuit that forms a closed loop that causes oscillation in the logic circuit by a control signal, and by observing the oscillation frequency from the outside, the signal propagation delay time can be measured indirectly. One possible method is to test the However, this method has the disadvantage that a general-purpose integrated circuit testing machine cannot test such a high oscillation frequency, and a dedicated frequency measuring device is required.

本発明はこの点を改良するもので、集積回路チ
ツプの伝播遅延時間を間接的に、高精度で汎用集
積回路検査機によつて測定することができる集積
回路チツプを提供することを目的とする。
The present invention improves this point, and aims to provide an integrated circuit chip whose propagation delay time can be measured indirectly and with high accuracy using a general-purpose integrated circuit tester. .

本発明は、第1の状態および第2の状態を有す
る制御入力と、この制御入力が第1の状態の場合
には通常の論理機能を実行し制御入力が第2の状
態の場合には、制御入力以外の入力に特定パター
ンの定常的入力信号を与えることによつて、信号
が自走し得る閉ループを形成する手段と、この自
走信号を入力とする周波数分周回路とを含むこと
を特徴とする。
The present invention provides a control input having a first state and a second state, and a control input that performs a normal logic function when the control input is in the first state and when the control input is in the second state. The present invention includes means for forming a closed loop in which the signal can run freely by applying a steady input signal of a specific pattern to an input other than the control input, and a frequency dividing circuit that receives the free-running signal as input. Features.

本発明は、集積回路に形成された論理回路の一
部に測定に際して特定の制御信号を与えることに
より閉ループを構成しその閉ループ内で自走発振
の生じる回路と、この自走発振の周波数を分周す
る回路と、この回路の分周出力を測定するための
端子とを含むことを特徴とする。
The present invention constructs a closed loop by applying a specific control signal to a part of a logic circuit formed in an integrated circuit during measurement, and separates a circuit in which free-running oscillation occurs and the frequency of this free-running oscillation. The device is characterized in that it includes a frequency-divided circuit and a terminal for measuring the frequency-divided output of this circuit.

本発明の一実施例を図面に基づいて説明する。
第1図は、本発明集積回路チツプの要部ブロツク
構成図である。入力端子1および出力端子2を有
する論理回路3の内部信号aはアンド回路5の一
方の入力端子に導かれている。このアンド回路5
の他の入力端子には2種類の状態信号である制御
信号bが導かれている。このアンド回路5の出力
は前記論理回路3に導かれるとともに周波数分周
回路6にも導かれている。
An embodiment of the present invention will be described based on the drawings.
FIG. 1 is a block diagram of the main parts of the integrated circuit chip of the present invention. An internal signal a of a logic circuit 3 having an input terminal 1 and an output terminal 2 is guided to one input terminal of an AND circuit 5. This AND circuit 5
Control signals b, which are two types of state signals, are led to other input terminals of the . The output of this AND circuit 5 is led to the logic circuit 3 and also to the frequency divider circuit 6.

このような構成で、制御入力信号bが論理
「0」のときは、内部信号aはアンド回路5によ
つて伝播が阻止され、アンド回路5の出力信号c
は定常的に論理「0」となつている。この場合に
は、論理回路3はその入力端子1と出力端子2の
間において本来の論理機能を実行する。
With this configuration, when the control input signal b is logic "0", the internal signal a is prevented from propagating by the AND circuit 5, and the output signal c of the AND circuit 5 is
is constantly at logic "0". In this case, the logic circuit 3 performs its original logic function between its input terminal 1 and output terminal 2.

一方、制御信号bが論理「1」のときは、内部
信号aはアンド回路5を通過して論理回路3へ伝
播される。論理回路3へ入力する信号cは、内部
信号aに到達し得るような径路を有するように論
理回路3内の位置に入力されているが、この場合
その径路は制御信号bが論理「1」で、かつ入力
端子1にある特定パターン入力を与えることによ
つてアンド回路5を含む閉ループを形成する。こ
の閉ループはそのループを1回伝播する毎に信号
極性が反転するように形成される。したがつて、
前記条件下でこの閉ループを信号は自走すること
になる。すなわち一定の周波数で発振することに
なるが、この発振周波数がこの閉ループの信号伝
播遅延時間と正確に対応つけられている。
On the other hand, when the control signal b is logic "1", the internal signal a passes through the AND circuit 5 and is propagated to the logic circuit 3. The signal c input to the logic circuit 3 is input to a position within the logic circuit 3 such that it has a path that allows it to reach the internal signal a, but in this case, the path is such that the control signal b is a logic "1". By applying a certain specific pattern input to the input terminal 1, a closed loop including the AND circuit 5 is formed. This closed loop is formed such that the signal polarity is reversed each time it propagates through the loop. Therefore,
Under the above conditions, the signal will run free in this closed loop. That is, it oscillates at a constant frequency, and this oscillation frequency is accurately associated with the signal propagation delay time of this closed loop.

この信号cは、同時に周波数分周回路6へ接続
されており、周波数分周回路6は、この入力信号
cを分周してその結果を出力信号dとして送出す
る。
This signal c is simultaneously connected to a frequency dividing circuit 6, and the frequency dividing circuit 6 divides the frequency of this input signal c and sends out the result as an output signal d.

ここで、第2図に周波数分周回路6の要部ブロ
ツク構成図を示す。この周波数分周回路6はN個
のT型フリツプフロツプ81〜8oを縦続接続して
構成されている。
Here, FIG. 2 shows a block diagram of the main part of the frequency dividing circuit 6. As shown in FIG. This frequency dividing circuit 6 is constructed by cascading N T-type flip-flops 8 1 to 8 o .

第3図は、第2図に×印で示した点の入力ある
いは出力波形を示す動作タイムチヤートである。
FIG. 3 is an operation time chart showing the input or output waveforms at the points indicated by the x marks in FIG.

周波数分周回路6への入力信号cは、第1のフ
リツプフロツプ81の出力で1/2に分周され、この
出力を入力とする第2のフリツプフロツプ82
出力は更に1/2に分周され、同様に分周が行われ
N番目のフリツプフロツプ8N出力dは、入力信
号cに対して1/2Nに分周される。
The input signal c to the frequency divider circuit 6 is divided into 1/2 by the output of the first flip-flop 81 , and the output of the second flip-flop 82 which receives this output is further divided into 1/2. Similarly, the Nth flip-flop 8 N output d is frequency-divided by 1/2 N with respect to the input signal c.

ここで周波数分周回路6におけるフリツプフロ
ツプの数Nは周波数分周回路6の出力dの周波数
が汎用の集積回路検査機の最高動作周波数以下に
なるように決定される。この周波数分周回路6の
出力信号dの周期およびパルス幅は、入力信号c
に正確に対応しており、したがつて前記閉ループ
の信号伝播遅延時間と正確に対応していることは
明らかである。一般に汎用集積回路検査機におい
ては、被検査集積回路チツプがこの集積回路検査
機の最高動作周波数以下の発振周波数を持つ場
合、その発振信号を集積回路検査機の基本クロツ
クとして動作する機能を備えている。したがつ
て、本発明の集積回路チツプの周波数分周回路6
の出力信号dを、上記汎用集積回路検査機の基本
クロツクとして使用することが可能である。また
内蔵の時間測定機能を用いて、上記発信信号のパ
ルス幅を測定することも可能である。
Here, the number N of flip-flops in the frequency divider circuit 6 is determined so that the frequency of the output d of the frequency divider circuit 6 is equal to or lower than the maximum operating frequency of a general-purpose integrated circuit testing machine. The period and pulse width of the output signal d of this frequency dividing circuit 6 are determined by the input signal c
It is clear that it corresponds exactly to the signal propagation delay time of the closed loop. Generally, general-purpose integrated circuit testers have a function that uses the oscillation signal as the basic clock of the integrated circuit tester when the integrated circuit chip under test has an oscillation frequency that is lower than the maximum operating frequency of the integrated circuit tester. There is. Therefore, the frequency divider circuit 6 of the integrated circuit chip of the present invention
It is possible to use the output signal d of the above-mentioned general-purpose integrated circuit tester as the basic clock. It is also possible to measure the pulse width of the transmitted signal using the built-in time measurement function.

汎用集積回路検査機の基本クロツクは現在20M
Hz程度(すなわち周期50ns)が普通であり、この
場合の時間測定精度は±1ns程度である。高性能
大規模集積回路における遅延時間が例えば2nsで
あつた場合、これを直接測定してもその精度は±
50%となつて実際的でない。しかし、本発明を適
用し遅延時間が例えば2nsの閉ループを形成した
場合、その閉ループの発振周波数は250MHz(す
なわち周期4ns)となるので、前記のフリツプフ
ロツプ数Nを4個に選定すれば分周された周波数
は 250MHz/24=15.625MHz(周期64ns) となる。この周波数は汎用集積回路検査機の基本
クロツクとして使用できる。この状態において、
パルス幅(32ns)を測定したときその精度は±
3.125%程度となり、これは間接的に前記2nsの遅
延時間を±3.125%の精度で測定することと等価
である。
The basic clock for general-purpose integrated circuit testing machines is currently 20M.
A frequency of approximately Hz (that is, a period of 50 ns) is normal, and the time measurement accuracy in this case is approximately ±1 ns. If the delay time in a high-performance large-scale integrated circuit is, for example, 2 ns, the accuracy will be ± ± even if it is directly measured.
50%, which is not practical. However, if the present invention is applied to form a closed loop with a delay time of, for example, 2 ns, the oscillation frequency of the closed loop will be 250 MHz (that is, a period of 4 ns), so if the number N of flip-flops is selected to be 4, the frequency will be divided. The resulting frequency is 250MHz/2 4 = 15.625MHz (period 64ns). This frequency can be used as the basic clock for general-purpose integrated circuit testers. In this state,
When measuring the pulse width (32ns), the accuracy is ±
This is approximately 3.125%, which is equivalent to indirectly measuring the 2 ns delay time with an accuracy of ±3.125%.

また、Nの値を増加することによつてさらに精
度を向上させることも可能である。
It is also possible to further improve accuracy by increasing the value of N.

以上説明したように本発明によれば、制御信号
を与えその制御信号によつて論理回路内に発振を
生じさせる閉ループを形成するとともに、その発
振周波数の分周回路を設けることとした。したが
つて集積回路チツプの伝播遅延時間を間接的に、
しかも高精度で汎用集積回路検査機によつて測定
できる効果を有する。
As explained above, according to the present invention, a closed loop is formed in which a control signal is given and the control signal causes oscillation in a logic circuit, and a frequency dividing circuit for the oscillation frequency is provided. Therefore, the propagation delay time of an integrated circuit chip can be indirectly
Moreover, it has the effect of being able to be measured with high precision using a general-purpose integrated circuit testing machine.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の要部ブロツク構成
図。第2図は周波数分周回路の要部ブロツク構成
図。第3図は第2図に×印で示した点の入力ある
いは出力波形を示す図。 1……入力端子、2……出力端子、3……論理
回路、5……アンド回路、6……周波数分周回
路、81〜8o……フリツプフロツプ。
FIG. 1 is a block diagram of essential parts of an embodiment of the present invention. FIG. 2 is a block diagram of the main parts of the frequency divider circuit. FIG. 3 is a diagram showing input or output waveforms at the points marked with an x in FIG. 2. DESCRIPTION OF SYMBOLS 1...Input terminal, 2...Output terminal, 3...Logic circuit, 5...AND circuit, 6...Frequency divider circuit, 81 to 8o ...flip-flop.

Claims (1)

【特許請求の範囲】[Claims] 1 集積回路に形成された論理回路の一部に測定
に際して特定の制御信号を与えることにより閉ル
ープを構成し、その閉ループ内で自走発振の生じ
る回路と、この自走発振の周波数を分周する回路
と、この回路の分周出力を測定するための端子と
を含む集積回路チツプ。
1 Construct a closed loop by applying a specific control signal to a part of the logic circuit formed in the integrated circuit during measurement, and divide the frequency of the circuit in which free-running oscillation occurs and the frequency of this free-running oscillation within the closed loop. An integrated circuit chip including a circuit and terminals for measuring the divided output of the circuit.
JP56082185A 1981-05-29 1981-05-29 Integration circuit chip Granted JPS57197831A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56082185A JPS57197831A (en) 1981-05-29 1981-05-29 Integration circuit chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56082185A JPS57197831A (en) 1981-05-29 1981-05-29 Integration circuit chip

Publications (2)

Publication Number Publication Date
JPS57197831A JPS57197831A (en) 1982-12-04
JPH0136597B2 true JPH0136597B2 (en) 1989-08-01

Family

ID=13767377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56082185A Granted JPS57197831A (en) 1981-05-29 1981-05-29 Integration circuit chip

Country Status (1)

Country Link
JP (1) JPS57197831A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59181548A (en) * 1983-03-31 1984-10-16 Fujitsu Ltd Semiconductor device
JPS6089937A (en) * 1983-10-24 1985-05-20 Nec Corp Integrated circuit device
US4939389A (en) * 1988-09-02 1990-07-03 International Business Machines Corporation VLSI performance compensation for off-chip drivers and clock generation
JPH07109845B2 (en) * 1989-11-15 1995-11-22 日本電気株式会社 Semiconductor integrated circuit

Also Published As

Publication number Publication date
JPS57197831A (en) 1982-12-04

Similar Documents

Publication Publication Date Title
US6853177B2 (en) Semiconductor device with process monitor circuit and test method thereof
US4495628A (en) CMOS LSI and VLSI chips having internal delay testing capability
US5923676A (en) Bist architecture for measurement of integrated circuit delays
EP0476871B1 (en) Process monitor circuit and method
US4587480A (en) Delay testing method for CMOS LSI and VLSI integrated circuits
US20030204353A1 (en) Apparatus and method for determining effect of on-chip noise on signal propagation
US5095267A (en) Method of screening A.C. performance characteristics during D.C. parametric test operation
EP0054111B1 (en) Circuit for use on an lsi chip and for measuring the turn-on and turn-off delays of a logic circuit on said chip
US7358755B1 (en) Ring oscillator system
US3781670A (en) Ac performance test for large scale integrated circuit chips
US5039602A (en) Method of screening A.C. performance characteristics during D.C. parametric test operation
US6553545B1 (en) Process parameter extraction
US4876501A (en) Method and apparatus for high accuracy measurment of VLSI components
JPH0136597B2 (en)
JPH04274100A (en) Memory-lsi with built-in test circuit
JP3442226B2 (en) Integrated circuit with delay evaluation circuit
US7386407B2 (en) Semiconductor device test method using an evaluation LSI
EP0277167A1 (en) Integrated circuits and method of testing same
US20220381823A1 (en) Test element group and test method
JPS6141976A (en) Delay time monitoring circuit
JPS62113074A (en) Integrated circuit
JP2943307B2 (en) Semiconductor integrated circuit
JP2000214223A (en) Method for measuring delay time
JP2891312B2 (en) Test circuit for semiconductor integrated circuit
JPH0329871A (en) Logical integrated circuit