JPH0136564B2 - - Google Patents

Info

Publication number
JPH0136564B2
JPH0136564B2 JP56197086A JP19708681A JPH0136564B2 JP H0136564 B2 JPH0136564 B2 JP H0136564B2 JP 56197086 A JP56197086 A JP 56197086A JP 19708681 A JP19708681 A JP 19708681A JP H0136564 B2 JPH0136564 B2 JP H0136564B2
Authority
JP
Japan
Prior art keywords
central beam
torsion
mechanical vibrator
frequency converter
central
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56197086A
Other languages
Japanese (ja)
Other versions
JPS5897610A (en
Inventor
Toshitsugu Ueda
Seiki Ra
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP19708681A priority Critical patent/JPS5897610A/en
Publication of JPS5897610A publication Critical patent/JPS5897610A/en
Publication of JPH0136564B2 publication Critical patent/JPH0136564B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/04Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring the deformation in a solid, e.g. by vibrating string
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/16Measuring force or stress, in general using properties of piezoelectric devices
    • G01L1/162Measuring force or stress, in general using properties of piezoelectric devices using piezoelectric resonators

Description

【発明の詳細な説明】 本発明は、機械的振動子に捩り(回転角)を与
えた時、その共振周波数が変化することを利用し
て捩り又は回転角を検出する捩り(回転角)−周
波数変換器に関するものである。更に詳しくは、
本発明は、トルク測定や角加速度の測定を高精度
で行うことのできる捩り−周波数変換器に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a torsion (rotation angle) system that detects torsion or rotation angle by utilizing the fact that when torsion (rotation angle) is applied to a mechanical vibrator, its resonance frequency changes. This relates to frequency converters. For more details,
The present invention relates to a torsion-frequency converter that can measure torque and angular acceleration with high precision.

従来より、断面形状が矩形の梁を捩ると、その
断面係数が変り、これによつて梁の共振周波数が
変化する現象を利用した加速度計や角加速度計
は、例えば米国特許第3143891号、同3197753号、
同3181373号等で公知である。しかしながら、こ
れらの装置は、捩り検出手段たる矩形断面梁や回
転部分の支持に十字フレクシヤー構造、ダイヤフ
ラムを別に設け、また、梁とは別にトルク引き受
け用のフレクシヤを必要とするなど、全体構成が
複雑なものとなつていた。
Conventionally, accelerometers and angular accelerometers that utilize the phenomenon that when a beam with a rectangular cross section is twisted changes its section modulus, which changes the resonant frequency of the beam, have been proposed, for example, in U.S. Pat. No. 3197753,
It is publicly known from No. 3181373 and the like. However, these devices have a complex overall configuration, as they require a rectangular cross-section beam as a torsion detection means, a cross flexure structure and a separate diaphragm to support the rotating part, and a flexure separate from the beam to take on torque. It had become a thing.

ここにおいて、本発明は全体構成が簡単で、か
つ検出感度の高い捩り−周波数変換器を実現しよ
うとするものである。
Here, the present invention aims to realize a torsion-frequency converter having a simple overall configuration and high detection sensitivity.

本発明に係る装置は、梁が捩られてその断面係
数が変わつて共振周波数が変化する原理を利用す
るのではなく、機械振動子に与えられる捩りを、
圧縮軸力に変換し、これを周波数変化として取り
出すようにした点に特徴がある。
The device according to the present invention does not utilize the principle that when a beam is twisted, its section modulus changes and the resonant frequency changes, but the device uses the torsion applied to a mechanical vibrator to
The feature is that it is converted into compressive axial force and extracted as a frequency change.

第1図は、本発明に係る装置の一例を示す構成
斜視図である。図において、1は一方の端に検出
すべき捩り(回転角θ)が与えられ、他方の端が
固定された機械振動子で、中心軸Clに対して対称
に構成されている。この機械振動子1は、中央梁
11と、この中央梁11の両側に平行して設置さ
れる外側梁12,13と、これらの梁のそれぞれ
の端部を結合させる結合片14,15とをもつて
いる。ここで、外側梁12,13は、与えられる
捩り(回転角)を、圧縮軸力に変換させる役目を
している。各結合片14,15には取付穴16,
17が設けられており、また、中央梁11はここ
では、2本の支持フレクシヤー18及び19を介
して結合片14,15に取付けられている。この
支持フレクシヤは、中央梁11の両端から共振振
動エネルギーが結合片側に漏れるのを防止するた
めのアイツレーシヨン手段を構成している。この
ような機械振動子1は、例えば一枚の板状材料を
削り出して構成するか、あるいは水晶板等をエツ
チングによつて構成する等してつくられる。2及
び3は、中央梁11の表側と裏側とに取付けた中
央梁11の励振手段及び振動検出手段で、これら
の手段としては、例えばPZTが用いられる。4
は発振回路で、励振手段2及び振動検出手段3に
結合し、機械振動子1をその共振周波数で振動さ
せる自励振回路を構成している。5は機械振動子
1の共振周波数を計数するカウンタ、6はカウン
タ5からの信号を入力する演算回路で、例えばマ
イクロプロセツサが用いられる。7は演算結果を
表示する指示計である。
FIG. 1 is a perspective view showing an example of a device according to the present invention. In the figure, reference numeral 1 denotes a mechanical vibrator which is provided with a torsion (rotation angle θ) to be detected at one end and fixed at the other end, and is constructed symmetrically with respect to the central axis Cl. This mechanical vibrator 1 includes a central beam 11, outer beams 12 and 13 installed in parallel on both sides of the central beam 11, and coupling pieces 14 and 15 that connect the respective ends of these beams. I have it too. Here, the outer beams 12 and 13 serve to convert the applied torsion (rotation angle) into compressive axial force. Each coupling piece 14, 15 has a mounting hole 16,
17 are provided, and the central beam 11 is here attached to the connecting pieces 14, 15 via two supporting flexures 18 and 19. This support flexure constitutes an isolation means for preventing resonance vibration energy from leaking from both ends of the central beam 11 to one side of the coupling. Such a mechanical vibrator 1 is manufactured, for example, by cutting out a single plate-shaped material, or by etching a crystal plate or the like. Reference numerals 2 and 3 denote excitation means and vibration detection means for the central beam 11, which are attached to the front and back sides of the central beam 11, and PZT, for example, is used as these means. 4
is an oscillation circuit, which is coupled to the excitation means 2 and the vibration detection means 3, and constitutes a self-oscillation circuit that vibrates the mechanical vibrator 1 at its resonant frequency. 5 is a counter that counts the resonance frequency of the mechanical vibrator 1; 6 is an arithmetic circuit that inputs the signal from the counter 5; for example, a microprocessor is used. 7 is an indicator that displays the calculation results.

第2図及び第3図は第1図に示した機械振動子
の動作を説明するための説明図である。
2 and 3 are explanatory views for explaining the operation of the mechanical vibrator shown in FIG. 1. FIG.

いま、第2図において、機械振動子1の一端
(下側)を固定し、他端(上側)を角度θだけ捩
つたとすると、外側梁部分は捩られて短かくな
る。このため、中央梁部分に圧縮軸力が生ずる。
第3図において、中央梁11は、励振手段2、振
動検出手段3及び発振回路4を含んで構成されて
いる自励振発振ループによつて共振周波数で横振
動しており、この中央梁11に圧縮軸力Tが加え
られると、この共振周波数が圧縮軸力Tすなわ
ち、捩れ角θに対応して変化することとなる。し
たがつて、この共振周波数の変化をカウンタ5に
よつて検出し、所定演算を施すことによつて捩れ
角θを知ることができる。
Now, in FIG. 2, if one end (lower side) of the mechanical vibrator 1 is fixed and the other end (upper side) is twisted by an angle θ, the outer beam portion will be twisted and shortened. Therefore, a compressive axial force is generated in the central beam portion.
In FIG. 3, the central beam 11 is transversely vibrating at a resonant frequency due to a self-oscillation oscillation loop composed of an excitation means 2, a vibration detection means 3, and an oscillation circuit 4. When the compressive axial force T is applied, this resonance frequency changes corresponding to the compressive axial force T, that is, the torsion angle θ. Therefore, by detecting this change in the resonance frequency using the counter 5 and performing a predetermined calculation, the twist angle θ can be determined.

次に、第3図に示すように、機械振動子1の寸
法を定めた場合の動作を数式を用いて更に詳しく
説明する。
Next, the operation when the dimensions of the mechanical vibrator 1 are determined as shown in FIG. 3 will be explained in more detail using mathematical formulas.

第2図において、角度θだけ捩つたとき、外側
梁12,13の長さが短くなるが、この縮み分δ
は、近似的に(1)式で示すことができる。
In FIG. 2, when the outer beams 12 and 13 are twisted by an angle θ, the lengths of the outer beams 12 and 13 become shorter, but this shrinkage amount δ
can be approximately expressed by equation (1).

δ≒L(1−cosθ′) (1) ただしL:中央梁の結合片までの長さ θ′=d/2L・θ(外側梁12,13の傾斜角) d:機械振動子の幅 また、ひずみは(2)式で示すことができる。 δ≒L(1−cosθ′) (1) However, L: Length of central beam to connecting piece θ'=d/2L・θ (inclination angle of outer beams 12 and 13) d: Width of mechanical vibrator Furthermore, strain can be expressed by equation (2).

ε=−δ/L=1−cosθ′=−2sin2θ′/2 (2) ここで、中央梁11の引張り剛性をK0′フレク
シヤ部18,19の引張り剛性をK1とすると、
(2)式で表わされるひずみεのうち、中央梁11に
生じる分0は、(3)式で表わすことができる。
ε=-δ/L=1-cos θ'=-2sin 2 θ'/2 (2) Here, if the tensile rigidity of the central beam 11 is K 0 ' and the tensile rigidity of the flexure parts 18 and 19 is K 1 , then
Of the strain ε expressed by equation (2), the portion 0 generated in the central beam 11 can be expressed by equation (3).

ε0=K1/K0+K1=−2K1/K0+K1sin2θ′/2 (3) 中央梁11にこのようなひずみεが生ずると、
この中央梁11には、(4)式で示すような圧縮軸力
Tが与えられたのと等価となる。
ε 0 =K 1 /K 0 +K 1 =−2K 1 /K 0 +K 1 sin 2 θ′/2 (3) When such a strain ε occurs in the central beam 11,
This is equivalent to applying a compressive axial force T as shown in equation (4) to the central beam 11.

T=b・h・E・ε0 (4) ただし、b:中央梁11の幅 h:中央梁11の厚さ E:中央梁11の縦弾性係数 両端が固定された中央梁11の基本モードの共
振周波数fと、軸力Tとは(5)式のような関係にあ
る。
T=b・h・E・ε 0 (4) Where, b: Width of the central beam 11 h: Thickness of the central beam 11 E: Longitudinal elastic modulus of the central beam 11 Fundamental mode of the central beam 11 with both ends fixed The resonance frequency f and the axial force T have a relationship as shown in equation (5).

f=f0(1+KT)1/2≒f0(1+1/2KT) (5) ただし、f0:T=Oのときの共振周波数、 K=l2/4π2IE l:中央梁11のフレクシヤまでの長さ I:振動方向に直角な主軸に関する断面2次モー
メント (3)、(4)式から(5)式は(6)式の通りとなる。
f=f 0 (1+KT) 1/2 ≒ f 0 (1+1/2KT) (5) However, f 0 : Resonance frequency when T=O, K=l 2 /4π 2 IE l: Flexure of central beam 11 Length I: Second moment of area about the main axis perpendicular to the vibration direction (3), Equations (4) to (5) are as shown in Equation (6).

f=f0{1−b・h・l2/2・4π2・I・2K1/(K0+K
1)・sin2θ′/2}=f0{1−3/π2・(l/h)2
・K1/(K0+K1)・sin2d/4L・θ}(6) (6)式から明らかなように、中央梁11の基本モ
ードの共振周波数fは、与えられる回転角度θに
対応して変化するもので、この共振周波数fから
角度θを知ることができる。
f=f 0 {1-b・h・l2 /2・4π 2・I・2K 1 /(K 0 +K
1 )・sin 2 θ′/2}=f 0 {1-3/π 2・(l/h) 2
・K 1 /(K 0 +K 1 )・sin 2 d/4L・θ}(6) As is clear from equation (6), the resonant frequency f of the fundamental mode of the central beam 11 depends on the given rotation angle θ. It changes accordingly, and the angle θ can be determined from this resonance frequency f.

第4図は、第1図に示す構成の機械振動子にお
いて、捩り角θと共振周波数変化との関係を示し
た線図で、計算値を実線で、測定値を破線でそれ
ぞれ示す。
FIG. 4 is a diagram showing the relationship between torsion angle θ and resonance frequency change in the mechanical vibrator having the configuration shown in FIG. 1, with calculated values shown as solid lines and measured values shown as broken lines.

第4図から明らかなように、測定値は計算値と
良く一致しており、また、θ=10゜以上では、角
度θと周波数変化とはほぼ直線的で、しかも傾斜
が大きくなつている。また、捩る方向によつて周
波数変化が逆になる。したがつて、機械振動子1
をあらかじめ捩つた状態とし、常にθ=10゜以上
で使用するようにすれば、検出感度が高く、捩り
の方向が判別できる捩り一周波数変換器が実現で
きる。
As is clear from FIG. 4, the measured values are in good agreement with the calculated values, and when θ=10° or more, the angle θ and the frequency change are almost linear, and the slope becomes large. Furthermore, the frequency change is reversed depending on the direction of twisting. Therefore, mechanical oscillator 1
By making it in a twisted state in advance and always using it with θ=10° or more, it is possible to realize a torsion-frequency converter with high detection sensitivity and the ability to determine the direction of twist.

本発明に係る変換器によれば、中央梁とこれを
支持するフレクシヤ部及び、中央梁に軸力を与え
るための外側梁を板状の一体構造で構成すること
ができるので、構成が簡単で、しかも検出感度の
高い捩り一周波数変換器が実現できる。
According to the converter according to the present invention, the central beam, the flexure portion that supports the central beam, and the outer beam for applying axial force to the central beam can be configured in a plate-like integral structure, so that the configuration is simple. Moreover, a torsional frequency converter with high detection sensitivity can be realized.

第5図及び第6図は本発明の他の実施例を示す
構成図である。
FIGS. 5 and 6 are configuration diagrams showing other embodiments of the present invention.

第5図の実施例は、中央梁11に支持する支持
フレクシヤ部18,19を単一構造としたもので
ある。この支持フレクシヤ部18,19の長さ及
び幅は、中央梁11の共振振動エネルギーの端末
からの漏洩が最小になるように決められる。ここ
で、このフレクシヤ部の捩り剛性を弱くすると、
捩り(回転角)が中央梁にほとんど生じなくな
り、中央梁が捩られることによつて起こる共振周
波数変化をなくすることができる。すなわち、機
械振動子1が捩られたときに中央梁に生じる圧縮
軸力のみで、中央梁の共振周波数変化が生じ、感
度を上げることができる。
In the embodiment shown in FIG. 5, the supporting flexure parts 18 and 19 supported on the central beam 11 have a single structure. The length and width of the supporting flexure portions 18, 19 are determined so that leakage of the resonant vibration energy of the central beam 11 from the terminals is minimized. Now, if we weaken the torsional rigidity of this flexure part,
Almost no torsion (rotation angle) occurs in the central beam, and it is possible to eliminate changes in the resonance frequency caused by twisting the central beam. That is, the resonant frequency of the center beam changes only by the compressive axial force generated in the center beam when the mechanical vibrator 1 is twisted, and the sensitivity can be increased.

第6図の実施例は、第5図実施例において、外
側梁12,13の中央部付近に窪み12a,13
aを設け、外側梁12,13の捩り剛性を調節す
るようにしたものである。
The embodiment of FIG. 6 has depressions 12a, 13 near the center of the outer beams 12, 13 in the embodiment of FIG.
A is provided to adjust the torsional rigidity of the outer beams 12 and 13.

第7図及び第8図は、本発明に係る機械振動子
の適用例を示す構成図である。
FIG. 7 and FIG. 8 are configuration diagrams showing an example of application of the mechanical vibrator according to the present invention.

第7図に示す装置は、機械振動子1の一端をベ
ース8にネジ80によつて固定し、他端に回転ト
ルクを与えるようにしてトルク計を構成したもの
である。
The device shown in FIG. 7 is a torque meter configured by fixing one end of the mechanical vibrator 1 to the base 8 with a screw 80 and applying rotational torque to the other end.

第8図に示す原理模型は、機械振動子1の一端
を角加速度θ¨が与えられる軸90に固定するとと
もに、他端に腕91によつて支持される回転慣性
を与える重り92を取付け、加速度計を構成した
ものである。軸90は、軸受け9によつて回転可
能に支持されており、これに与えられた角加速度
θは、機械振動子1の腕91が取付けられた一端
に角加速度θ¨に対応した捩りとして加わるように
なつている。
In the principle model shown in FIG. 8, one end of the mechanical vibrator 1 is fixed to a shaft 90 to which an angular acceleration θ is applied, and a weight 92 that provides rotational inertia supported by an arm 91 is attached to the other end. This is an accelerometer. The shaft 90 is rotatably supported by a bearing 9, and the angular acceleration θ applied thereto is applied to one end of the mechanical vibrator 1, to which the arm 91 is attached, as a torsion corresponding to the angular acceleration θ. It's becoming like that.

なお、上記の各実施例において、中央梁11を
励振させるための励振手段及びその振動を検出す
る振動検出手段は、これにPZTを貼布する場合
を想定したが、機械振動子を磁作材料で構成する
場合には、電磁的手段を用いてもよく、また、機
械振動子を水晶のような圧電材料で構成する場合
には、これに電極を取付けることによつて励振手
段、振動検出手段を構成してもよい。
In each of the above embodiments, it is assumed that the excitation means for exciting the central beam 11 and the vibration detection means for detecting the vibrations are coated with PZT. If the mechanical vibrator is made of a piezoelectric material such as crystal, an electromagnetic means may be used, and if the mechanical vibrator is made of a piezoelectric material such as crystal, electrodes may be attached to the mechanical vibrator to provide an excitation means and a vibration detection means. may be configured.

以上説明したように、本発明によれば、全体構
成が簡単で、かつ検出感度の高い捩り−周波数変
換器が実現できる。
As described above, according to the present invention, a torsion-frequency converter having a simple overall configuration and high detection sensitivity can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明に係る装置の一例を示す構成
斜視図、第2図及び第3図は動作説明図、第4図
は第1図装置において捩り角と周波数変化との関
係を示す線図、第5図及び第6図は本発明の他の
実施例を示す構成図、第7図及び第8図は本発明
に係る機械振動子の適用例を示す構成図である。 1……機械振動子、11……中央梁、12,1
3……外側梁、14,15……結合片、16,1
7……取付穴、18,19……支持フレクシヤ、
2……励振手段、3……振動検出手段、4……発
振回路、5……カウンタ、6……演算器、7……
デイスプレイ。
FIG. 1 is a perspective view of the configuration of an example of the device according to the present invention, FIGS. 2 and 3 are explanatory diagrams of operation, and FIG. 4 is a line showing the relationship between torsion angle and frequency change in the device shown in FIG. 1. 5 and 6 are block diagrams showing other embodiments of the present invention, and FIGS. 7 and 8 are block diagrams showing application examples of the mechanical vibrator according to the present invention. 1... Mechanical vibrator, 11... Central beam, 12,1
3... Outer beam, 14, 15... Joining piece, 16, 1
7...Mounting hole, 18, 19...Support flexure,
2... Excitation means, 3... Vibration detection means, 4... Oscillation circuit, 5... Counter, 6... Arithmetic unit, 7...
Display.

Claims (1)

【特許請求の範囲】 1 中央梁、この中央梁の両側に平行して設置さ
れる外側梁、これらの梁のそれぞれの端部間を結
合させる結合片をもつ機械振動子、前記中央梁を
振動させる励振手段、前記中央梁の振動を検出す
る振動検出手段、前記機械振動子の一端を固定
し、他端に変換すべき捩りを機械振動子の中心軸
に対して回転するように与えることによつて前記
中央梁に圧縮軸力を与える捩り付与手段、前記振
動検出手段及び励振手段を含んで構成される自励
発振ループを備え、 前記自励発振ループから得られる中央梁の共振
周波数の変化から捩り(回転角)を知るようにし
た捩り−周波数変換器。 2 中央梁の両端部をフレクシヤーを介して結合
片に接続させるようにした特許請求の範囲第1項
記載の捩り−周波数変換器。 3 機械振動子の他端をあらかじめ一定の回転角
だけ捩つた状態とした特許請求の範囲第1項記載
の捩り−周波数変換器。
[Scope of Claims] 1. A central beam, outer beams installed in parallel on both sides of the central beam, a mechanical vibrator having coupling pieces that connect the respective ends of these beams, and vibrating the central beam. vibration detection means for detecting the vibration of the central beam, fixing one end of the mechanical vibrator and applying torsion to be converted to the other end so as to rotate about the central axis of the mechanical vibrator. Therefore, a self-excited oscillation loop including a torsion imparting means for applying a compressive axial force to the central beam, the vibration detection means, and an excitation means is provided, and a change in the resonant frequency of the central beam obtained from the self-excited oscillation loop is provided. A torsion-frequency converter that allows you to know the torsion (rotation angle). 2. The torsion-frequency converter according to claim 1, wherein both ends of the central beam are connected to the coupling pieces via flexures. 3. The torsion-frequency converter according to claim 1, wherein the other end of the mechanical vibrator is twisted by a certain rotation angle in advance.
JP19708681A 1981-12-08 1981-12-08 Torsion-to-frequency transducer Granted JPS5897610A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19708681A JPS5897610A (en) 1981-12-08 1981-12-08 Torsion-to-frequency transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19708681A JPS5897610A (en) 1981-12-08 1981-12-08 Torsion-to-frequency transducer

Publications (2)

Publication Number Publication Date
JPS5897610A JPS5897610A (en) 1983-06-10
JPH0136564B2 true JPH0136564B2 (en) 1989-08-01

Family

ID=16368485

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19708681A Granted JPS5897610A (en) 1981-12-08 1981-12-08 Torsion-to-frequency transducer

Country Status (1)

Country Link
JP (1) JPS5897610A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU600296B2 (en) * 1986-07-01 1990-08-09 Seca Gmbh Vibration type weight measuring apparatus
JPH051801Y2 (en) * 1986-08-29 1993-01-18
GB8806214D0 (en) * 1988-03-16 1988-04-13 Avery Ltd W & T Vibrating force sensor
FR2824909B1 (en) * 2001-05-17 2003-09-05 Sagem VIBRATING BEAM FORCE SENSOR AND ACCELEROMETER USING THE SAME
GB0517340D0 (en) 2005-08-25 2005-10-05 Avery Berkel Ltd Improvements in or relating to vibrating beam sensors
CH718762A1 (en) * 2021-06-23 2022-12-30 Digi Sens Holding Ag Oscillating bridge for a vibrating wire sensor and vibrating wire sensor.

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133491A (en) * 1974-07-19 1976-03-22 Shell Int Research Sentaino yoshundoritsuosokuteisuru sochioyobi sonohoho
JPS56164928A (en) * 1980-05-22 1981-12-18 Yokogawa Hokushin Electric Corp Mechanical vibrator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5133491A (en) * 1974-07-19 1976-03-22 Shell Int Research Sentaino yoshundoritsuosokuteisuru sochioyobi sonohoho
JPS56164928A (en) * 1980-05-22 1981-12-18 Yokogawa Hokushin Electric Corp Mechanical vibrator

Also Published As

Publication number Publication date
JPS5897610A (en) 1983-06-10

Similar Documents

Publication Publication Date Title
JP3805837B2 (en) Angular velocity detector
JP2002022445A (en) Motion sensor
KR100432190B1 (en) Integrated Accelerometer Transducer and Accelerometer
JPH0520692B2 (en)
JPS63273041A (en) Viscosimeter or hydrometer
US20060096378A1 (en) Vibrating beam accelerometer
JPH0136564B2 (en)
JP2000074673A (en) Compound movement sensor
US6414416B1 (en) Monolithic vibrating rate gyro structure
JPH0786417B2 (en) Vibrating gyro
JPH10267663A (en) Angular velocity sensor
RU2222780C1 (en) Sensitive element of micromechanical gyroscope
JP3139212B2 (en) Acceleration sensor
JPH0626852Y2 (en) Accelerometer
JPS6381235A (en) Vibration type torque sensor
RU2289788C1 (en) Micromechanical vibration gyroscope
JPS6251401B2 (en)
JP2001133266A (en) Angular velocity sensor
JP3139211B2 (en) Acceleration sensor
JPH0425714A (en) Biaxial vibration gyro
JPS594270Y2 (en) Vibrating density meter
JP3765380B2 (en) Vortex flow meter
CN116203280A (en) Flexible hinge fiber bragg grating acceleration sensor and measuring method
JP3114580B2 (en) Acceleration sensor
JPS6112217B2 (en)