JPH0626852Y2 - Accelerometer - Google Patents

Accelerometer

Info

Publication number
JPH0626852Y2
JPH0626852Y2 JP7579688U JP7579688U JPH0626852Y2 JP H0626852 Y2 JPH0626852 Y2 JP H0626852Y2 JP 7579688 U JP7579688 U JP 7579688U JP 7579688 U JP7579688 U JP 7579688U JP H0626852 Y2 JPH0626852 Y2 JP H0626852Y2
Authority
JP
Japan
Prior art keywords
damping coefficient
natural frequency
acceleration
displacement
vibration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP7579688U
Other languages
Japanese (ja)
Other versions
JPH01179270U (en
Inventor
光男 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP7579688U priority Critical patent/JPH0626852Y2/en
Publication of JPH01179270U publication Critical patent/JPH01179270U/ja
Application granted granted Critical
Publication of JPH0626852Y2 publication Critical patent/JPH0626852Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Geophysics And Detection Of Objects (AREA)

Description

【考案の詳細な説明】 〔産業上の利用分野〕 本考案は各種機械装置・交通機関等に取りつけて動作状
態の異常の有無等を検知するための加速度センサーに関
するものである。
[Detailed Description of the Invention] [Industrial field of application] The present invention relates to an acceleration sensor which is mounted on various types of machinery, transportation, etc. to detect the presence or absence of an abnormal operation state.

〔従来の技術〕[Conventional technology]

従来この種の用途のセンサーは、振動センサーに分類さ
れ、基本的には測定対象に固定される振動系、一般にサ
イズモ系と外部振動の反応(慣性力・圧力変化・質量の
移動等)を電気信号に変換するトランスジューサーより
構成され、用途に応じて各種の構成がある。
Conventionally, sensors for this type of application are classified as vibration sensors, and basically, a vibration system fixed to the measurement target, generally a seismo system and the reaction of external vibration (inertial force, pressure change, mass movement, etc.) are electrically It is composed of a transducer that converts into a signal, and there are various configurations depending on the application.

サイズモ系の固有振動数と測定対象の周波数との間の大
小関係並びに若干の条件によってサイズモ系の反応は大
きく異なり測定対象の周波数に比べてサイズモ系の周波
数が充分小さい場合サイズモ系の反応はその質点が外部
振動の変位と反対方向に運動し変位計として作用する。
また、2つの周波数が等しい場合は機械的な共振を生ず
るがこのとき系の減衰係数が1に比べて充分大きいサイ
ズモ系の質点の運動は速度に比例し速度計として動作す
る。
The response of the seismo system varies greatly depending on the magnitude relationship between the natural frequency of the seisei system and the frequency of the measurement target and some conditions, and when the frequency of the seismo system is sufficiently smaller than the frequency of the measurement target, The particle moves in the direction opposite to the displacement of external vibration and acts as a displacement meter.
When the two frequencies are equal, mechanical resonance occurs, but at this time, the movement of the mass point of the seismo system, whose damping coefficient of the system is sufficiently larger than 1, acts as a speedometer in proportion to the speed.

またサイズモ系の共振周波数が測定対象の周波数に比べ
て充分大きい場合は質点の運動は外部振動の加速度に比
例する。
When the resonance frequency of the seismo system is sufficiently higher than the frequency of the measurement target, the motion of the mass point is proportional to the acceleration of external vibration.

例えば、図面を参照しながら、先ず、サイズモ系の固有
振動数と応答について説明する。
For example, referring to the drawings, first, the natural frequency and response of the seismo system will be described.

第5図はサイズモ系の力学モデルを示す図である。図に
おいてxはを重錘の基礎わくに対する変位、yを基礎わ
くの空間不動点に対する変位とすれば、基礎わくに外部
から振動が加えられたとき系の運動方程式は(1)式で
与えられる。。
FIG. 5 is a diagram showing a dynamic model of the Seismo system. In the figure, where x is the displacement of the weight with respect to the basic frame and y is the displacement with respect to the spatial fixed point of the basic frame, the system equation of motion is given by equation (1) when vibration is applied to the basic frame from the outside. . .

または、 ここで fn:減衰のない場合の固有振動数 h:系の減衰の程度を表わす係数(減衰比) いま基礎わくの振動が正弦波で y=Ysinωtであるとすると、 運動方程式は 過度状態から十分時間が経過した後の状態の定常状態で
は、(2)式の解は ただし ここでu》1であれば、 となり(3)式は x=−Ysinωt …………(4) となる。即ち重錘の基礎わくに対する変位は基礎わくの
変位に等しくなり、変位計の機能を有する。次に(3)式
を変形して ここでu《1であれば であり(5)式は となる。この場合重錘の基礎わくに対する変位は基礎わ
くの加速度に等しく加速度計として機能する。
Or here fn: natural frequency in the absence of damping h: coefficient representing the degree of damping of the system (damping ratio) Now, assuming that the basic frame vibration is a sine wave and y = Ysinωt, the equation of motion is In the steady state after a sufficient time has passed from the transient state, the solution of equation (2) is However If u >> 1 Then, the equation (3) becomes x = −Ysinωt (4). That is, the displacement of the weight with respect to the base frame becomes equal to the displacement of the base frame, and it functions as a displacement meter. Next, transform equation (3) If u << 1 And equation (5) is Becomes In this case, the displacement of the weight with respect to the foundation frame is equal to the acceleration of the foundation frame and functions as an accelerometer.

同様にして(3)式は、 ここでh》1ならば となり、(7)式は 重錘の基礎わくに対する変位は、基礎わくの速度に比例
速度系として作用する。
Similarly, equation (3) becomes If h >> 1 And equation (7) becomes The displacement of the weight with respect to the foundation frame acts as a velocity system proportional to the velocity of the foundation frame.

以上のようにサイズモ系の応答をその固有振動数と減衰
比との条件からまとめると第1表となる。
As described above, the response of the Seismo system is summarized in Table 1 from the conditions of its natural frequency and damping ratio.

一般の加速度センサーはこの原理に基づき、構成されて
いる。加速度センサーのトランスジューサーとしては圧
電セラミックスが主に利用され対象とする周波数領域や
振動の強弱の程度によって縦効果型や横効果型が考案さ
れている。微弱な振動に対しては横効果型が適してい
る。
A general acceleration sensor is constructed based on this principle. Piezoelectric ceramics are mainly used as a transducer of an acceleration sensor, and a vertical effect type or a lateral effect type is devised depending on a target frequency range and a degree of vibration intensity. The lateral effect type is suitable for weak vibrations.

〔考案が解決しようとする課題〕 微弱な振動の加速度を感度よく検知する方法としては前
述の如く片持はりを用いて横効果型の加速度センサーが
適している。しかしながら一般に片持はりを用いた構成
の固有振動数は小さくかつ後述するように加速度計とし
て作用させるためには対象周波数を固有周波数の数分の
一(30%以下)にする必要があり加速度計として対象
とすることのできる周波数領域はきわめて低い値とな
る。
[Problems to be Solved by the Invention] As a method for sensitively detecting the acceleration of weak vibration, a lateral effect type acceleration sensor using a cantilever is suitable as described above. However, the natural frequency of the structure using a cantilever is generally small, and it is necessary to set the target frequency to a fraction (30% or less) of the natural frequency in order to act as an accelerometer as described later. The frequency range that can be used as is an extremely low value.

そこで本考案の技術的課題はこの欠点を除去するため、
片持はりを用いた圧電セラミックスの横効果を利用する
方式において片持はりを2段に用いてサイズモ系を2重
に構成し各々を速度センサーとし作用させることにより
加速度センサーとして機能させ微弱な振動の加速度を感
度よく検知できる周波数領域を拡大することにある。
Therefore, the technical problem of the present invention is to eliminate this drawback.
In a system that uses the lateral effect of piezoelectric ceramics using a cantilever beam, the cantilever beam is used in two stages to form a dual-sized seismo system, each of which acts as a velocity sensor to function as an acceleration sensor and weak vibration. The purpose is to expand the frequency range in which the acceleration of can be detected with high sensitivity.

〔課題を解決するための手段〕[Means for Solving the Problems]

本考案によれば、固定端が測定対象物に固定されている
長さの等しい弾性板よりなる第1の片持ちはりを互いの
弾性板が対向するように2つ平行に重ねて配置し、該片
持ちはりの自由端同志に連結部材を連結してなる第1の
固有振動数及び第1の減衰係数をもつ第1の振動系と、
上記連結部材を固定端とし、上記弾性板と平行に配置さ
れた圧電振動片の自由端間に重錘を設けてなる第2の固
有振動数及び第2の減衰係数をもつ第2の振動系とを有
し、上記第1の固有振動数及び第2の固有振動数を実質
的に等しく選択し且つ上記第1の減衰係数及び第2の減
衰係数が1に比べて充分大きい値に選択し、上記測定対
象物の振動変位の加速度を上記重錘の位置変位として検
出し、該検出した変位を、上記圧電振動片に生ずる電気
信号として取り出すことを特徴とする加速度センサーが
得られる。
According to the present invention, two first cantilever beams, whose fixed ends are fixed to the object to be measured and which are made of elastic plates of equal length, are arranged in parallel so that the elastic plates face each other. A first vibration system having a first natural frequency and a first damping coefficient, in which a coupling member is coupled to the free ends of the cantilever beam;
A second vibration system having a second natural frequency and a second damping coefficient, in which a weight is provided between the free ends of the piezoelectric vibrating reeds arranged in parallel with the elastic plate with the connecting member as a fixed end. And selecting the first natural frequency and the second natural frequency to be substantially equal and selecting the first damping coefficient and the second damping coefficient to values sufficiently larger than one. An acceleration sensor characterized in that the acceleration of the vibration displacement of the measuring object is detected as the position displacement of the weight, and the detected displacement is taken out as an electric signal generated in the piezoelectric vibrating piece.

〔作用〕[Action]

本考案の作用を図面を用いて具体的に説明する。 The operation of the present invention will be specifically described with reference to the drawings.

第1図は本考案の構成の模式図である。この図におい
て、2つの片持はり2,2をヒンジ3,3と剛体4とよ
りなる連結部材で連結した構成において、振巾が小さい
場合剛体4は片持はりの軸と垂直の方向の姿勢を保つこ
とができる。ここで連なる片持はり2,2の固定部分1
が被測物体に取付けられている場合の剛体及びこれを固
定端とする第2の片持はり5の先端の取りつけられた重
錘6の運動を例にあげて説明する。但し2つの片持はり
2,2の固有振動数は同じでωとし、減衰係数はh,
h′は1に比べて充分大きく、前述の(8)式を与える条
件を満足するものとする。被測物体の運動がy=Ysi
nωtである場合、 剛体の運動xは(8)式より 次にこの剛体を固定端とする。第2の片持はり5の先端
の重錘の運動x′は 即ち、第2の片持はり5の先端の重錘の運動は被測物体
の運動の加速度に比例するため第2の片持はりが圧電バ
イモルフまたはユニモリフで構成されている場合その電
気端子から被測物体の運動の加速度に比例する電気信号
が取り出せることになる。またこの場合加速度計として
利用できる周波数の範囲はωの近辺が対象となり、従
来の片持はりの一つのみの構成におけるときのようなω
より充分小さい領域のみが対象とならず周波数域の拡
大が可能となる。
FIG. 1 is a schematic diagram of the configuration of the present invention. In this figure, in a structure in which two cantilevers 2 and 2 are connected by a connecting member composed of hinges 3 and 3 and a rigid body 4, when the swing width is small, the rigid body 4 is in a direction perpendicular to the axis of the cantilever. Can be kept. Fixed part 1 of cantilever 2 and 2 connected here
The movement of the weight 6 attached to the rigid body and the tip of the second cantilever 5 having the rigid body as the fixed end will be described as an example. However, the natural frequencies of the two cantilevers 2 and 2 are the same, ω n , and the damping coefficient is h,
It is assumed that h'is sufficiently larger than 1 and satisfies the condition given by the above equation (8). The motion of the measured object is y = Ysi
When nωt, the motion x of the rigid body is calculated from Eq. (8). Next, this rigid body is used as the fixed end. The movement x'of the weight at the tip of the second cantilever beam 5 is That is, since the motion of the weight at the tip of the second cantilever beam 5 is proportional to the acceleration of the motion of the object to be measured, when the second cantilever beam is composed of the piezoelectric bimorph or the unimolyph, the electric terminal is used to An electric signal proportional to the acceleration of the motion of the object to be measured can be taken out. Also, in this case, the frequency range that can be used as an accelerometer is around ω n , and ω is the same as in the conventional cantilever configuration.
Only the region sufficiently smaller than n is not targeted, and the frequency range can be expanded.

〔実施例〕〔Example〕

本考案の実施例を図面を参照して説明する。 An embodiment of the present invention will be described with reference to the drawings.

実施例1 本考案の実施例1に係る加速度センサーについて説明す
る。
Example 1 An acceleration sensor according to Example 1 of the present invention will be described.

第2図は実施例1に係る加速度センサーの具体的な構成
を示す斜視図である。
FIG. 2 is a perspective view showing a specific configuration of the acceleration sensor according to the first embodiment.

この図のように、長さ、巾wの等しい弾性板より
なる片持はり2,2を間隔dを持って二枚平行に配置
し、対応する一端に固定端1を設け、他端の自由端を各
々ヒンジ3,3を介して剛体4で連結した。さらに、こ
の剛体4の固定端1側の反対側に一端に重錘6を有し且
つ各表面に端子8及び8を各々有する長さ、巾w
の圧電バイモルフ5の他端を固定して片持はり7に連絡
した。なお、片持はり2及び5の表面に減衰調整板7,
7′が粘着されている。ここで各部の寸法及び材質は表
2の通りである。
As shown in the figure, two cantilever beams 2 and 2 made of elastic plates having the same length 1 and width w 1 are arranged in parallel with a distance d, and a fixed end 1 is provided at one end and the other end is provided. The free ends of are rigidly connected via hinges 3 respectively. Further, the rigid body 4 has a weight 6 at one end on the side opposite to the fixed end 1 side, and has terminals 8 and 8 on each surface. Length 2 , width w 2
The other end of the piezoelectric bimorph 5 was fixed and contacted to the cantilever 7. In addition, the damping adjusting plate 7,
7'is adhered. Here, the dimensions and materials of each part are as shown in Table 2.

このように作成した加速度センサーを、f=1.00k
Hz、振幅0〜170μで加振し、加速度を測定した。そ
の結果を第4図に示す。この図の○印で示されるよう
に、実施例1に係る加速度センサーの読み取り値の対数
と加振器の加速の対数とは、直線関係を示した。尚、共
振周波数及び減数係数は表3に示す通りで長さのは
り(振動系1)の共振周波数は1.198kHz、減衰係
数(h)は12.3であり、長さのはり(振動系
2)の共振周波数(ω/2π)は1.068kHz減衰
係数(h)は10.5であった。
The acceleration sensor created in this way is f = 1.00k
Acceleration was measured by vibrating at an amplitude of 0 to 170 µ at Hz. The results are shown in FIG. As indicated by the circles in this figure, the logarithm of the reading of the acceleration sensor according to the first embodiment and the logarithm of acceleration of the vibration exciter showed a linear relationship. The resonance frequency and the reduction coefficient are as shown in Table 3, and the resonance frequency of the beam of length 1 (vibration system 1) is 1.198 kHz, the damping coefficient (h) is 12.3, and the beam of length 2 ( The resonance frequency (ω n / 2π) of the vibration system 2) was 1.068 kHz, and the damping coefficient (h) was 10.5.

実施例2 本考案の実施例2に係る加速度センサーについて説明す
る。
Second Embodiment An acceleration sensor according to a second embodiment of the present invention will be described.

第3図は実施例2に係る加速度センサーの具体的な構成
を示す斜視図である。この図のように、長さ、巾w
の等しい弾性板よりなる片持はり2,2′を間隔dを
持って、二枚平行に配置し、対応する一端に固定端を設
け、他端の自由端を各々ヒンジ3及び3を介して剛体4
で連結した。
FIG. 3 is a perspective view showing a specific configuration of the acceleration sensor according to the second embodiment. As shown in this figure, length 1 and width w
The cantilever beam 2 and 2 'made of a 1 equal elastic plate with a distance d, two parallel positioned, the fixed end provided corresponding end, each through a hinge 3 and 3 a free end of the other end Rigid body 4
Connected with.

ここまでの組立ては実施例1と同様である。次に、この
剛体4の固定端1側に、一端に重錘を有し且つ各表面に
端子8及び8をそれぞれ有する長さ、巾wの圧電
バイモルフ5の他端を固定して片持はり7に連絡した。
なお、片持はり2及び5の表面に減衰調整板7,7′が
粘着されている。ここで、=40,w=10,d
=10,=10で各部の寸法及び材質は、実施例1
と同じく表2に示すものを用いた。
The assembly up to this point is the same as in the first embodiment. Next, on the fixed end 1 side of the rigid body 4, the other end of the piezoelectric bimorph 5 having a length 2 and a width w 2 having a weight at one end and terminals 8 and 8 on each surface is fixed. I contacted Hold 7.
Attenuation adjusting plates 7 and 7'are adhered to the surfaces of the cantilevers 2 and 5. Here, 1 = 40, w 1 = 10, d
= 10, 2 = 10, the size and material of each part are the same as those in the first embodiment.
The same as shown in Table 2 was used.

このようにして作製した加速センサーをf=1.00k
Hz、振幅0〜170μで加振し加速度を測定した。その
結果を第4図に示す。この図の△印で示されるように、
加速度センサーの読み取り値の対数と加速度の対数とは
直線関係を示した。尚、共振周波数及び減数係数は表3
に示す通りで長さのはり(振動系1)の共振周波数
は(ω/2π)は、1.058kHz、減衰係数(h)
は13.0であり、長さのはり(振動系2)の共振
周波数(ω/2π)は1.052kHz減衰係数(h)
は10.3であった。
The acceleration sensor manufactured in this way is f = 1.00k
The acceleration was measured by vibrating at a frequency of Hz and an amplitude of 0 to 170 μ. The results are shown in FIG. As indicated by the triangle in this figure,
The logarithm of the reading of the accelerometer and the logarithm of the acceleration showed a linear relationship. The resonance frequency and reduction coefficient are shown in Table 3.
The resonance frequency (ω n / 2π) of the beam of length 1 (oscillation system 1) is 1.058 kHz and the damping coefficient (h)
Is 13.0, and the resonance frequency (ω n / 2π) of the beam of length 2 (oscillation system 2) is 1.052 kHz damping coefficient (h)
Was 10.3.

〔考案の効果〕 以上述べたごとく本考案によれば微弱振動に対して感度
よく加速度を検知できかつその対象周波数領域が比較的
高い加速度センサーの提供が可能となりその工業的効果
はきわめて大である。
[Effects of the Invention] As described above, according to the present invention, it is possible to provide an acceleration sensor that can detect acceleration with respect to weak vibrations and has a relatively high target frequency range, and its industrial effect is extremely large. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の構成を模式的に示す側面図、第2図
は、本考案の一実施例に係る加速度センサーの具体的な
構成を示す斜視図、第3図は、本考案の他の実施例に係
る加速度センサーの具体的な構成を示す斜視図、第4図
は、本考案の実施例に係る加速度センサーの加速度測定
例を示す図、第5図は、サイズモ系の力学モデルを示す
図である。 図中、1は固定端、2は第1の振動系を構成する弾性
板、3はヒンジ、4は剛体、5は第2の振動系を構成す
る圧電バイモルフ、6は重錘、7,7′は減衰係数調整
用の硬質ゴム板、8及び8′はリード端子、51は基礎
わく、52は重錘、53はばね、54はダッシュポット
である。
FIG. 1 is a side view schematically showing the construction of the present invention, FIG. 2 is a perspective view showing a concrete construction of an acceleration sensor according to an embodiment of the present invention, and FIG. 4 is a perspective view showing a specific configuration of the acceleration sensor according to the embodiment of the present invention, FIG. 4 is a view showing an example of acceleration measurement of the acceleration sensor according to the embodiment of the present invention, and FIG. 5 is a dynamic model of the seismo system. FIG. In the figure, 1 is a fixed end, 2 is an elastic plate that constitutes a first vibrating system, 3 is a hinge, 4 is a rigid body, 5 is a piezoelectric bimorph that constitutes a second vibrating system, 6 is a weight, 7 and 7. ′ Is a hard rubber plate for adjusting the damping coefficient, 8 and 8 ′ are lead terminals, 51 is a basic frame, 52 is a weight, 53 is a spring, and 54 is a dashpot.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】固定端が測定対象物に固定されている長さ
の等しい弾性板よりなる第1の片持ちはりを互いの弾性
板が対向するように2つ平行に重ねて配置し、該片持ち
はりの自由端同志に連結部材を連結してなる第1の固有
振動数及び第1の減衰係数をもつ第1の振動系と、上記
連結部材を固定端とし、上記弾性板と平行に配置された
圧電振動片の自由端側に重錘を設けてなる第2の固有振
動数及び第2の減衰係数をもつ第2の振動系とを有し、
上記第1の固有振動数及び第2の固有振動数を実質的に
等しく選択し且つ上記第1の減衰係数及び第2の減衰係
数が1に比べて充分大きい値に選択し、上記測定対象物
の振動変位の加速度を上記重錘の位置変位として検出
し、該検出した変位を、上記圧電振動片に生ずる電気信
号として取り出すことを特徴とする加速度センサー。
1. A first cantilevered beam having elastic plates whose fixed ends are fixed to an object to be measured and which are made of elastic plates having the same length. A first vibrating system having a first natural frequency and a first damping coefficient formed by connecting a connecting member to free ends of a cantilever, and the connecting member serving as a fixed end and parallel to the elastic plate. A second vibration system having a second natural frequency and a second damping coefficient, in which a weight is provided on the free end side of the arranged piezoelectric vibrating piece,
The first natural frequency and the second natural frequency are selected to be substantially equal to each other, and the first damping coefficient and the second damping coefficient are selected to be sufficiently larger than 1, and the object to be measured is selected. The acceleration sensor is characterized in that the acceleration of the vibration displacement is detected as the position displacement of the weight, and the detected displacement is taken out as an electric signal generated in the piezoelectric vibrating piece.
JP7579688U 1988-06-09 1988-06-09 Accelerometer Expired - Lifetime JPH0626852Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7579688U JPH0626852Y2 (en) 1988-06-09 1988-06-09 Accelerometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7579688U JPH0626852Y2 (en) 1988-06-09 1988-06-09 Accelerometer

Publications (2)

Publication Number Publication Date
JPH01179270U JPH01179270U (en) 1989-12-22
JPH0626852Y2 true JPH0626852Y2 (en) 1994-07-20

Family

ID=31300850

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7579688U Expired - Lifetime JPH0626852Y2 (en) 1988-06-09 1988-06-09 Accelerometer

Country Status (1)

Country Link
JP (1) JPH0626852Y2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2698320B2 (en) * 1993-08-31 1998-01-19 日本電信電話株式会社 Permanent input system, Permanent intention communication system, Permanent music keyboard system, Permanent Braille input / output system
JP6474868B1 (en) 2017-08-29 2019-02-27 株式会社トライフォース・マネジメント Power generation element
JP6647498B2 (en) * 2018-10-17 2020-02-14 株式会社トライフォース・マネジメント Power generation element

Also Published As

Publication number Publication date
JPH01179270U (en) 1989-12-22

Similar Documents

Publication Publication Date Title
Zook et al. Characteristics of polysilicon resonant microbeams
EP0900385B1 (en) Electrostatic drive for accelerometer
US6595054B2 (en) Digital angular rate and acceleration sensor
US4306456A (en) Elastic wave accelerometer
Yu et al. System modeling of microaccelerometer using piezoelectric thin films
JPS59126261A (en) Accelerometer with needle resonator power transducer
JP2625364B2 (en) Touch signal probe
CN116754107B (en) High-sensitivity resonant pressure sensor with amplifying structure and signal conditioning method
JPH0626852Y2 (en) Accelerometer
EP3617714A1 (en) Geophysical acceleration sensor and method
US6895819B1 (en) Acceleration sensor
JP3561344B2 (en) Servo type speed / displacement sensor
US6269698B1 (en) Vibrating beam force sensor
EP2201387B1 (en) Flexural pivot for micro-sensors
CN214121212U (en) High-overload-resistant capacitive MEMS vibrating ring gyroscope
JPH05828Y2 (en)
JPS5897610A (en) Torsion-to-frequency transducer
Yu et al. Design and fabrication of the micro-accelerometer using piezoelectric thin films
Cheshmehdoost et al. Dynamic characteristics of a resonating force transducer
SU1742732A1 (en) Measuring vibration converter
RU2014619C1 (en) Acceleration transducer
JP3129022B2 (en) Acceleration sensor
JPS585224Y2 (en) Vibration detection sensor output voltage measuring device
Licht et al. Historical perspective of accelerometer technologies
US4047428A (en) Force measuring transducer with frequency output signal