JPH0136372Y2 - - Google Patents

Info

Publication number
JPH0136372Y2
JPH0136372Y2 JP1982105075U JP10507582U JPH0136372Y2 JP H0136372 Y2 JPH0136372 Y2 JP H0136372Y2 JP 1982105075 U JP1982105075 U JP 1982105075U JP 10507582 U JP10507582 U JP 10507582U JP H0136372 Y2 JPH0136372 Y2 JP H0136372Y2
Authority
JP
Japan
Prior art keywords
light emitting
voltage
light
emitting semiconductor
led
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982105075U
Other languages
Japanese (ja)
Other versions
JPS599663U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982105075U priority Critical patent/JPS599663U/en
Publication of JPS599663U publication Critical patent/JPS599663U/en
Application granted granted Critical
Publication of JPH0136372Y2 publication Critical patent/JPH0136372Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Optical Communication System (AREA)

Description

【考案の詳細な説明】 本考案は発光半導体の順方向閾値電圧を打消す
るように順方向に電源を接続して使用する波形検
出装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a waveform detection device that is used by connecting a power source in the forward direction so as to cancel the forward threshold voltage of a light emitting semiconductor.

発光半導体を使用して、電圧又は電流を光の強
弱に変換して伝送する波形検出装置について、第
1図にその従来例を示す。第1図において交流信
号源1に対し逆並列に発光半導体2,3を配置
し、発生した光4,5を各別々の光伝導物質たと
えばライトガイド6,7に導き各々の他端に受光
体たとえば太陽電池8,9に接近させる。このよ
うな構成により発光半導体2,3を逆並列に接続
したことおよび受光体の出力側を逆並列に接続し
たことにより出力端10,11には光の半波の和
に等しい電圧波形を得ることができる。その動作
波形を第2図に示す。aは入力交流信号の電圧波
形、b,cは逆並列の発光半導体2,3におのお
の流れる電流波形、d,eは同上による転換した
光の波形、f,gは太陽電池8,9により転換し
た出力電圧の波形、hはfとgとの合成により得
られる出力波形である。
FIG. 1 shows a conventional example of a waveform detection device that uses a light-emitting semiconductor to convert voltage or current into light intensity and transmit it. In FIG. 1, light emitting semiconductors 2 and 3 are arranged in antiparallel to an AC signal source 1, and the generated lights 4 and 5 are guided to separate photoconductive materials, such as light guides 6 and 7, and a photoreceptor is placed at the other end of each. For example, it is brought close to solar cells 8 and 9. With this configuration, by connecting the light emitting semiconductors 2 and 3 in antiparallel and connecting the output side of the photoreceptor in antiparallel, a voltage waveform equal to the sum of half waves of light is obtained at the output terminals 10 and 11. be able to. The operating waveforms are shown in FIG. a is the voltage waveform of the input AC signal, b and c are the current waveforms flowing through the anti-parallel light emitting semiconductors 2 and 3, d and e are the waveforms of the light converted according to the above, and f and g are converted by the solar cells 8 and 9. The waveform of the output voltage, h, is the output waveform obtained by combining f and g.

一般的に、第3図に示すように発光半導体
(LED)の電流対光出力特性は、比較的に広い範
囲にわたつて直線的関係を有することが知られて
いる。しかしながら第4図に示すように電圧対光
出力特性は、1.0〜1.5Vの閾値電圧以上でのみ動
作する不連続な特性となつている。従つて第5図
に示すように、正負の極性にまたがつて変化する
ような一般的な波形は勿論のこと、単一極性の波
形でも電圧が小さければ検出されないという問題
点を有している。
Generally, as shown in FIG. 3, it is known that the current versus light output characteristics of a light emitting semiconductor (LED) have a linear relationship over a relatively wide range. However, as shown in FIG. 4, the voltage vs. light output characteristic is a discontinuous characteristic that operates only above a threshold voltage of 1.0 to 1.5V. Therefore, as shown in Figure 5, not only general waveforms that vary between positive and negative polarities, but even single-polarity waveforms have the problem of not being detected if the voltage is small. .

また、発光半導体は製品の特性にバラツキがあ
り、特に発光半導体の接合部閾値電圧による順方
向立上り特性が各製品によつて異なり、それぞれ
に対応した駆動を採らなければならないと言う難
点がある。
In addition, there are variations in the characteristics of light-emitting semiconductor products, and in particular, the forward rise characteristics due to the junction threshold voltage of the light-emitting semiconductor vary depending on the product, and there is a problem in that driving must be adapted to each product.

本考案の目的は、発光半導体の接合部閾値電圧
による順方向立上り特性の各製品によるバラツキ
の影響を受けないで微小交流波形の検出ができる
波形検出装置を提供することにある。
An object of the present invention is to provide a waveform detection device that can detect minute alternating current waveforms without being affected by variations in forward rise characteristics due to the junction threshold voltage of light emitting semiconductors depending on each product.

かかる目的を達成するため、本考案の波形検出
装置は、交流信号源に対し逆並列に接続された第
1、第2の発光半導体と、前記第1、第2の発光
半導体にそれぞれ順方向に接続され該発光半導体
の閾値以上の電圧を印加する電源と、該発光半導
体および前記電源の間に接続され前記電源の電圧
を前記第1、第2の発光半導体の接合部閾値電圧
に対応した電圧にそれぞれ降圧するダンパ用抵抗
器と、前記第1、第2の発光半導体から発生した
光をそれぞれ導く光伝導物質と、前記光伝導物質
にそれぞれ接近させた受光体とを備えている。
In order to achieve this object, the waveform detection device of the present invention includes first and second light emitting semiconductors connected in antiparallel to an AC signal source, and a forward direction to the first and second light emitting semiconductors, respectively. a power source that is connected and applies a voltage equal to or higher than the threshold of the light emitting semiconductor, and a voltage that is connected between the light emitting semiconductor and the power source and that the voltage of the power source corresponds to the junction threshold voltage of the first and second light emitting semiconductors. The semiconductor device includes a damper resistor that lowers the voltage, a photoconductive material that guides the light generated from the first and second light emitting semiconductors, and a photoreceptor that is brought close to the photoconductive material.

先ず、第7図に示すように、本考案の波形検出
装置は、第1、第2の発光半導体LED1,LED2
交流信号源1に対し逆並列に接続されている。電
源BAT1,BAT2が第1、第2の発光半導体
LED1,LED2にそれぞれ順方向に接続されてい
る。
First, as shown in FIG. 7, in the waveform detection device of the present invention, first and second light emitting semiconductors LED 1 and LED 2 are connected in antiparallel to the AC signal source 1. Power supplies BAT 1 and BAT 2 are the first and second light emitting semiconductors
Connected to LED 1 and LED 2 in the forward direction.

また本考案の波形検出装置は、第1図に示すよ
うに、第1、第2の発光半導体から発生した光
4,5をそれぞれ導く光伝導物質例えばライトガ
イド6,7と、光伝導物質にそれぞれ接近させた
受光体例えば太陽電池8,9とを備えている。
Furthermore, as shown in FIG. 1, the waveform detection device of the present invention includes a photoconductive material, for example, a light guide 6, 7, which guides the light 4, 5 generated from the first and second light emitting semiconductors, and a photoconductive material. They each have photoreceptors, for example solar cells 8 and 9, placed close to each other.

第7図において、電源BAT1,BAT2が発光半
導体LED1,LED2の閾値以下の電圧を印加する場
合、交流信号源1から正負両方向に励振する交流
信号を抵抗R1を介して印加すると、第1の発光
半導体LED1には、順方向に閾値以下の電圧を発
生する電源BAT1により、入力信号がOVから負
方向に励振するときに電流が流れる。その結果、
第1の発光半導体LED1が発光してライトガイド
6,7と、ライトガイドにそれぞれ接近させた太
陽電池8,9により波形検出が行われる。また、
第2の発光半導体LED2には、順方向に閾値以下
の電圧を発生する電源BAT2により、入力信号が
OVから正方向に励振するときに電流が流れる。
その結果、第2の発光半導体LED2が発光してラ
イトガイド6,7と太陽電池8,9により波形検
出が行われる。このように正負両方向に励振する
交流信号の波形検出ができるが発光半導体は製品
の特性にバラツキがあり、特に発光半導体の接合
部閾値電圧による順方向立上り特性が各製品によ
つて異なり、それぞれに対応した駆動を採らなけ
ればならないと言う難点がある。
In FIG. 7, when the power supplies BAT 1 and BAT 2 apply a voltage below the threshold of the light emitting semiconductors LED 1 and LED 2 , when an AC signal excited in both positive and negative directions is applied from the AC signal source 1 via the resistor R 1 . , a current flows through the first light emitting semiconductor LED 1 when the input signal is excited in the negative direction from OV by the power supply BAT 1 that generates a voltage below the threshold in the forward direction. the result,
The first light emitting semiconductor LED 1 emits light, and waveform detection is performed by the light guides 6 and 7 and the solar cells 8 and 9 brought close to the light guides, respectively. Also,
The input signal is supplied to the second light emitting semiconductor LED 2 by the power supply BAT 2 which generates a voltage below the threshold in the forward direction.
Current flows when excited from OV in the positive direction.
As a result, the second light emitting semiconductor LED 2 emits light, and the light guides 6 and 7 and the solar cells 8 and 9 perform waveform detection. In this way, it is possible to detect the waveform of an AC signal excited in both positive and negative directions, but the characteristics of light-emitting semiconductor products vary, and in particular, the forward rise characteristics due to the junction threshold voltage of light-emitting semiconductors vary depending on the product. The disadvantage is that a corresponding drive must be adopted.

このため本考案の波形検出装置は、第8図に示
すように、電源BAT3は発光半導体LED3にそれ
ぞれ順方向に接続され該発光半導体の閾値以上の
電圧を印加するものである。さらに発光半導体
LED3および電源BAT3の間に接続され電源
BAT3の電圧を発光半導体の接合部閾値電圧に対
応した電圧にそれぞれ降圧するダンパ用抵抗器
R3が備えられている。
Therefore, in the waveform detection device of the present invention, as shown in FIG. 8, the power source BAT 3 is connected to each of the light emitting semiconductors LED 3 in the forward direction and applies a voltage higher than the threshold of the light emitting semiconductors. Furthermore, light emitting semiconductor
Power connected between LED 3 and power BAT 3
A damper resistor that steps down the voltage of BAT 3 to a voltage corresponding to the junction threshold voltage of the light emitting semiconductor.
Equipped with R3 .

電源BAT3の(−)側はダンパ用抵抗器R3を介
して発光半導体LED3のカソードに接続され、発
光半導体LED3のアノードは抵抗R2の一端に接続
されている。また発光半導体LED3とダンパ用抵
抗器R3の接続点に一方が基準電位点に接続され
たコンデンサCの他端が接続されている。このコ
ンデンサCは雷などの衝撃電流のパイパスとして
用いられる。交流信号源1から正負両方向に励振
する交流信号は抵抗R2を介して発光半導体LED3
に印加される。交流信号が印加されると、発光半
導体LED3には、順方向に閾値以上の電圧を発生
する電源BAT3とダンパ用抵抗器R3により、入力
信号がOVから正方向に励振するときに電流が流
れる。その結果、発光半導体LED3が発光してラ
イトガイド6,7と太陽電池8,9により波形検
出が行われる。ダンパ用抵抗器R3を可変させて
発光半導体LED3の閾値以上の電圧を印加する電
源BAT3の電圧を接合部閾値電圧に対応した電圧
に降圧すれば、第5図に示す(+)側波形は第6
図に示す(+)側波形のように入力電圧に対する
光出力が0点より直ちに立上がるので雷などの衝
撃電流によるケーブル上の微小な交流入力電圧で
あつても光出力が得られる。
The (-) side of the power supply BAT 3 is connected to the cathode of the light emitting semiconductor LED 3 via the damper resistor R 3 , and the anode of the light emitting semiconductor LED 3 is connected to one end of the resistor R 2 . Further, the other end of a capacitor C, one end of which is connected to a reference potential point, is connected to the connection point between the light emitting semiconductor LED 3 and the damper resistor R3 . This capacitor C is used as a bypass for an impact current caused by lightning or the like. An AC signal excited in both positive and negative directions from an AC signal source 1 is sent to a light emitting semiconductor LED 3 via a resistor R 2 .
is applied to When an AC signal is applied, the light-emitting semiconductor LED 3 receives a current when the input signal is excited from OV in the positive direction by the power supply BAT 3 that generates a voltage higher than the threshold in the forward direction and the damper resistor R 3 . flows. As a result, the light emitting semiconductor LED 3 emits light, and the light guides 6 and 7 and the solar cells 8 and 9 perform waveform detection. If the damper resistor R 3 is varied to reduce the voltage of the power supply BAT 3 that applies a voltage higher than the threshold of the light emitting semiconductor LED 3 to a voltage corresponding to the junction threshold voltage, the (+) side shown in Figure 5 is applied. The waveform is the 6th
As shown in the (+) side waveform shown in the figure, the optical output with respect to the input voltage immediately rises from the 0 point, so even if there is a minute AC input voltage on the cable due to an impact current such as lightning, an optical output can be obtained.

交流信号について(−)側波形に対する発光半
導体を備えることにより、第5図に示す特性直線
を第6図に示す特性直線にするため第7図に示す
第1、第2の発光半導体LED1,LED2を形成す
る。第7図における抵抗R1は第8図における抵
抗R2に相当し、交流信号源1′からの交流信号は
抵抗R1を介して入力される。第1、第2の発光
半導体は交流信号源1′に対し逆並列に接続され
ているので、抵抗R1を介して入力された交流信
号は第6図に示すように(+),(−)側波形が共
に検出できる。第1、第2の発光半導体で発光し
た光はライトガイド6,7と太陽電池8,9を介
して波形検出が行われる。このように本考案の波
形検出装置によれば、発光半導体の接合部閾値電
圧による順方向立上り特性の各製品によるバラツ
キの影響を受けないで雷などの衝撃電流によるケ
ーブル上の微小な交流波形を検出できる。
By providing a light emitting semiconductor for the (-) side waveform of an AC signal, the characteristic straight line shown in FIG. 5 can be changed to the characteristic straight line shown in FIG. 6 . Form LED 2 . The resistor R 1 in FIG. 7 corresponds to the resistor R 2 in FIG. 8, and the AC signal from the AC signal source 1' is input via the resistor R 1 . Since the first and second light emitting semiconductors are connected in antiparallel to the AC signal source 1', the AC signal input via the resistor R1 is (+), (-) as shown in FIG. ) side waveforms can be detected together. Waveform detection of the light emitted by the first and second light emitting semiconductors is performed via light guides 6 and 7 and solar cells 8 and 9. As described above, the waveform detection device of the present invention can detect minute alternating current waveforms on cables caused by shock currents such as those caused by lightning without being affected by variations in forward rise characteristics due to the junction threshold voltage of light emitting semiconductors. Can be detected.

なお、ダンパ用抵抗器R3を可変させて発光半
導体LED3の閾値以上の電圧を印加する電源
BAT3の電圧を発光半導体の接合部閾値電圧に対
応した電圧に降圧したので入力電圧に対する光出
力が0点より直ちに立上がることにより、発光半
導体は製品の特性のバラツキ、特に発光半導体の
接合部閾値電圧による順方向立上り特性の各製品
による相違に対し対処できる。
In addition, the power supply applies a voltage higher than the threshold of the light emitting semiconductor LED 3 by varying the damper resistor R 3 .
Since the voltage of BAT 3 is stepped down to a voltage corresponding to the junction threshold voltage of the light emitting semiconductor, the optical output with respect to the input voltage immediately rises from the 0 point. It is possible to deal with differences in forward rise characteristics depending on the threshold voltage of each product.

また、本考案の波形検出装置は、第1、第2の
発光半導体から発生した光4,5をそれぞれ導く
光伝導物質例えばライトガイド6,7と、光伝導
物質にそれぞれ接近させた受光体例えば太陽電池
8,9とにより波形検出を行うので、波形検出さ
れるべき雷などの衝撃電流の交流信号源1から太
陽電池8,9の波形検出部をライトガイド6,7
で絶縁することができ装置を安全にシステム構成
できる。
Further, the waveform detection device of the present invention includes photoconductive materials such as light guides 6 and 7 that respectively guide the lights 4 and 5 generated from the first and second light emitting semiconductors, and photoreceptors such as light guides 6 and 7 that are brought close to the photoconductive materials, respectively. Since waveform detection is performed using the solar cells 8 and 9, the waveform detection parts of the solar cells 8 and 9 are connected to the light guides 6 and 7 from the alternating current signal source 1 of an impact current such as lightning whose waveform is to be detected.
The device can be insulated and the system can be configured safely.

以上の実施例からも明らかなように、本考案の
波形検出装置によれば、交流信号源に対し逆並列
に接続された第1、第2の発光半導体と、前記第
1、第2の発光半導体にそれぞれ順方向に接続さ
れ該発光半導体の閾値以上の電圧を印加する電源
と、該発光半導体および前記電源の間に接続され
前記電源の電圧を前記第1、第2の発光半導体の
接合部閾値電圧に対応した電圧にそれぞれ降圧す
るダンパ用抵抗器と、前記第1、第2の発光半導
体から発生した光をそれぞれ導く光伝導物質と、
前記光伝導物質にそれぞれ接近させた受光体とを
備えたことにより、発光半導体は製品の特性のバ
ラツキ、特に発光半導体の接合部閾値電圧による
順方向立上り特性の各製品による相違に対し、発
光半導体の閾値以上の電圧を印加する電源の電圧
の閾値以下の電圧に降圧することによつて調整で
き、かつ波形検出されるべき雷などの衝撃電流の
交流信号源から受光端末部をライトガイドで絶縁
することにより装置を安全にシステム構成でき、
雷の衝撃電流などによる微小な交流波形を検出が
できる。
As is clear from the above embodiments, the waveform detection device of the present invention includes first and second light emitting semiconductors connected in antiparallel to the AC signal source, and the first and second light emitting semiconductors connected in antiparallel to the AC signal source. a power source that is connected in the forward direction to each semiconductor and applies a voltage equal to or higher than a threshold value of the light emitting semiconductor; and a power source that is connected between the light emitting semiconductor and the power source and applies the voltage of the power source to the junction of the first and second light emitting semiconductors. a damper resistor that respectively steps down the voltage to a voltage corresponding to the threshold voltage; and a photoconductive material that guides the light generated from the first and second light emitting semiconductors, respectively;
By having a photoreceptor placed close to each of the photoconductive materials, the light-emitting semiconductor is able to withstand variations in product characteristics, especially differences in forward rise characteristics depending on the junction threshold voltage of the light-emitting semiconductor. It can be adjusted by stepping down the voltage of the power supply applying a voltage above the threshold to a voltage below the threshold, and the light receiving terminal is isolated from the AC signal source of impulse current such as lightning whose waveform is to be detected using a light guide. By doing so, you can safely configure the equipment,
It can detect minute alternating current waveforms caused by lightning shock currents, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の波形検出装置、第2図は従来の
波形検出装置の動作波形図、第3図は発光半導体
(LED)の電流対光出力特性を示す図、第4図は
発光半導体(LED)の電圧対光出力特性を示す
図、第5図は従来の波形検出装置を用いた場合の
入力電圧対光出力特性を示す図、第6図は本考案
の波形検出装置を用いた場合の入力電圧対光出力
特性を示す図、第7図は電池電圧が発光半導体閾
値電圧より小さい場合の波形検出装置を示す図、
第8図は電池電圧が発光半導体閾値電圧より大き
い場合の波形検出装置を示す図である。 1,1′……信号源、2,3,LED1,LED2
LED3……発光半導体(LED)、4,5……発光
した光、6,7……ライトガイド(光フアイバ)、
8,9……受光体(太陽電池)、10,11……
出力端、R1,R2,R3……抵抗、C……コンデン
サ、BAT1,BAT2,BAT3……電池。
Fig. 1 is a conventional waveform detection device, Fig. 2 is an operational waveform diagram of the conventional waveform detection device, Fig. 3 is a diagram showing the current versus light output characteristics of a light emitting semiconductor (LED), and Fig. 4 is a diagram showing the current vs. light output characteristics of a light emitting semiconductor (LED). Figure 5 is a diagram showing the input voltage vs. light output characteristics when a conventional waveform detection device is used, and Figure 6 is a diagram showing the input voltage vs. light output characteristics when using the waveform detection device of the present invention. Figure 7 is a diagram showing the waveform detection device when the battery voltage is lower than the light emitting semiconductor threshold voltage.
FIG. 8 is a diagram showing a waveform detection device when the battery voltage is higher than the light emitting semiconductor threshold voltage. 1, 1'...signal source, 2, 3, LED 1 , LED 2 ,
LED 3 ... Light emitting semiconductor (LED), 4, 5... Emitted light, 6, 7... Light guide (optical fiber),
8, 9... Photoreceptor (solar cell), 10, 11...
Output terminal, R 1 , R 2 , R 3 ...resistor, C ... capacitor, BAT 1 , BAT 2 , BAT 3 ... battery.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 交流信号源に対し逆並列に接続された第1、第
2の発光半導体と、前記第1、第2の発光半導体
にそれぞれ順方向に接続され該発光半導体の閾値
以上の電圧を印加する電源と、該発光半導体およ
び前記電源の間に接続され前記電源の電圧を前記
第1、第2の発光半導体の接合部閾値電圧に対応
した電圧にそれぞれ降圧するダンパ用抵抗器と、
前記第1、第2の発光半導体から発生した光をそ
れぞれ導く光伝導物質と、前記光伝導物質にそれ
ぞれ接近させた受光体とを備えたことを特徴とす
る波形検出装置。
first and second light emitting semiconductors connected in antiparallel to the alternating current signal source; and a power source connected in the forward direction to the first and second light emitting semiconductors and applying a voltage equal to or higher than a threshold of the light emitting semiconductors. , a damper resistor connected between the light emitting semiconductor and the power source to step down the voltage of the power source to a voltage corresponding to a junction threshold voltage of the first and second light emitting semiconductors, respectively;
A waveform detection device comprising: a photoconductive material that guides light generated from the first and second light emitting semiconductors; and a photoreceptor that is brought close to the photoconductive material.
JP1982105075U 1982-07-09 1982-07-09 Waveform detection device Granted JPS599663U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982105075U JPS599663U (en) 1982-07-09 1982-07-09 Waveform detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982105075U JPS599663U (en) 1982-07-09 1982-07-09 Waveform detection device

Publications (2)

Publication Number Publication Date
JPS599663U JPS599663U (en) 1984-01-21
JPH0136372Y2 true JPH0136372Y2 (en) 1989-11-06

Family

ID=30246455

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982105075U Granted JPS599663U (en) 1982-07-09 1982-07-09 Waveform detection device

Country Status (1)

Country Link
JP (1) JPS599663U (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8908187U1 (en) * 1989-07-05 1989-08-31 Peter, Herbert, 8500 Nürnberg Miniaturized tennis game device
JP3115220B2 (en) * 1996-01-29 2000-12-04 有限会社ウイングローリージャパン Table tennis table

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531635A (en) * 1978-08-29 1980-03-06 Mitsui Eng & Shipbuild Co Ltd Ship position retaining system
JPS57106247A (en) * 1980-12-24 1982-07-02 Hitachi Ltd Analogue optical communication device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5531635A (en) * 1978-08-29 1980-03-06 Mitsui Eng & Shipbuild Co Ltd Ship position retaining system
JPS57106247A (en) * 1980-12-24 1982-07-02 Hitachi Ltd Analogue optical communication device

Also Published As

Publication number Publication date
JPS599663U (en) 1984-01-21

Similar Documents

Publication Publication Date Title
JPH06188648A (en) Separative current mirror
JPH0136372Y2 (en)
KR950007442B1 (en) Overcurrent detector
US20180191170A1 (en) Charging system
JP2000162677A (en) Flashing element drive circuit
JPS5944809B2 (en) Photoelectric switch
KR970028561A (en) Optoelectronic wattmeter using transformer for optical power
KR880009484A (en) Method and circuit for generating triangular wave voltage
JPH10145200A (en) Zero-cross detection device
KR20020030285A (en) Display apparatus comprising an optocoupler circuit
SE0002861L (en) Procedure and device for voltage setting of a VSC converter
ATE126100T1 (en) ASSEMBLY TO CONTROL VOLTAGE PULSE SUPPLY IN AN ELECTROSTATIC SEPARATOR.
JPS63190562A (en) Voltage multiplying rectifier
JPH07280848A (en) Optical sensor
JPH08298448A (en) Sold-state relay
JPS5821182Y2 (en) Photocoupler
SU989713A1 (en) Transistorized inverter
SU811462A1 (en) Transistorized inverter
JPS5928671A (en) Detection circuit of voltage drop
SU773853A1 (en) Device for control of thyristorized ac regulator
JPH0129333B2 (en)
JPS6343926B2 (en)
JPS5612127A (en) Static relay
JPS63269584A (en) Light-emitting apparatus
JP2583426B2 (en) Single-phase X-ray generator