JPH0135108B2 - - Google Patents

Info

Publication number
JPH0135108B2
JPH0135108B2 JP56004722A JP472281A JPH0135108B2 JP H0135108 B2 JPH0135108 B2 JP H0135108B2 JP 56004722 A JP56004722 A JP 56004722A JP 472281 A JP472281 A JP 472281A JP H0135108 B2 JPH0135108 B2 JP H0135108B2
Authority
JP
Japan
Prior art keywords
resin
fiber structure
fabric
fiber
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56004722A
Other languages
Japanese (ja)
Other versions
JPS57117636A (en
Inventor
Junzo Kinugasa
Takashi Hiroi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP56004722A priority Critical patent/JPS57117636A/en
Publication of JPS57117636A publication Critical patent/JPS57117636A/en
Publication of JPH0135108B2 publication Critical patent/JPH0135108B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Knitting Of Fabric (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)
  • Woven Fabrics (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、耐洗濯性に優れた再生繊維素繊維構
造物、詳しくは洗濯に対する形態安定性、染色堅
牢度に優れ、且つ反発性に豊む再生繊維題繊維構
造物の製造方法に関する。 従来、再生繊維素繊維構造物、例えばレーヨ
ン、ポリノジツク等よりなる編織物は、洗濯によ
る形態安定性が悪いこと、染色堅牢度が十分でな
いこと、等衣料としての実用上の欠陥がある。 形態安定性向上を目的としては、(1)製糸工程で
の結晶性向上等による糸(綿)質からの改善、(2)
樹脂加工による改善等の方法が提案、実施されて
いる。 しかしながら、(1)の方法は汎用性、製造コスト
等に於いて問題があり、その上染色堅牢度の向上
は望めない。(2)の方法は従来より実施されている
が、樹脂加工剤の耐久性に帰因するのか繰返し洗
濯により収縮率が増大するという欠点がある。 また同じセルロース系繊維である綿に実施され
ているシルケツト加工の目的は、(1)光沢の向上、
(2)染色性の向上、(3)面積安定性の向上、等である
が、この加工を再生繊維素繊維構造物に適用する
と、苛性ソーダ溶液という強いアルカリ処理のた
め、形態安定性は向上するが、繊維の溶解・固化
現象のため強力低下が大きく、レーヨン素材のも
つソフトさ、ドレープ性等をなくしてしまい実用
に耐えない。 このアルカリ処理による繊維の溶解・固化現象
を防止するため、多くの研究がなされ、例えば繊
維表面を予め保護剤、例えばポリビニルアルコー
ル、澱粉等により処理し、その後アルカリ処理す
る方法がある。 しかし、この方法は、アルカリ濃度、アルカリ
剤除去条件等の僅かな変動により、強力のばらつ
き、染色性のばらつき、繊維の溶解等が発生し、
工業的に適用することは困難である。 一方、染色堅牢度に関しては、使用染料の選
定、染色後のソーピング、フイツクス剤による後
処理等が実施されているが、染色性は十分と言え
ず、特に濃色は染料の表面染着が大きく、染色堅
牢度は十分で無いという欠点がある。 本発明の目的は、耐洗濯性に優れた即ち洗濯に
よる形態の安定性、染色堅牢度に優れ、且つ反発
性に富んだ新規な再生繊維素繊維構造物を提供す
るにあり、他の目的は染料固着率に優れ、製品間
で強力や染色性のばらつきのない再生繊維素繊維
構造物を提供するにある。 即ち本発明は、再生繊維素繊維を主体とした繊
維構造物に親水性被膜形成物質を施与した後、無
機電解質と膨潤コントロール剤の存在下でアルカ
リ金属水酸化物水溶液を施与し、次いで、前記親
水性被膜形成物質を除去することを特徴とする耐
洗濯性に優れた再生繊維素繊維構造物の製造方法
である。 本発明にいう再生繊維素繊維を主体とした繊維
構造物とは、主としてレヨンからなる糸条、編
物、織物、不織布であり、また該繊維構造物は再
生繊維素繊維以外にも綿、羊毛、絹等の天然繊
維、ナイロン、ポリエステル、アクリル等の合成
繊維等を含むことができる。 本発明でいう親水性被膜形成物質としては、澱
粉系、セルロース系、ポリビニルアルコール系、
アルギン酸ソーダ系化合物等が挙げられ、これら
は単独で或いは混合して用いることができる。か
かる被膜形成物質の繊維構造物への施与量は、
0.3%owf以上がよく、0.5〜20%owfが好ましい。
施与方法としては、該被膜形成物質溶液をパデイ
ング法、浸漬コーテイング法等により繊維構造物
に施与し、施与後乾燥して被膜を形成せしめる。
この場合被膜形成物質溶液の安定性、繊維構造物
の風合改良等の点からアニオン系、ノニオン系等
の界面活性剤を併用するのもよい。またかかる被
膜形成物質溶液に無機電解質及び膨潤コントロー
ル剤を共存せしめて3者を同時に施与することも
できる。(勿論、無機電解質や膨潤コントロール
剤は繊維構造物に上記被膜形成物質を施与後適宜
の方法で施与しても差し支えない。) 無機電解質としては、食塩、芒硝等が挙げら
れ、繊維構造物への施与量は3.0%owf以上がよ
く、4〜7%owfが好ましい。 また膨潤コントロール剤としては、エステル化
合物、アミン類、アミド類、ポリオキシエチレン
グリコール誘導体、カルボン酸の塩類、第4級ア
ンモニウム塩類、ナフトレート、フエノレート、
これらの混合物等があるが、中でも尿素、ポリエ
チレングリコールが好ましい。かかる膨潤コント
ロール剤の繊維構造物への施与量は、3.0%owf
以上がよく、5〜7%owfが好ましい。 続いてアルカリ金属水酸化物水溶液で処理す
る。但しかかる処理に際しては、前記無機電解質
と膨潤コントロール剤が存在していることが重要
で、被処理繊維構造物に両者が予め施与されてい
るか、施与されていない場合にはアルカリ金属水
酸化物水溶液中に両者が含まれていなければなら
ない。 アルカリ金属水酸化物としては、水酸化セシウ
ム、水酸化ルビジウム、水酸化カリウム、水酸化
ナトリウム、水酸化リチウム等があり、中でも水
酸化ナトリウムを用いるのが好適である。アルカ
リ金属水酸化物水溶液の濃度は、用いる水酸化物
の種類により異なるが、水酸化ナトリウムの場合
30g/以上、望ましくは40〜200g/がよい。 かかるアルカリ金属水酸化物水溶液処理は、繊
維構造物に該溶液をスプレー、パデイング等によ
り施与することによつて行なわれる。 該処理の後、必要に応じて繊維構造物を緊張処
理し、続いてアルカリ金属水酸化物を除去する。
該水酸化物除去方法としては、40〜100℃の水に
よりシヤワー、オープンソーパー、ウインス等を
用いて除去すればよいが、適当な濃度の塩酸、硫
酸、酢酸等を用いるのもよい。 続いて繊維構造物から先に施与された親水性皮
膜形成物質を除去するのであるが、通常は酵素系
糊抜剤、過酸化物系糊抜剤、弱アルカリ性ソーピ
ング剤等を併用して行なえばよい。 以上により本発明に関る再生繊維素繊維構造物
を得ることはできるが、必要に応じ以下の注意を
払つて後の通常加工工程にかけるのが好ましい。 例えば精練漂白工程では通常綿で実施している
ような強アルカリ性下での強い処理は好ましくな
く、ソーダ灰程度のアルカリ剤にて精練するのが
望ましく、また漂白工程も精練工程同様の注意が
必要であり、一般的には過酸化水素、亜塩素酸ソ
ーダ等を用いて浸込法、パツド・ロール法及びパ
ツド・スチーム法等により行なうのがよい。 染色工程では、通常のセルロース繊維の染色に
用いられる直接染料、反応性染料、建染染料、硫
化染料、ナフトール染料等が用いられる。その方
法は、特に制限されず、一般に用いられている連
続法、吸尽法、パツド・バツチ法等が適用可能で
ある。特に従来レーヨン素材のパツド―ドライ染
法は、染料の拡散が綿より遅いためか、表面毛羽
の染色が不十分で外観悪く困難とされていたが、
本発明による改質された繊維構造物は難なく染色
加工される。またその染色濃度、鮮明度、染色堅
牢度等は非常に優れている。 更に本発明の繊維構造物に樹脂加工を施すのも
好ましい。 樹脂加工は、一般にセルロース系繊維に使用さ
れているグリオキザール系樹脂、尿素―ホルマリ
ン系樹脂、ウロン系樹脂、プロピレン尿素系樹
脂、メラミン系樹脂、エポキシ系樹脂、ポリアミ
ド系樹脂、ウレタン系樹脂、ポリアクリル系樹
脂、ポリ酢酸ビニル系樹脂等を単独或いは併用し
て行なえばよく、必要に応じ各種柔軟剤を併用し
てもよい。かかる樹脂加工の方法は、特に制限さ
れず、パデイング、コーテイング、スプレー等通
常の方法により行なえばよい。 以上のようにして得られた繊維構造物は、改質
された再生繊維素繊維よりなるものであつて、該
再生繊維素繊維をX線回折法にて測定した場合、
セルロースに特有の15.5度の回折角でのピーク
強度とセルロースに特有の20.2度の回折角での
ピーク強度の強度比1(2θ=15.5゜)/2(2θ=
20.2゜)が8以上である。即ち繊維に含まれるセ
ルロースとセルロースの比率でみて、本発明
に係る再生繊維素繊維は、セルロースの比率が
通常のものよりも高まつているものなのである。
しかしながらかかる比率が余りに高くなると繊維
構造物が硬くなる傾向にあるので、12の値
を18以下に留めるのが好ましい。 また本発明に係る再生繊維素繊維は、通常のも
のよりも繊維径が大きく(即ち後述の加工を受け
ることにより加工前に比べ繊維径が大きくなつて
いる。)、繊維断面積A(μ2)と繊度D(デニール)
の比A/Dは145以上である。 更に本発明に係る再生繊維素繊維は、水に浸漬
5分後の膨潤度が50%以下であるが、該膨潤度が
余りに小さいと後に繊維構造物に樹脂加工等を施
した場合、該加工の耐久性を低下させることがあ
るので膨潤度は少なくとも30程度とするのが好ま
しい。 このような本発明の繊維構造物は、必要に応じ
て染色加工や樹脂加工が施されている。 斯くて本発明の繊維構造物は、洗濯による形態
の安定性、染色堅牢度に優れ、反発性に富む上
に、製品間で強力や染色性のばらつきのない工業
的に極めて有利な製品となるのである。 以下実施例により本発明を具体的に説明する。 尚、本明細書にいうX線回折法により測定した
ピーク強度比1/2、繊維断面積と繊度の比A/
D、水膨潤度、洗濯堅牢度、染色濃度比、強力、
洗濯収縮率及び防しわ度の測定は以下の方法に従
つた。 (1) X線回折法により測定したピーク強度比1/
X線分析装置を用い、入射X線を試料(糸)
に対して垂直に照射し、計数管を用いて半径方
向(赤道方向)に走査し、回折角(2θ)が8度
と30度を直線で結んだベースラインよりの回折
角(2θ)が15.5度と20.2度でのピーク強度を求
め、その強度比1(2θ=15.5゜)/2(2θ=
20.2゜)を決定した。 (2) 繊維断面積と繊度の比A/D 繊維構造物を構成する再生繊維素繊維の断面
積Aと繊度Dの比をA(μ2)/D(デニール)で
求めた。 (3) 水膨潤度 公定水分率下の繊維断面積(A)と水に浸漬5分
後の繊維断面積(B)とよりB−A/A×100(%)に て求めた。 (4) 洗濯堅牢度 JIS・L―0844 A2法により求めた。 (5) 染色濃度比 分光光度計にて最大吸収波長における光学濃
度K/Sを求め、相対比較濃度を示した。 (6) 強力 織物:JIS L―1079 エレメンドルフ法により求めた。 編物:JIS L―1018 B法により求めた。 (7) 洗濯収縮率 織物:JIS L―1042 F―2法により求めた。 織物:JIS L―1042 F―1法により求めた。 (8) 防しわ度 JIS L―1096 モンサント法により求めた。 実施例 1 レーヨン綿(1.5デニール、カツト長50mm)よ
りなる30番手の糸を用いて経90、緯60本/インチ
の密度の平織物を織成した。次に第1表に示した
被膜形成物質水溶液を80%絞り率のマングルにて
施与、次いで120℃にて乾燥を行つた。 この織物を用いて、第1表に示す各種苛性ソー
ダ濃度の水溶液(液温25℃)に20秒間浸漬後絞り
率80%のマングルにて織物を搾液し、1分後に90
℃の湯にて洗浄を行ない織物よりアルカリ剤を完
全に除去した。次いで、酵素糊抜剤により糊剤を
完全に除去した。 次にレマゾールグラツクB(Remazol Black
Bヘキスト社製反応性染料)30g/、水ガラス
100g/よりなる染液を絞り率80%のマングルに
て施与し、ビニールフイルムにて密封し20時間放
置後、ソーピング、乾燥を行なつた。 続いて、スミテツクスレジンULW(Sumitex
Resin ULW 住友化学社製尿素―ホルマリン樹
脂)350g/、スミテツクスアクセレーター
ACX(住友化学社製触媒)20g/、シリコーラ
ン810(一方社製 シリコン系柔軟剤)30g/よ
りなる樹脂液を絞り率80%のマングルにて付与
し、120℃にて乾燥し、次いで150℃にて4分間熱
処理した。 得られた結果を第1表に示す。
The present invention relates to a method for producing a recycled cellulose fiber structure having excellent washing resistance, and more particularly, to a method for producing a recycled cellulose fiber structure having excellent shape stability against washing, color fastness, and resilience. Conventionally, knitted fabrics made of recycled cellulose fiber structures, such as rayon, polynosic, etc., have practical deficiencies as clothing, such as poor shape stability upon washing and insufficient color fastness. The purpose of improving morphological stability is (1) improving the quality of yarn (cotton) by improving crystallinity during the spinning process, (2)
Improvement methods such as resin processing have been proposed and implemented. However, method (1) has problems in versatility, manufacturing cost, etc., and furthermore, it cannot be expected to improve color fastness. Method (2) has been practiced in the past, but it has the disadvantage that the shrinkage rate increases with repeated washing, probably due to the durability of the resin finishing agent. Also, the purpose of mercerization performed on cotton, which is also a cellulose fiber, is to (1) improve luster;
(2) Improved dyeability, (3) Improved area stability, etc. When this process is applied to recycled cellulose fiber structures, the morphological stability improves due to the strong alkaline treatment of caustic soda solution. However, due to the dissolution and solidification phenomenon of the fibers, the strength is greatly reduced, and the softness and drapability of the rayon material are lost, making it unsuitable for practical use. Many studies have been conducted to prevent the dissolution and solidification of fibers caused by alkali treatment. For example, there is a method in which the fiber surface is previously treated with a protective agent such as polyvinyl alcohol, starch, etc., and then treated with alkali. However, with this method, slight variations in alkali concentration, alkali removal conditions, etc. can cause variations in strength, variation in dyeability, and dissolution of fibers.
It is difficult to apply it industrially. On the other hand, with regard to color fastness, the selection of dyes used, soaping after dyeing, post-treatment with fixing agents, etc. have been carried out, but the dyeability cannot be said to be sufficient, especially in dark colors, where the surface dyeing of the dye is large. However, it has the disadvantage that color fastness is not sufficient. An object of the present invention is to provide a novel recycled cellulose fiber structure that has excellent washing resistance, that is, excellent morphological stability and color fastness when washed, and is rich in resilience. To provide a recycled cellulose fiber structure with excellent dye fixation rate and no variation in strength or dyeability among products. That is, in the present invention, after applying a hydrophilic film-forming substance to a fiber structure mainly composed of recycled cellulose fibers, an aqueous alkali metal hydroxide solution is applied in the presence of an inorganic electrolyte and a swelling control agent, and then , a method for producing a recycled cellulose fiber structure with excellent washing resistance, characterized by removing the hydrophilic film-forming substance. The fiber structures mainly made of recycled cellulose fibers as used in the present invention include yarns, knitted fabrics, woven fabrics, and nonwoven fabrics mainly made of rayon. It can include natural fibers such as silk, synthetic fibers such as nylon, polyester, and acrylic. In the present invention, the hydrophilic film-forming substances include starch-based, cellulose-based, polyvinyl alcohol-based,
Examples include sodium alginate compounds, which can be used alone or in combination. The amount of the film-forming substance applied to the fiber structure is:
0.3% owf or more is good, and 0.5 to 20% owf is preferable.
As for the application method, the film-forming substance solution is applied to the fiber structure by a padding method, a dip coating method, etc., and then dried to form a film.
In this case, from the viewpoint of stability of the film-forming substance solution and improvement of the texture of the fibrous structure, an anionic or nonionic surfactant may be used in combination. It is also possible to make an inorganic electrolyte and a swelling control agent coexist in the film-forming substance solution so that the three can be applied at the same time. (Of course, the inorganic electrolyte and swelling control agent may be applied by an appropriate method after applying the above-mentioned film-forming substance to the fibrous structure.) Examples of the inorganic electrolyte include common salt, mirabilite, etc. The amount applied to the product is preferably 3.0% owf or more, preferably 4 to 7% owf. Swelling control agents include ester compounds, amines, amides, polyoxyethylene glycol derivatives, carboxylic acid salts, quaternary ammonium salts, naphthlates, phenolates,
There are mixtures of these, among which urea and polyethylene glycol are preferred. The amount of the swelling control agent applied to the fiber structure is 3.0% owf.
The above is preferable, and 5 to 7% owf is preferable. Subsequently, it is treated with an aqueous alkali metal hydroxide solution. However, during such treatment, it is important that the inorganic electrolyte and the swelling control agent are present, and either both have been applied to the fiber structure to be treated in advance, or if they are not applied, alkali metal hydroxide Both must be contained in the aqueous solution. Examples of the alkali metal hydroxide include cesium hydroxide, rubidium hydroxide, potassium hydroxide, sodium hydroxide, lithium hydroxide, etc. Among them, it is preferable to use sodium hydroxide. The concentration of alkali metal hydroxide aqueous solution varies depending on the type of hydroxide used, but in the case of sodium hydroxide
30g/or more, preferably 40-200g/. Such aqueous alkali metal hydroxide solution treatment is carried out by applying the solution to the fibrous structure by spraying, padding, or the like. After the treatment, the fibrous structure is optionally subjected to a tension treatment, followed by removal of the alkali metal hydroxide.
The hydroxide can be removed using water at 40 to 100° C. using a shower, an open soaper, a winch, etc., but hydrochloric acid, sulfuric acid, acetic acid, etc. at an appropriate concentration may also be used. Next, the previously applied hydrophilic film-forming substance is removed from the fibrous structure, but this can usually be done using a combination of enzyme-based desizing agents, peroxide-based desizing agents, weakly alkaline soaping agents, etc. . Although it is possible to obtain a regenerated cellulose fiber structure according to the present invention in the manner described above, it is preferable to subject it to subsequent normal processing steps, paying the following precautions as necessary. For example, in the scouring and bleaching process, it is undesirable to apply strong treatment under strong alkalinity, as is usually done with cotton.It is preferable to scouring with an alkaline agent such as soda ash, and the bleaching process requires the same care as the scouring process. Generally, it is preferable to carry out the process using hydrogen peroxide, sodium chlorite, etc. by the immersion method, pad roll method, pad steam method, or the like. In the dyeing process, direct dyes, reactive dyes, vat dyes, sulfur dyes, naphthol dyes, etc., which are commonly used for dyeing cellulose fibers, are used. The method is not particularly limited, and commonly used continuous methods, exhaustion methods, pad batch methods, etc. can be applied. In particular, conventional pad dry dyeing methods for rayon materials have been considered difficult, as the surface fuzz is insufficiently dyed, resulting in poor appearance, perhaps because the dye diffusion is slower than that of cotton.
The modified fiber structures according to the invention can be dyed without difficulty. Moreover, its dye density, sharpness, color fastness, etc. are very excellent. Furthermore, it is also preferable to subject the fiber structure of the present invention to resin processing. Resin processing uses glyoxal resin, urea-formalin resin, uron resin, propylene urea resin, melamine resin, epoxy resin, polyamide resin, urethane resin, and polyacrylic resin, which are generally used for cellulose fibers. type resin, polyvinyl acetate type resin, etc. may be used alone or in combination, and various softeners may be used in combination as necessary. The resin processing method is not particularly limited, and may be carried out by conventional methods such as padding, coating, and spraying. The fiber structure obtained as above is made of modified regenerated cellulose fibers, and when the regenerated cellulose fibers are measured by X-ray diffraction method,
The intensity ratio of the peak intensity at a diffraction angle of 15.5 degrees, which is typical of cellulose, and the peak intensity at a diffraction angle of 20.2 degrees, which is typical of cellulose, is 1 (2θ = 15.5°) / 2 (2θ =
20.2°) is 8 or more. That is, in terms of the ratio of cellulose to cellulose contained in the fibers, the regenerated cellulose fibers according to the present invention have a higher ratio of cellulose than ordinary fibers.
However, if this ratio becomes too high, the fiber structure tends to become hard, so it is preferable to keep the value of 1/2 at 18 or less. In addition, the regenerated cellulose fibers according to the present invention have a larger fiber diameter than normal ones (that is, the fiber diameter is larger than that before processing due to the processing described below), and a fiber cross-sectional area A (μ 2 ) and fineness D (denier)
The ratio A/D is 145 or more. Furthermore, the regenerated cellulose fiber according to the present invention has a swelling degree of 50% or less after 5 minutes of immersion in water, but if the swelling degree is too small, when the fiber structure is later subjected to resin processing, the processing It is preferable that the degree of swelling is at least about 30, as this may reduce the durability of the material. Such a fiber structure of the present invention is subjected to dyeing processing or resin processing as necessary. Thus, the fiber structure of the present invention has excellent morphological stability when washed, excellent color fastness, and is highly resilient, and also has no variation in strength or dyeability among products, making it an extremely advantageous product industrially. It is. The present invention will be specifically explained below using Examples. In addition, the peak intensity ratio measured by the X-ray diffraction method referred to in this specification is 1/2 , and the ratio of fiber cross-sectional area and fineness is A/ 2 .
D, water swelling degree, washing fastness, dyeing density ratio, strength,
The washing shrinkage rate and wrinkle resistance were measured according to the following method. (1) Peak intensity ratio 1 / measured by X-ray diffraction method
2 Using an X-ray analyzer, analyze the incident X-rays on the sample (thread)
The diffraction angle (2θ) from the baseline connecting 8 degrees and 30 degrees with a straight line is 15.5. Find the peak intensities at 20.2° and 20.2°, and calculate the intensity ratio 1 (2θ=15.5°)/ 2 (2θ=
20.2°) was determined. (2) Ratio A/D of fiber cross-sectional area and fineness The ratio of the cross-sectional area A and fineness D of the regenerated cellulose fibers constituting the fiber structure was determined as A (μ 2 )/D (denier). (3) Water swelling degree It was determined from the fiber cross-sectional area (A) under the official moisture content and the fiber cross-sectional area (B) after 5 minutes of immersion in water, as B-A/A x 100 (%). (4) Washing fastness Determined using JIS L-0844 A2 method. (5) Staining density ratio The optical density K/S at the maximum absorption wavelength was determined using a spectrophotometer, and the relative comparative density was shown. (6) Strong fabric: Determined by JIS L-1079 Elmendorf method. Knitted fabric: Obtained using JIS L-1018 B method. (7) Washing shrinkage rate Fabric: Determined according to JIS L-1042 F-2 method. Fabric: Obtained using JIS L-1042 F-1 method. (8) Wrinkle resistance determined by JIS L-1096 Monsanto method. Example 1 A plain woven fabric with a density of 90 warps and 60 threads/inch of weft was woven using 30 count yarn made of rayon cotton (1.5 denier, cut length 50 mm). Next, an aqueous solution of the film-forming substance shown in Table 1 was applied using a mangle with a squeezing rate of 80%, and then dried at 120°C. Using this fabric, the fabric was immersed in an aqueous solution with various caustic soda concentrations shown in Table 1 (liquid temperature 25°C) for 20 seconds, and then squeezed with a mangle with a squeezing rate of 80%.
The alkaline agent was completely removed from the fabric by washing with hot water at ℃. Then, the size agent was completely removed using an enzyme desizing agent. Next, Remazol Black
B Hoechst (reactive dye) 30g/, water glass
A dye solution of 100 g/ml was applied using a mangle with a squeezing rate of 80%, sealed with a vinyl film, and left for 20 hours, followed by soaping and drying. Next, Sumitex Resin ULW (Sumitex
Resin ULW urea-formalin resin manufactured by Sumitomo Chemical Co., Ltd.) 350g/, Sumitex Accelerator
A resin liquid consisting of 20g/ACX (catalyst made by Sumitomo Chemical Co., Ltd.) and 30g/Silicolane 810 (silicon softener made by Ippo Chemical Co., Ltd.) was applied using a mangle with a squeezing rate of 80%, dried at 120℃, and then dried at 150℃. The sample was heat-treated for 4 minutes. The results obtained are shown in Table 1.

【表】 実施例 2 実施例1で用いた織物にフアインガムSH―20
(第一工業社製、セルロース誘導体)10g/を80
%絞り率のマングルにて施与し、次いで120℃に
て乾燥を行つた。この織物に第2表に示す配合よ
りなる水溶液(液温25℃)を、実施例1と同様に
付与―洗浄し、ついで糊剤を除去した。 次いで、プロシオン ブリリアント ブルー
H3R(Procion Brilliant Blue H3R I、C、I
社製反応性染料)30g/、尿素100g/、ソー
ダ灰20g/よりなる染液を絞り率80%のマング
ルにて施与し、次いで120℃にて乾燥し、続いて
150℃にて3分間熱処理した後、80℃の湯にて未
固有染料を除去し、乾燥した。 続いて、実施例1と同様の樹脂加工を行なつ
た。得られた結果を第2表に示す。
[Table] Example 2 Feingum SH-20 was added to the fabric used in Example 1.
(Daiichi Kogyo Co., Ltd., cellulose derivative) 10g/80
% squeezing rate mangle, and then dried at 120°C. An aqueous solution (liquid temperature: 25° C.) having the composition shown in Table 2 was applied to this fabric and washed in the same manner as in Example 1, and then the size agent was removed. Next, Procion Brilliant Blue
H3R (Procion Brilliant Blue H3R I, C, I
A dyeing solution consisting of 30 g/reactive dye (manufactured by the company), 100 g/urea, and 20 g/soda ash was applied using a mangle with a squeezing rate of 80%, then dried at 120°C, and then
After heat treatment at 150°C for 3 minutes, uninherent dyes were removed with hot water at 80°C and dried. Subsequently, the same resin processing as in Example 1 was performed. The results obtained are shown in Table 2.

【表】 実施例 3 実施例1と同様のレーヨン糸にコーンスターチ
10g/、ポリビニルアルコール2g/、ソフナ
ール950(一方社製アニオン活性剤)5g/、芒
硝50g/及びポリエチレングリコール40g/よ
りなる水溶液を絞り率80%のマングルにて施与
し、次いで120℃で乾燥した。 この糸を経糸に使用し、緯糸にはポリエステル
スパン30番手糸を用いて密度経80、緯78本/イン
チよりなる綾織物を織成した。この織物を苛性ソ
ーダ100g/水溶液(液温25℃)にて実施例1同
様に処理し、次いで糊剤を完全に除去した。 得られた織物の経糸レーヨンは、X線強度比
2=15.5、繊維断面積A/繊度D=168μ2/デ
ニール、水膨潤度37%の物性値を有し、強力低下
もなく、風合もソフトであり、経方向緯方向共、
洗濯収縮率は1.0%以下であつた。 実施例 4 ポリノジツク30番手糸(1.5デニール、51mmカ
ツト綿)を用いてフライス編物を編成した。 この編物にコーンスターチ15g/、食塩30g/
、尿素50g/よりなる水溶液を絞り率100%の
マングルにて施与し、100℃にて乾燥した。 次いで苛性カリ200g/水溶液にて実施例1と
同様に処理し、続いてコーンスターチ、食塩、尿
素を完全に除去した。この試料を(a)とする。また
苛性カリ処理せず、実施例1と同様にコーンスタ
ーチ、食塩、尿素を除去したものを(b)とする。 次に(a)、(b)同時にギンソフト66(第一工業社製
アニオン系柔軟剤)30g/の水溶液を絞り率100
%にて施与し、120℃で乾燥し、ウエール31、コ
ース39のの密度に仕上げた。得られた結果を第3
表に示した。
[Table] Example 3 Cornstarch was added to the same rayon yarn as in Example 1.
An aqueous solution consisting of 10g/, polyvinyl alcohol 2g/, Sofnal 950 (anionic activator made by Ippo Co., Ltd.) 5g/, mirabilite 50g/, and polyethylene glycol 40g/ was applied using a mangle with a squeezing ratio of 80%, and then dried at 120°C. did. A twill fabric with a density of 80 warps and a weft of 78 threads/inch was woven using this yarn for the warp and 30 count polyester spun yarn for the weft. This fabric was treated in the same manner as in Example 1 with 100 g of caustic soda/aqueous solution (liquid temperature 25°C), and then the size agent was completely removed. The warp rayon of the obtained fabric has an X-ray intensity ratio of
1 = 2 = 15.5, fiber cross-sectional area A/fineness D = 168μ 2 /denier, water swelling degree of 37%, no loss of strength, soft texture, both longitudinal and latitudinal directions,
The washing shrinkage rate was 1.0% or less. Example 4 A milled knitted fabric was knitted using Polynosik No. 30 yarn (1.5 denier, 51 mm cut cotton). Cornstarch 15g/, salt 30g/ for this knitted fabric
, an aqueous solution containing 50 g of urea was applied using a mangle with a squeezing rate of 100%, and dried at 100°C. Next, it was treated with 200 g of caustic potassium/aqueous solution in the same manner as in Example 1, and then cornstarch, salt, and urea were completely removed. This sample is called (a). In addition, a sample (b) is obtained by removing cornstarch, salt, and urea in the same manner as in Example 1 without performing caustic potash treatment. Next, (a) and (b) at the same time, an aqueous solution of 30 g/g of Ginsoft 66 (anionic softener manufactured by Daiichi Kogyo Co., Ltd.) was applied at a squeezing rate of 100.
%, dried at 120°C, and finished with a density of 31 wales and 39 courses. The results obtained in the third
Shown in the table.

【表】【table】

Claims (1)

【特許請求の範囲】[Claims] 1 再生繊維素繊維を主体とした繊維構造物に親
水性被膜形成物質を施与した後、無機電解質と膨
潤コントロール剤の存在下でアルカリ金属水酸化
物水溶液を施与し、次いで、前記親水性被膜形成
物質を除去することを特徴とする耐洗濯性に優れ
た再生繊維素繊維構造物の製造方法。
1 After applying a hydrophilic film-forming substance to a fiber structure mainly composed of recycled cellulose fibers, an aqueous alkali metal hydroxide solution is applied in the presence of an inorganic electrolyte and a swelling control agent, and then the hydrophilic film-forming substance A method for producing a recycled cellulose fiber structure with excellent washing resistance, which comprises removing film-forming substances.
JP56004722A 1981-01-15 1981-01-15 Regenerated viscose fiber structure with excellent washing fastness Granted JPS57117636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56004722A JPS57117636A (en) 1981-01-15 1981-01-15 Regenerated viscose fiber structure with excellent washing fastness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56004722A JPS57117636A (en) 1981-01-15 1981-01-15 Regenerated viscose fiber structure with excellent washing fastness

Publications (2)

Publication Number Publication Date
JPS57117636A JPS57117636A (en) 1982-07-22
JPH0135108B2 true JPH0135108B2 (en) 1989-07-24

Family

ID=11591775

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56004722A Granted JPS57117636A (en) 1981-01-15 1981-01-15 Regenerated viscose fiber structure with excellent washing fastness

Country Status (1)

Country Link
JP (1) JPS57117636A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW342506B (en) * 1996-10-11 1998-10-11 Matsushita Electric Ind Co Ltd Inductance device and wireless terminal equipment
CN1178232C (en) 1999-04-26 2004-12-01 松下电器产业株式会社 Electronic spare parts and radio terminal device

Also Published As

Publication number Publication date
JPS57117636A (en) 1982-07-22

Similar Documents

Publication Publication Date Title
CN109680524A (en) A kind of polyester-cotton blend Dyeing with Disperse/Reactive fixation and uvioresistant single bath process processing method
PL174026B1 (en) Fibre processing method
US4457760A (en) Process for desizing and bleaching cloth with a hydrogen peroxide-based bath in a single operation
JP2633447B2 (en) Method for deep dyeing of cellulosic fibrous structures subjected to liquid ammonia treatment
JPH0135108B2 (en)
US5476518A (en) Process for producing two-toned lustrous effects in dyed fabrics
US5882356A (en) Fibre treatment
JPH04316687A (en) Coloring of cellulosic fiber structure containing protein fiber
JPH08100374A (en) Process for discoloration of cellulose fiber cloth
JPH05140878A (en) Method for nonuniform dyeing of cellulosic textile fabric
JPH0453989B2 (en)
JPH054474B2 (en)
JP2525748B2 (en) Wrinkle pattern processing method for cellulose fiber cloth
JP2780747B2 (en) Cotton fiber-containing fiber product and method for producing the same
JPH0397979A (en) Dyeing of yarn
JP2677139B2 (en) Manufacturing method of color jeans stitched garments
JPH0411085A (en) Specific surface silk fabric and production thereof
JP2731091B2 (en) Method for thickening cellulosic fiber structure
JPS6034687A (en) Dyeing process
JPH03241077A (en) Method for coloring protein fiber-containing cellulosic fiber structure
WO1998045527A1 (en) Textile with colorwashed aspect
JPH0121275B2 (en)
JP2780746B2 (en) Method for producing fiber product containing natural cellulosic fiber
JPH08209560A (en) Finishing faded from repeated washing of cellulosic-based fiber structural material
CN109763315A (en) The production method of superelevation branch long-staple cotton uvioresistant mercerized yarn