JPH0134955B2 - - Google Patents

Info

Publication number
JPH0134955B2
JPH0134955B2 JP59191956A JP19195684A JPH0134955B2 JP H0134955 B2 JPH0134955 B2 JP H0134955B2 JP 59191956 A JP59191956 A JP 59191956A JP 19195684 A JP19195684 A JP 19195684A JP H0134955 B2 JPH0134955 B2 JP H0134955B2
Authority
JP
Japan
Prior art keywords
lithium aluminate
wood pulp
lithium
powder
pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59191956A
Other languages
Japanese (ja)
Other versions
JPS6172693A (en
Inventor
Ikumasa Nishimura
Junji Nakamura
Goro Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP59191956A priority Critical patent/JPS6172693A/en
Publication of JPS6172693A publication Critical patent/JPS6172693A/en
Publication of JPH0134955B2 publication Critical patent/JPH0134955B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/043Lithium aluminates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 (発明の技術分野) 本発明はリチウムアルミネートの多孔質焼結体
の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Technical Field of the Invention) The present invention relates to a method for producing a porous sintered body of lithium aluminate.

(発明の技術的背景とその問題点) 従来のセラミツクス多孔体としては、各々気孔
の性状は異なるが、素焼きの陶器や発泡性ガラス
のセラミツクスや軟質ウレタンフオームの発泡を
利用した連続気孔型のセラミツクフオームがあ
る。しかし、これらを燃料電池用電解質タイルに
使用する際の多孔質板としては、セラミツクス多
孔体に要求されるマトリツクス部の強度にかけて
いる。また、気孔部へ各種の無機物質や電解質を
充填して使用する場合、充填量が少なく、イオン
電導性が不足するものがかなりある。また、イオ
ン電導性が満足しても、気孔に充填した各種の無
機物質が気孔部から流失してしまう欠点あるいは
セラミツクスの骨格だけでは十分な強度がないと
いう欠点を持つものが多かつた。
(Technical background of the invention and its problems) Conventional ceramic porous materials have different pore properties, but include unglazed ceramics, foamed glass ceramics, and open-pore ceramics using foamed soft urethane foam. There is a form. However, when these are used as porous plates for electrolyte tiles for fuel cells, the strength of the matrix portion is required for porous ceramic bodies. Furthermore, when the pores are filled with various inorganic substances or electrolytes, the amount of filling is small and the ionic conductivity is often insufficient. Furthermore, even if the ionic conductivity is satisfactory, many of them have the disadvantage that the various inorganic substances filled in the pores are washed away from the pores, or that the ceramic skeleton alone is not strong enough.

セラミツクスのシートを作る場合に、抄紙方法
を用いないで作る方法は、射出成形法、押出成形
法、静水圧プレス法等がある。しかし、これらの
方法では、例えば30cm角以上の大面積のセラミツ
クスシートを作ると、表面が割れたり、ソツタリ
して均一な性状のものを得にくいという難点があ
る。
When making ceramic sheets, there are injection molding methods, extrusion molding methods, isostatic pressing methods, etc., which do not use papermaking methods. However, these methods have the disadvantage that when a ceramic sheet with a large area of, for example, 30 cm square or more is made, the surface may crack or become uneven, making it difficult to obtain a sheet with uniform properties.

また従来、その他の多孔質焼結体の作り方で、
焼結性物質の粉体としてα−アルミナを繊維質と
して木材パルプを51〜70重量%添加し、湿式混練
し、凝集させた後、抄造して得たシート状物を焼
成する事により薄くて強度のある多孔質体を得る
方法がある。しかし、この方法では、高い気孔率
を得るために、木材パルプの含有量が多くなり、
しかも、α−アルミナを使用しているため、焼結
物質を得るのに、1500〜1600℃の高温で焼成する
必要があつた。
In addition, conventional methods of making other porous sintered bodies
As a powder of sinterable material, α-alumina is added as fiber and 51 to 70% by weight of wood pulp is wet-kneaded, agglomerated, and then the sheet-like material obtained by papermaking is fired to make it thin. There is a method to obtain a strong porous body. However, in this method, the content of wood pulp is high in order to obtain high porosity.
Moreover, since α-alumina was used, it was necessary to sinter at a high temperature of 1500 to 1600°C to obtain a sintered material.

更に、α−アルミナと水酸化リチウムを温度
700℃〜1000℃に加熱して反応させ、γ−リチウ
ムアルミネートを製造し、これに木材パルプを添
加して抄造して、1000〜1300℃で焼成することに
より多孔質焼成体を作る方法があつた。この場合
にはγ−リチウムアルミネートの粒径が大きく目
的の気孔率を得るために必要なパルプ量も多く、
得られた焼結体の細孔分布が大きくなり、強度も
十分満足するものを得るのが困難であつた。
Furthermore, α-alumina and lithium hydroxide were heated to
There is a method of producing γ-lithium aluminate by heating it to 700°C to 1000°C to cause a reaction, adding wood pulp to it, making it into paper, and baking it at 1000°C to 1300°C to make a porous fired body. It was hot. In this case, the particle size of γ-lithium aluminate is large and the amount of pulp required to obtain the desired porosity is large.
The pore distribution of the obtained sintered body was large, and it was difficult to obtain a sintered body with sufficiently satisfactory strength.

(発明の目的) 本発明では、前記のような欠点を除去し、ある
いは、これらの欠点を補なうのに十分な強度があ
り、気孔率が高く、細孔が迷路の様になつてい
て、細孔分布の小さなセラミツクスの多孔質焼結
体を製造する方法を提供するものである。
(Objective of the invention) The present invention eliminates or compensates for the above-mentioned drawbacks by having sufficient strength, high porosity, and a labyrinth-like pore structure. The present invention provides a method for producing a porous sintered ceramic body with a small pore distribution.

(発明の概要) すなわち、本発明は、粒径0.5μ以下のγ−アル
ミナと水酸化リチウム1水塩を混合粉砕し、600
℃で30分焼成して得られた粒径0.5μ以下のβ−リ
チウムアルミネートを木材パルプとともに水中で
撹拌混合し、水性スラリーにし、凝集剤を添加し
粉体をパルプに吸着凝集させて抄造することによ
り焼成前の乾燥重量に対して5〜20%の木材パル
プになる様にした含水シートを得、これを圧力5
〜15MPaでプレス成型し、酸化雰囲気中で焼成
して木材パルプ分を焼失気化させ、しかる後β−
リチウムアルミネートの粉体を焼結せしめ相変化
により、気孔率が50〜65%のγ−リチウムアルミ
ネートの多孔質焼結体を得る方法である。
(Summary of the Invention) That is, the present invention involves mixing and pulverizing γ-alumina with a particle size of 0.5μ or less and lithium hydroxide monohydrate,
β-lithium aluminate with a particle size of 0.5μ or less obtained by firing at ℃ for 30 minutes is stirred and mixed in water with wood pulp to form an aqueous slurry, and a coagulant is added to make the powder adsorbed and aggregated by the pulp to make paper. By doing this, a water-containing sheet with a wood pulp content of 5 to 20% of the dry weight before firing was obtained, and this was heated to a pressure of 5%.
It is press-molded at ~15MPa and fired in an oxidizing atmosphere to burn out and vaporize the wood pulp, and then β-
This is a method of obtaining a porous sintered body of γ-lithium aluminate with a porosity of 50 to 65% by sintering lithium aluminate powder and undergoing phase change.

(発明の詳述) 多孔質焼結体としては、アルミナが緻密室で、
電気絶縁性等に優れている。しかしながら、燃料
電池用電解質保持タイルとして使用する場合は、
焼結アルミナの気孔部分に炭酸リチウムと炭酸カ
リウムを混合した電解質を充填して使用するが、
その際に、電解質を炭酸塩の中では特に、炭酸リ
チウムがアルミナと反応し、リチウムアルミネー
トに変つてしまう。本発明は、粒径0.5μ以下のβ
−リチウムアルミネートをパルプの混合シート状
物を焼成する事によりパルプの焼失気化により気
孔を作るとともに、相変化によりβ−リチウムア
ルミネートを安定なγ−リチウムアルミネートに
変える多孔性焼結体の製造方法である。
(Detailed description of the invention) As a porous sintered body, alumina is used in a dense chamber,
Excellent electrical insulation, etc. However, when used as an electrolyte holding tile for fuel cells,
It is used by filling the pores of sintered alumina with an electrolyte that is a mixture of lithium carbonate and potassium carbonate.
At this time, among carbonates used as electrolytes, lithium carbonate in particular reacts with alumina and turns into lithium aluminate. The present invention provides β
- Create a porous sintered body by firing a mixed sheet of lithium aluminate pulp to create pores through combustion and vaporization of the pulp, and change β-lithium aluminate into stable γ-lithium aluminate through a phase change. This is the manufacturing method.

以下、更に詳細に説明すれば、0.5μ以下のγ−
アルミナと水酸化リチウム1水塩を600℃で30分
水成する事により粒径0.5μ以下のβ−リチウムア
ルミネートを製造し、このβ−リチウムアルミネ
ートに木材パルプを焼結前の乾燥時のシート全重
量に対して5〜20%添加する。0.5μ以下の原料を
使用する事で、焼成温度が低く、しかも短時間
で、従来より強度の高い、気孔率50〜65%の多孔
質体が得られる。
To explain in more detail below, γ− of 0.5 μ or less
β-lithium aluminate with a particle size of 0.5μ or less is produced by alumina and lithium hydroxide monohydrate at 600℃ for 30 minutes, and wood pulp is added to this β-lithium aluminate during drying before sintering. Add 5 to 20% of the total weight of the sheet. By using raw materials with a diameter of 0.5μ or less, a porous body with a porosity of 50 to 65%, which is stronger than conventional products, can be obtained at a low firing temperature and in a short time.

多孔質焼結体の製造方法は、まず粒径0.5μ以下
のγ−アルミナと水酸化リチウム1水塩を1:
2.0〜2.3モルの割合で混合粉砕した粉末を600℃
で30分間焼成する事により粒径0.5μ以下のβ−リ
チウムアルミネートとする。水酸化リチウム1水
塩を2.0〜2.3モルにする理由として、β−リチウ
ムアルミネートを合成する時の化学量論式は、 γ−Al2O3+2LiOH・H2O600℃ ――→ 2β−LiAlO2 +2H2Oとなる。
The method for producing a porous sintered body is to first mix γ-alumina with a particle size of 0.5μ or less and lithium hydroxide monohydrate in 1 part.
Mix and grind powder at a ratio of 2.0 to 2.3 moles at 600℃.
By firing for 30 minutes, β-lithium aluminate with a particle size of 0.5μ or less is obtained. The reason why lithium hydroxide monohydrate is 2.0 to 2.3 moles is that the stoichiometric formula when synthesizing β-lithium aluminate is γ-Al 2 O 3 +2LiOH・H 2 O600℃ --→ 2β-LiAlO 2 + 2H 2 O.

しかし、2モルでは、焼成中にリチウムが揮発
し、完全なβ相が生成しない。また2.3モル以上
過剰に添加すると、焼成物中にフリーのリチウム
が存在し、以後の抄紙工程で使用水が高アルカリ
となるためである。
However, at 2 mol, lithium volatilizes during firing and a complete β phase is not generated. Moreover, if 2.3 moles or more of lithium is added in excess, free lithium will be present in the fired product, and the water used in the subsequent papermaking process will become highly alkaline.

次にこのβ−リチウムアルミネートと5〜20重
量%の木材パルプからなる固形分に対して5〜30
倍程度の重量の水を加えて湿式混合し、抄造に適
する水性スラリーに調整し凝集剤を添加し凝集さ
せ、抄造機にて抄造し、シート状、板状に成形す
る。ここで木材パルプは5〜20%のパルプを添加
する事により、抄造されたシート状物質に可とう
性を与え、またそのシート状物を焼成した焼結体
が50〜65%の気孔率になる。
Next, 5 to 30% of the solid content consisting of this β-lithium aluminate and 5 to 20% by weight of wood pulp
Add about twice the weight of water and wet mix to prepare an aqueous slurry suitable for paper making, add a coagulant to coagulate, make paper using a paper machine, and form into sheets or plates. By adding 5 to 20% of wood pulp, it gives flexibility to the sheet-like material, and the sintered body obtained by firing the sheet has a porosity of 50 to 65%. Become.

この抄造されたシート状物を焼成炉に入れ、酸
化雰囲気で焼成する。焼成は、木材パルプが焼失
気化されると思われる400℃まで2℃/分で昇温
し、400℃で1時間保持する。その後、リチウム
アルミネートが焼結する1000〜1400℃まで5℃/
分で省温し、焼結が行なわれる。1000〜1400℃で
1〜6時間保持をする。なお、以上の焼成の過程
で、β−リチウムアルミネートはγ−リチウムア
ルミネートに相変化する。
This paper-formed sheet material is placed in a firing furnace and fired in an oxidizing atmosphere. For firing, the temperature was raised at a rate of 2°C/min to 400°C, at which point the wood pulp would be burnt and vaporized, and held at 400°C for 1 hour. After that, the lithium aluminate is sintered at 5℃/1000~1400℃.
It will heat up in minutes and sintering will take place. Hold at 1000-1400°C for 1-6 hours. In addition, in the above firing process, the phase of β-lithium aluminate changes to γ-lithium aluminate.

以上のように、粒径の細かいβ−リチウムアル
ミネートを使用することにより、より低温で、し
かも、木材パルプ10〜15%の添加で、成形もより
低圧で、気孔率が大きく、細孔が迷路のようにな
つた強度の大きなγ−リチウムアルミネート多孔
質体が得られる。
As described above, by using β-lithium aluminate with fine particle size, it can be molded at a lower temperature, and with the addition of 10 to 15% wood pulp, it can be molded at a lower pressure, and the porosity is large and the pores are small. A maze-like porous body of γ-lithium aluminate with high strength is obtained.

本発明の方法による電解質タイルの特長をまと
めると以下のようになる。
The features of the electrolyte tile produced by the method of the present invention are summarized as follows.

(1) 抄造されたシート状物は可とう性があり、取
扱いに特別の注意が不要である。
(1) The paper-made sheet material is flexible and does not require special care when handling.

(2) 製造時に有害な有機物質を使用しない。(2) Do not use harmful organic substances during manufacturing.

(3) 微細な原料を使用しているため、パルブ量が
少なくしかも低圧成形で、焼結体の気孔率、強
度とも満足するものが得られる。
(3) Since fine raw materials are used, the amount of pulp is small and low-pressure molding allows for a sintered body with satisfactory porosity and strength.

(4) パルプ量が少ないため、細孔径が小さくでき
る。
(4) Since the amount of pulp is small, the pore diameter can be reduced.

〔発明の実施例〕[Embodiments of the invention]

(A) 試料の調整(1)(組成はすべて重量比である。) 水酸化リチウム1水塩……450部 (関東化学(株)製、試薬特級) γ−アルミナ……500部 (日本アエロジル製、粒径(0.1μ以下)) 試料の調整(2) (1)で得られたβ−リチウムアルミネート……
150部 (平均粒径0.1μ以下) 木材パルプ……25部 水……1200部 (B) 凝集剤 ポリアクリルアミド系高分子凝集剤……100
部 (アニオン系) 0.1%水溶液 (三洋化成工業(株)製 商品名「サンフロツク
AH−200P」 ポリアクリルアミド系分子凝集剤……100部 (カチオン系) 0.1水溶液 (三洋化成工業(株)製、商品名「サンフロツク
C−009P」) まず、水酸化リチウム1水塩450部とγ−アル
ミナ500部をボールミルにより48時間混合粉砕す
る。次にこの混合物を600℃で30分間、空気中で
焼成し、粒径0.1μ以下のβ−リチウムアルミネー
トとする。
(A) Sample preparation (1) (All compositions are by weight.) Lithium hydroxide monohydrate...450 parts (manufactured by Kanto Kagaku Co., Ltd., special grade reagent) γ-alumina...500 parts (Nippon Aerosil) Sample preparation (2) β-lithium aluminate obtained in (1)...
150 parts (average particle size 0.1μ or less) Wood pulp...25 parts Water...1200 parts (B) Flocculant Polyacrylamide polymer flocculant...100
Part (anionic) 0.1% aqueous solution (manufactured by Sanyo Chemical Industries, Ltd., product name: “Sanfloc”)
AH-200P" Polyacrylamide-based molecular flocculant...100 parts (cationic) 0.1 aqueous solution (manufactured by Sanyo Chemical Industries, Ltd., trade name "Sunfloc C-009P") First, 450 parts of lithium hydroxide monohydrate and γ - Mix and grind 500 parts of alumina in a ball mill for 48 hours. Next, this mixture is calcined in air at 600° C. for 30 minutes to obtain β-lithium aluminate with a particle size of 0.1 μm or less.

次に2程度の容器に水1200部と木材パルプ25
部を入れ、20分程度撹拌して水に分散させて、そ
こへβ−リチウムアルミネート150部を加えて1
分ほど撹拌し水性スラリーを作る。その中へあら
かじめ作つておいたポリアクリルアミド系高分子
凝集剤(サンフロツクAH−200P)100部を加え
て1分ほど撹拌し、さらに、これも、あらかじめ
作つておいたポリアクリルアミド系高分子凝集剤
(サンフロツクC−009P)を100部添加し、1分
ほど撹拌して凝集させる。
Next, put 1200 parts of water and 25 parts of wood pulp into a 2-sized container.
150 parts of β-lithium aluminate and stirred for about 20 minutes to disperse it in water.
Stir for about a minute to make an aqueous slurry. Add 100 parts of a pre-made polyacrylamide polymer flocculant (Sunfloc AH-200P) into the mixture and stir for about 1 minute. Add 100 parts of Sunfrost C-009P) and stir for about 1 minute to coagulate.

以上のようにして凝集した試料は、抄造機で抄
造すると300mm角で、厚み1.0〜1.5mmのシート状
になる。これを油圧式プレス機で5〜15MPaA
で脱水プレスを行なう。ここで、5〜15MPaの
プレスを加えるのは、抄造シート中の水分を脱水
し、焼成後の焼結体の気孔を50〜65%に維持しな
がら、強度の向上をはかるためである。さらに焼
結体の表面向上にも効果がある。
The agglomerated sample as described above is made into a sheet with a size of 300 mm square and a thickness of 1.0 to 1.5 mm when it is made into a sheet using a paper making machine. This is applied using a hydraulic press machine at 5 to 15 MPaA.
Perform dehydration press. Here, the reason why pressing is applied at 5 to 15 MPa is to dehydrate the water in the paper-formed sheet and improve the strength while maintaining the porosity of the sintered body after firing at 50 to 65%. Furthermore, it is effective in improving the surface of the sintered body.

このシートを乾燥後、電気炉に入れて空気中で
常温から100℃/Hで昇温し、木材パルプが焼失
気化する温度の400℃で1時間保持する。その後
リチウムアルミネートが焼成する1200℃まで300
℃/Hで昇温し、1200℃で1時間保持する。この
過程でβ−リチウムアルミネートは、γ−リチウ
ムアルミネートに相変化し最終的には、気孔率60
%のγ−リチウムアルミネート多孔質体が得られ
た。
After drying this sheet, it is placed in an electric furnace and heated in air at a rate of 100°C/H from room temperature, and held for 1 hour at 400°C, the temperature at which the wood pulp is burnt and vaporized. Then the lithium aluminate is fired to 1200℃ for 300℃
Raise the temperature at ℃/H and hold at 1200℃ for 1 hour. In this process, β-lithium aluminate undergoes a phase change to γ-lithium aluminate, and finally the porosity becomes 60.
% γ-lithium aluminate porous body was obtained.

(発明の効果) この様にして得られたセラミツクス多孔質体は
燃料電池で用いられる電解質の保持タイルとして
の性能に優れ、耐久性にもすぐれているものであ
る。また、細孔径が1μ以下と細かく、均一に分
布されているので、燃焼排ガスの触媒担体や分子
篩への応用が可能である。
(Effects of the Invention) The ceramic porous body thus obtained has excellent performance as an electrolyte retention tile used in fuel cells, and is also excellent in durability. Furthermore, since the pores are fine and uniformly distributed, with a diameter of 1 μ or less, it can be applied to catalyst carriers for combustion exhaust gas and molecular sieves.

本発明によれば、薄型で、マトリツクス自体は
緻密質で強度があり、気孔率が高く、細孔が迷路
のように連続的になつたセラミツクス多孔質体が
製造される。
According to the present invention, a ceramic porous body is produced that is thin, has a dense and strong matrix, has high porosity, and has continuous pores like a labyrinth.

本発明では、従来の薄型で、気孔のない緻密質
の金属酸化物を作る方法と発泡性多孔質体を作る
方法の両方法の長所を取入れており、気孔率の調
整もパルプの添加量の制御によつて自由に変えら
れる。しかも、セラミツクスフオーム製造におけ
る問題のポリウレタンによる発泡を施した後の複
雑な処理工程が、本発明では除去されるので製造
工程が簡略化される。
The present invention incorporates the advantages of both the conventional method of producing a thin, dense metal oxide without pores and the method of producing a foamable porous material, and the porosity can also be adjusted by adjusting the amount of pulp added. Can be changed freely by control. In addition, the present invention simplifies the manufacturing process because the complicated process after foaming with polyurethane, which is a problem in ceramic foam manufacturing, is eliminated.

その上、従来使用できなかつた熱衝撃、熱応力
のかかる場所、特に燃料電池用電解質保持タイル
のように、熱応力、電気的応力、機械的応力が繰
返しかかる場所への使用が十分可能になる。さら
に、焼成用のシート状物を成形するのに抄造技術
を用いるので、均一な厚さのシートを連続で製造
することが可能であり、その厚さも様々な範囲で
実施可能である。
Furthermore, it can be used in places subject to thermal shock or thermal stress, which could not previously be used, especially in places where thermal stress, electrical stress, or mechanical stress is repeatedly applied, such as electrolyte holding tiles for fuel cells. . Furthermore, since paper-making technology is used to form the sheet-like material for firing, it is possible to continuously produce sheets of uniform thickness, and the thickness can also be varied within a variety of ranges.

Claims (1)

【特許請求の範囲】[Claims] 1 粒径0.5μ以下のγ−アルミナ1モルに対して
2.0〜2.3モルの水酸化リチウム1水塩を混合粉砕
した粉体を600℃で反応させて得られた粒径0.5μ
以下のβ−リチウムアルミネートの粉末と木材パ
ルプを水中で混合して抄造に適する水性スラリー
となし凝集剤を添加して粉体をパルプに吸着、凝
集せしめ抄造する事により、焼成前の乾燥重量に
対して5〜20%の木材パルプを含有する含水シー
トを得、これをプレス成形し、酸化雰囲気中で焼
成して木材パルプ分を焼失気化させ、しかる後β
−リチウムアルミネートの粉末を焼結せしめ相変
化により、γ−リチウムアルミネートの多孔質体
となす事を特徴とするセラミツク多孔質体の製造
方法。
1 per mole of γ-alumina with a particle size of 0.5μ or less
Particle size 0.5μ obtained by reacting a powder obtained by mixing and pulverizing 2.0 to 2.3 moles of lithium hydroxide monohydrate at 600℃
The following β-lithium aluminate powder and wood pulp are mixed in water to form an aqueous slurry suitable for papermaking.By adding a flocculant and adsorbing and agglomerating the powder to the pulp, the dry weight before firing is A water-containing sheet containing 5 to 20% of wood pulp is obtained, which is press-molded and fired in an oxidizing atmosphere to burn out and vaporize the wood pulp.
- A method for producing a porous ceramic body, which comprises sintering lithium aluminate powder and forming a porous body of γ-lithium aluminate through phase change.
JP59191956A 1984-09-13 1984-09-13 Manufacture of porous sintered body Granted JPS6172693A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59191956A JPS6172693A (en) 1984-09-13 1984-09-13 Manufacture of porous sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59191956A JPS6172693A (en) 1984-09-13 1984-09-13 Manufacture of porous sintered body

Publications (2)

Publication Number Publication Date
JPS6172693A JPS6172693A (en) 1986-04-14
JPH0134955B2 true JPH0134955B2 (en) 1989-07-21

Family

ID=16283242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59191956A Granted JPS6172693A (en) 1984-09-13 1984-09-13 Manufacture of porous sintered body

Country Status (1)

Country Link
JP (1) JPS6172693A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01252589A (en) * 1988-04-01 1989-10-09 Ube Ind Ltd Cellular ceramic body and production thereof

Also Published As

Publication number Publication date
JPS6172693A (en) 1986-04-14

Similar Documents

Publication Publication Date Title
Arita et al. Synthesis and processing of hydroxyapatite ceramic tapes with controlled porosity
US6620458B2 (en) Method to produce alumina aerogels having porosities greater than 80 percent
US4113928A (en) Method of preparing dense, high strength, and electrically conductive ceramics containing β"-alumina
JPH0258744B2 (en)
KR101346960B1 (en) Manufacturing method of porous yttria stabilized zirconia
CN109320257B (en) Preparation method of high-strength high-porosity porous silicon nitride ceramic
JPH0134955B2 (en)
GB2062948A (en) Electrolyte structure with strontium titanate matrix for molten carbonate fuel cells
JP3254456B2 (en) Method for manufacturing solid oxide fuel cell
JPH11343123A (en) Production of ni or nio/ysz composite powder, and formation of fuel electrode membrane using the same
JPH0259592B2 (en)
JPH024554B2 (en)
JPH09132459A (en) Porous ceramic sintered compact
JPS60121679A (en) Manufacturing method of electrolytic tile for fuel cell
JPS6089074A (en) Manufacture of electrolyte tile for fuel cell
JPH0280319A (en) Production of lithium aluminate having large specific surface area
JPH05844A (en) Heat resistant conductive sintered body
JPS6033273A (en) Manufacture of porous body
JPH06290799A (en) Manufacture of electrolytic sheet for fused carbonate type fuel cell
JPS6081772A (en) Manufacturing method of electrolytic tile for fuel cell
KR101075913B1 (en) Fabrication Method for Anode of Solid Oxide Fuel Cell
JPS6079674A (en) Manufacture of electrolyte tile for fuel cell
KR100354819B1 (en) Method for manufacturing γ-LiAlO2 matrix for Molten Carbonate Fuel Cell
JPS62176063A (en) Manufacture of electrolyte tile of molten carbonate fuel cell
JPH07100634B2 (en) Manufacturing method of porous ceramics sintered body