JPS6081772A - Manufacturing method of electrolytic tile for fuel cell - Google Patents

Manufacturing method of electrolytic tile for fuel cell

Info

Publication number
JPS6081772A
JPS6081772A JP58190058A JP19005883A JPS6081772A JP S6081772 A JPS6081772 A JP S6081772A JP 58190058 A JP58190058 A JP 58190058A JP 19005883 A JP19005883 A JP 19005883A JP S6081772 A JPS6081772 A JP S6081772A
Authority
JP
Japan
Prior art keywords
temperature
lithium
raised
hours
wood pulp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58190058A
Other languages
Japanese (ja)
Inventor
Junji Nakamura
中村 淳次
Ikumasa Nishimura
西村 生真
Goro Saito
悟朗 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP58190058A priority Critical patent/JPS6081772A/en
Publication of JPS6081772A publication Critical patent/JPS6081772A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • H01M8/0295Matrices for immobilising electrolyte melts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To produce a porous structure of ceramics with high density and strength and with high porosity and a labyrinthine pattern of pores by using r-lithium aluminate of a specific grain diameter as a sintered inorganic substance and by specifying the addition of wood pulp to within a certain limit. CONSTITUTION:As an inorganic material is used r-lithium aluminate which is produced by the following process: lithium hydroxide and/or lithium chloride and gamma-Al2O3 are calcined at 1,000 deg.C for more than 1hr and cooled down, and this calcined product is then ground into pieces with a ball mill until the average diameter of grains will be less than 1mu. As a fiber material is added a certain amount of wood pulp which is by weight 3-15% of the total dry weight of uncalcined sheet-like material. And this mixed water base slurry is adjusted to be 7 in pH with an inorganic acid or alkali water solution, and then condensed and prepared to a sheet by adding a coagulating agent and a surface active agent. As for calcination, the temperature is raised from room temperature by 30-80 deg.C/H and kept at 500-700 deg.C for 1-3hr, and then raised again by 100- 300 deg.C/H and held at 1,000-1,300 deg.C for 1-3hr.

Description

【発明の詳細な説明】 本発明は燃料電池用′電解質タイルの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing electrolyte tiles for fuel cells.

従来の燃料電池用電解質タイルのセラミックス多孔質体
としては、各々気孔の性状は異なるが、素焼きの陶器や
発泡性ガラスのセラミックスやセラミックスフオームが
ある。しかし、これらは燃料電池用電解質タイルとして
使用するセラミックスとして、セラミックスに要求され
る硬さや緻密さに欠けている。また、気孔部に各種の無
機物質や電解質を充填して使用する場合に、イオン通過
性、電子伝導性か不足1−るものがかなりある。寸だ、
イオン通過性、電子伝導性は満足しても、気孔に充填し
た各種の無機物質や電解′6が気孔部から流失してしま
う欠点あるいはセラミックスの刑格だけでは、十分な強
度がでないという欠点を持つものが多かった。
Conventional porous ceramic materials for electrolyte tiles for fuel cells include unglazed pottery, foamed glass ceramics, and ceramic foam, although each type has different pore properties. However, these lack the hardness and fineness required of ceramics for use as electrolyte tiles for fuel cells. In addition, when the pores are filled with various inorganic substances or electrolytes, there are quite a few that lack ion permeability and electron conductivity. It's a size.
Even if the ion permeability and electron conductivity are satisfied, there are drawbacks such as the various inorganic substances and electrolytes filled in the pores being washed away from the pores, or the drawback that ceramics alone do not have sufficient strength. I had a lot of things.

更に、セラミックスのソートを作る場合に、抄紙力法を
用いないで作る方法が、射出成形法、押出[成形法、静
水圧プレス法等としである。しかしこれらの方法では、
30四平方以上の大面積のセラミックス/−トを作ると
、表面が、割れたり、歪曲したりして均一なものとなら
ない。
Furthermore, when making ceramic sorts, there are methods such as injection molding, extrusion [molding], isostatic pressing, etc. that do not use the paper-making force method. However, these methods
When ceramics/tablets with a large area of 30 square meters or more are made, the surface becomes cracked or distorted and becomes uneven.

寸だ、従来、燃料直性用電解′胃タイルの作り方で焼結
性物質の粉体として、戊−アルミナを、繊、1a質とし
て木材バルブな51〜70%添加して、湿式混練し、凝
集させた後、抄造して得た/−ト状物な焼成することに
より、薄くて確密な多孔質体を得る方法がある。しかし
、この方法では、高い気孔率な得るため、木材バルブの
含有量が多く、しかも、V−アルミナを使用しているた
め、焼結物質fX:?!るのに、1,500〜1’、6
00℃の高Y品で焼成する必要があった。
Traditionally, in the method of making electrolytic tiles for direct fuel use, 51 to 70% of alumina was added as a sinterable substance powder, and 51 to 70% of wood valve was added as a fiber and 1A material, and then wet kneaded. There is a method of obtaining a thin and firm porous body by agglomerating and then firing the obtained paper-formed/t-shaped material. However, in this method, in order to obtain high porosity, the content of the wood bulb is large, and since V-alumina is used, the sintered material fX:? ! 1,500~1',6
It was necessary to fire at 00°C with a high Y product.

本発明では、前記のような欠点を除去し、あるいはこれ
らの欠点を補なうのに十分な、救密で強度があり、気孔
率が高く、細孔が迷路のようになっているセラミックス
の多孔質本体を製造する方法として、焼結性無機物質と
して、r−リチウム木材バルブの添加量を3〜15チと
小計にして、アルミナな使用する方法より低温で焼結可
能とI−1気孔率が、焼結物の全体積の40〜80%で
あるような燃料電池用電解質タイルの製造方法である。
The present invention provides a ceramic material that is sufficiently tight, strong, has high porosity, and has labyrinth-like pores to eliminate or compensate for the above-mentioned drawbacks. As a method for manufacturing the porous body, the amount of R-lithium wood bulb added as a sinterable inorganic material is set at 3 to 15 cm, and the I-1 pores can be sintered at a lower temperature than the method using alumina. This is a method for producing an electrolyte tile for a fuel cell in which the ratio is 40 to 80% of the total volume of the sintered product.

燃料電池用電解質タイルとしては、アルミナが機密゛玖
で眠気絶縁性等に優れている。し7かし/kがも、アル
ミナは電解質として使用1−る炭酸リチウムと反応し、
リチウムアルミネートに変ってし塘う。そこで、本発明
では、そのリチウムアルミネートの中で一番安定な構造
である1 l)チウムアルミネートナ水酸化リチウムあ
るいはリチウム塩類とアルミナを反応させて製造し、こ
れ髪焼結1!1−無機物゛凪として使用する。
As an electrolyte tile for fuel cells, alumina is secretive and has excellent sleep insulation properties. However, alumina reacts with lithium carbonate used as an electrolyte,
Changed to lithium aluminate. Therefore, in the present invention, lithium aluminate, which has the most stable structure among lithium aluminates, is produced by reacting lithium hydroxide or lithium salts with alumina, and then sintered. Used as an inorganic substance.

以下さらに詳細に説明すれば、焼結J/、1 (1t5
磯物質として、LIOII(、LLCOg、 LiCf
’、 LL Sot 6 ノリチウムjマ、晶頃とアル
ミナの中で粒径が訓かく、表面が活性なγ−アルミナを
1.、OOOoCで1時間以J[焼して反応1μ以下に
して使用する。
To explain in more detail below, sintering J/, 1 (1t5
As rock material, LIOII (, LLCOg, LiCf
', LL Sot 6 Nolithium j ma, γ-alumina with an active surface and a grain size that is similar to that of crystalline alumina. , OOOoC for 1 hour or more to reduce the reaction to 1μ or less before use.

r−リチウムアルミネ−1・をボールミルで粒径をl 
p以下にするのは、セラミックスの焼結の時と同様に、
燃料電池用電解質タイルにおいても、焼成温度が粒径か
イ111かいほど焼結温度な下げて、省エネルギーにす
るとともに、焼結物の強度を上げるためである。また、
粒径の細かいと一リチウムアルミネートを使用して、燃
料電池用電解質タイルを製造した場合、このタイルにI
−it CO3,I(= CO−のような炭酸塩を含浸
させなければならない。そして、このタイルが炭酸塩を
気孔に充填して保持しているためには、気孔の径が01
〜1μ程間の細孔である必要があり、γ−リチウムアル
ミネートの粒径をより細かくすることは、電解質タイル
の細孔をより細かくすることである。
r-Lithium alumina-1 was ball milled to reduce the particle size to l.
The reason for keeping it below p is the same as when sintering ceramics.
In electrolyte tiles for fuel cells as well, the sintering temperature is lowered as the particle size increases, thereby saving energy and increasing the strength of the sintered product. Also,
When electrolyte tiles for fuel cells are manufactured using monolithium aluminate with fine particle size, this tile has an I
It must be impregnated with carbonate such as -it CO3,I (= CO-.And in order for this tile to fill and retain carbonate in the pores, the diameter of the pores must be 01
The pores need to be on the order of ~1 micron, and making the particle size of the γ-lithium aluminate finer means making the pores of the electrolyte tile finer.

補強材としての機能と40〜80係の気孔率な得る目的
で、各finの繊維質の中から木材パルプな選択し、木
材バルブの添加量な焼結前の乾燥時のノート全重量に対
して3〜15%としている0焼結物質の製造方法は先ず
、3〜15重量%の繊維質と焼結性無機物質である1p
以下の粒径のγ−リチウムアルミネートの粉体97〜R
5i’jL@%とからなる固形分に対して10〜50倍
程度の重量の水を加えて湿式混合し、抄造に適する水1
生スラリーに調整する。この水性スラリーは過剰の水酸
化リチウムあるいはリチウム塩類が溶出し、酸性あるい
はアルカリ性を呈するので、pHを調整するため、酸捷
たはアルカリ水溶液な加えてpf−Iを7に調整し、凝
集剤および界面活性剤を添加し凝集させ、抄造機にて抄
造し、/−1・状、板状に成形する。
In order to function as a reinforcing material and obtain a porosity of 40 to 80, wood pulp is selected from among the fibers of each fin, and the amount of wood pulp added is determined based on the total weight of the notebook when drying before sintering. The manufacturing method for the zero sintered material, which has a content of 3 to 15% by weight, first consists of 1p, which is 3 to 15% by weight of fibers and a sinterable inorganic material.
γ-lithium aluminate powder 97~R with the following particle size
5i'jL@%, water is added in an amount of about 10 to 50 times the weight of the solid content, and wet-mixed to obtain water 1 suitable for papermaking.
Adjust to raw slurry. This aqueous slurry becomes acidic or alkaline due to the elution of excess lithium hydroxide or lithium salts, so in order to adjust the pH, an acidic or alkaline aqueous solution is added to adjust the pf-I to 7, and a flocculant and A surfactant is added to cause agglomeration, and a paper is formed using a paper-making machine to form a /-1.-shaped plate.

凝集剤シま、繊維質と焼結性無機物質が凝集して抄造し
やすくするためである。−1+た、界面活性剤は繊維同
志、無機物質同志および繊維′改と無機物質とが凝集す
るのを補助するとともに、抄造した/−ト状、板状のも
のの表面が均一で滑らかに/、cるようにするために添
加する。
This is because the agglomerating agent causes the fibrous material and sinterable inorganic substance to coagulate, making it easier to form paper. -1+ In addition, the surfactant assists the coagulation of fibers, inorganic substances, and fibers and inorganic substances, and makes the surface of paper-shaped and plate-shaped objects uniform and smooth. Add to make it thicker.

この成形物を焼成炉に入れ、酸化雰囲気で焼成する。焼
成は室温から、1時間あたり30〜80’C(以下単に
30〜b 700 ’Cで1〜3時間保持する。これは、木材バル
ブが焼失気化されて、細孔で迷路のような気孔を作るだ
めである。昇温速度は30’C/H以下であると昇温に
時間がかかりすき′、また、80℃/H以上では木材バ
ルブが膨張して抄造したノート状、板状の形状がふくれ
て形が攻ずれてしまう。そのため昇温連室は30〜80
°C/Hが適している。そして、500〜700°Cに
おいて木材パルプを焼失気化させるために500〜70
0°Cで1〜3時間保持する。
This molded product is placed in a firing furnace and fired in an oxidizing atmosphere. Firing is carried out from room temperature to 30 to 80'C per hour (hereinafter simply 30 to 700'C) for 1 to 3 hours. This is because the wood bulb is burned and vaporized, creating a maze of pores. If the heating rate is less than 30°C/H, it will take a long time to heat up, and if it is more than 80°C/H, the wood valve will expand and the shape of the paper-made notebook or plate will deteriorate. It swells and loses its shape.Therefore, the heating temperature in the continuous room is 30 to 80 degrees.
°C/H is suitable. and 500 to 700 °C to burn and vaporize the wood pulp at 500 to 700 °C.
Hold at 0°C for 1-3 hours.

保持時間が1時間以下では木材パルプの焼失気化が完了
せず、3時間以−ヒでは時間が長くなりすぎるため1〜
3時間が適当である。その後、r−リチウムアルミネー
トが焼結する1、000〜1.300℃寸では100〜
300℃/4(で昇温し、焼結が行なわれる1、000
〜1,300°Cで1〜3時間焼[戊を行なう。
If the holding time is less than 1 hour, the burning and vaporization of the wood pulp will not be completed, and if the holding time is more than 3 hours, the time will be too long.
3 hours is appropriate. After that, the r-lithium aluminate is sintered at a temperature of 1,000 to 1,300℃.
The temperature is raised at 300℃/4 (1,000℃, and sintering is carried out.
Bake at ~1,300°C for 1 to 3 hours.

焼成は1,000℃以下では焼結が完了せず、寸だ、1
.300℃以上では、焼結が進みすきで、せっかくでき
た細孔がつぶれてし才うので、焼結温度は1,000〜
1.300℃が適当である。また、+、000〜1,3
00°Cで1〜3時間保持するのは、この1,000〜
1,300°Cで焼結が完了するのに、保持時間が1時
間以下では強度がでずに形がくずれてしまうし、3時間
以」−では結果が変らないので、1〜3時間が適当であ
る。
Sintering will not be completed at temperatures below 1,000℃, resulting in
.. At temperatures above 300°C, sintering progresses and the pores that have been created will collapse, so the sintering temperature should be set at 1,000°C or higher.
1.300°C is appropriate. Also, +, 000 to 1,3
This 1,000~3 hours is maintained at 00°C.
Although sintering is completed at 1,300°C, if the holding time is less than 1 hour, the strength will not be achieved and the shape will collapse; if the holding time is held for less than 3 hours, the result will not change, so 1 to 3 hours is required. Appropriate.

以上のように、粒径が]、p以下のr−リチウムアルミ
ネートを使用することにより、1より低温で焼結ができ
、しかも、木材パルプ量が3〜15重量係程度の添加で
、気孔率が40〜80係と大きく、細孔が迷路のように
なった@密質で強度の大きな燃料電池用電解質タイルが
製造r:i[能となる。
As described above, by using r-lithium aluminate with a particle size of p or less, it is possible to sinter at a lower temperature than 1, and moreover, when the amount of wood pulp is added in an amount of about 3 to 15% by weight, sintering is possible. A dense and strong electrolyte tile for fuel cells with a large ratio of 40 to 80 and a maze of pores can be produced.

以下に本発明の具体的な実維例を述べる。なお実症例中
物質の含有率は全て重喰比もしくは屯星係である。
Specific examples of the present invention will be described below. The content rates of substances in actual cases are all based on the weight ratio or tunxing ratio.

〈実施例1) (Δ)γ−リチウムアルミネートの材料組改□′水酸化
リチウム 1水塩 重計比 : (関東化学■製、試薬特級) 5 (17<1+1
γ−アルミナ 50部 ′ (住友アルミニウム製錬(株制、平均粒径8 p 
)( 水酸化リチウム1水塩50部とγ−アルミナ50部を5
00m6程度のポリ袋に入れて、手で10分稈振り回し
て、乾式混合し、これを300+yA程度のルツボに入
れて、電気炉に入れる。酸化雰囲気で必要なら空気を流
しながら、室温から200 ’C/Hで1,000°C
4で昇温する。1,000℃で2時間保持して・石焼し
て反応させ、炉内放冷を行ない、室温まで冷却する。
<Example 1> (Δ) Material recombination of γ-lithium aluminate □' Lithium hydroxide monohydrate Gravimetric ratio: (manufactured by Kanto Kagaku ■, reagent special grade) 5 (17<1+1
γ-Alumina 50 parts' (Sumitomo Aluminum Smelting (stock system, average particle size 8p)
) (50 parts of lithium hydroxide monohydrate and 50 parts of γ-alumina
Put it in a plastic bag of about 00m6, shake it around by hand for 10 minutes, dry mix it, put it in a crucible of about 300+yA, and put it in an electric furnace. From room temperature to 1,000°C at 200'C/H with flowing air if necessary in an oxidizing atmosphere.
Raise the temperature at step 4. The mixture is kept at 1,000°C for 2 hours and stone fired to react, and then allowed to cool in the furnace and cooled to room temperature.

冷却したγ−リチウムアルミネートの用焼物を30 (
l mn程度のボールミルに入れて、24時間、ボール
ミルで粉砕し、平均粒径を08部程度にする。
The cooled roasted γ-lithium aluminate was heated to 30 (
The mixture is placed in a ball mill of about 1 mn and ground for 24 hours to give an average particle size of about 0.8 parts.

(B) 試料の調整 r−リチウムアルミネート(粒径0.8p)30部木材
パルプ 5部 水 1,000部 (C)凝集剤と界面活叶剤 硫酸バンド I5係水溶沿 20部 ポリアクリルアミド系嵩高子凝集削 02係水溶液20
部 (三洋化成1株製商品名[ザ/ボ’JN−500J ’
)両性界面活性剤 20%水溶液 5部 (ライオン掬製商品「リポミ/LAJ )2分程度の容
器に水i、ooo部と木材パルプ5部を入れ、20分は
ど攪拌して水に十分分散させて、そこへ、ボールミルで
粉砕したγ−リチウムアルミネートの“石焼物30部を
加えて1分はど攪拌し7、水etスラリーを作る。
(B) Sample preparation r-Lithium aluminate (particle size 0.8p) 30 parts Wood pulp 5 parts Water 1,000 parts (C) Flocculant and surfactant Sulfuric acid band I5 water soluble 20 parts Polyacrylamide system Bulky child agglomeration cutting 02 aqueous solution 20
(Product name manufactured by Sanyo Chemical Co., Ltd. [The/Bo'JN-500J'
) Amphoteric surfactant 20% aqueous solution 5 parts (Lion Kiki product "Lipomi/LAJ") Pour 5 parts of water i, ooo and 5 parts of wood pulp into a 2 minute container and stir for 20 minutes to fully disperse in the water. Then, add 30 parts of stone-fired γ-lithium aluminate ground with a ball mill and stir for 1 minute to make a water and slurry.

この水性スラリーは過剰のリチウムイオンが水に溶出し
てpHが13以上の強アルカリとなる。そこであらかじ
め作っておいた希硫酸(硫酸:水−20,1)な滴加し
てpHな7にする。その中へあらかじめ作っておいだ硫
酸バンド(15係水溶液)を20部加えて2分はど攪拌
し、P・(が4以下になったことなpH試験紙で確認し
て、これもあらかじめ作っておいたポリアクリルアミド
系高分子凝集剤(す/ポリN−500の02チ水溶液)
を20部と両性界面活性剤(リポミンL A 20係水
溶液)45部添加し、1分はど攪拌して凝集させる。
This aqueous slurry becomes strongly alkaline with a pH of 13 or more as excess lithium ions are eluted into water. Then, add drops of dilute sulfuric acid (sulfuric acid: water - 20.1) that was prepared in advance to bring the pH to 7. Add 20 parts of sulfuric acid band (15% aqueous solution) prepared in advance to the solution, stir for 2 minutes, and check with a pH test paper that P. Separated polyacrylamide polymer flocculant (Su/Poly N-500 02C aqueous solution)
and 45 parts of an amphoteric surfactant (Lipomin LA 20 aqueous solution) were added and stirred for 1 minute to coagulate.

以上のようにして凝集した試料シま、抄造機で抄造して
、30crn角で2龍厚のノート状にする。これを乾燥
した後に電気炉に入れて、酸化ガデ囲気で、必要ならば
空気を流しながら、室温から、50°C/)(の速度で
加熱し、木材パルプが焼失気イシされて、細孔で迷路の
ような気孔ができる温度の600℃で2時間保持し、そ
の後、γ−リチウムアルミネートが焼結する1、200
°Cまで200°C/Hで昇温し、電気炉の温度が1,
200℃になったら、この温度で2時間保持して、r−
リチウムアルミネートを焼結させて、燃料電池用゛電解
質タイルを製造した。
The sample strips agglomerated as described above are made into a paper sheet with a paper making machine, and are made into a notebook shape of 30 crn square and 2 dragons thick. After drying, put it in an electric furnace and heat it from room temperature at a rate of 50°C/) (with an oxidizing atmosphere and flowing air if necessary), and the wood pulp is burned out and aerated. The γ-lithium aluminate is sintered at 600°C for 2 hours, which is the temperature at which a labyrinth of pores are formed.
The temperature was raised at 200°C/H until the temperature of the electric furnace reached 1,
When it reaches 200℃, hold it at this temperature for 2 hours and turn it into r-
Electrolyte tiles for fuel cells were manufactured by sintering lithium aluminate.

〈実施例2〉 (A)r−リチウムアルミネートの材料組成と l炭酸リチウム 重量比 □′〜 (住友アルミニウム製錬■製、平均粒径8μ)
(6)試料の調整 l′r−リチウムアルミネート(平均粒径0.8/I)
30部 ′木材バルブ 1部 1水 1,000部 (C) 凝集剤と界面活性剤 硫酸バンド 15チ水溶液 20部 ポリアクリルアミド系高分子凝集剤02%水溶液 、:
+o部(三洋化成■製商品名「サンポIJN−500J
)両性界面活性剤 20%水溶液 3音μ(ライオン■
製部品「リポミ/LAJ )以上のような組1 (A)
 (B) (C)を用いて、以下は実施例Iと同様にし
てノート状の燃料電池用電解質タイルが得られた。
<Example 2> (A) Material composition of r-lithium aluminate and l-lithium carbonate weight ratio □'~ (Made by Sumitomo Aluminum Smelting ■, average particle size 8μ)
(6) Sample preparation l'r-lithium aluminate (average particle size 0.8/I)
30 parts' Wood bulb 1 part 1 water 1,000 parts (C) Flocculant and surfactant sulfate 15% aqueous solution 20 parts Polyacrylamide polymer flocculant 02% aqueous solution:
+o part (Product name: Sanpo IJN-500J manufactured by Sanyo Chemical Co., Ltd.)
) Amphoteric surfactant 20% aqueous solution 3 sounds μ (Lion ■
Manufactured parts “Lipomi/LAJ” Set 1 (A) as above
(B) Using (C), a notebook-shaped electrolyte tile for fuel cells was obtained in the same manner as in Example I.

このようにして得られたセラミックス多孔質体は燃料電
池で用いられる電解質タイルとしての翻能罠優れ、耐久
性にも優れているものである。
The ceramic porous body thus obtained has excellent performance as an electrolyte tile used in fuel cells and is also excellent in durability.

本発明によれば、薄型で、数密質で、気孔率が高く、細
孔が迷路のように連続的になったセラミックス多孔質体
が製造される。
According to the present invention, a ceramic porous body that is thin, dense, has high porosity, and has continuous pores like a labyrinth is produced.

本発明では、従来の薄型で、気孔のない、l)’H′!
、密′6の金属酸化物を作る方法と発泡性多孔質体を作
る方法の両方法の長所を取入れており、気孔率の調整も
木祠パルプの添加殴によって自由に変えられる。しかも
、セラミックスフオーム製造における問題の、ボリウレ
タ/による発泡を殉じた後の複雑な処理工程が除去され
るので、製造工程が酪化される。また、粒径1p以下の
r IJチウアルミネートを使用する事と、少ない木材
ノくル量で、より低温で、緻密で強度の高いセラミラス
多孔質体が得られるため、省エネルギーの効も生ずる。
In the present invention, the conventional thin, pore-free l) 'H'!
This method incorporates the advantages of both the method of producing a dense metal oxide and the method of producing a foamable porous material, and the porosity can be freely adjusted by adding pulp. In addition, the complicated processing steps after foaming with polyurethane, which is a problem in the production of ceramic foam, are eliminated, so the production process is streamlined. In addition, by using r IJ thiualuminate with a particle size of 1 p or less and using a small amount of wood nodules, a dense and strong ceramilas porous body can be obtained at a lower temperature, resulting in an energy saving effect.

その上、従来使用できなかった熱にる膨張、収縮を繰返
す場所や応力のかかる場所よび特に、燃料電池用電解質
タイルのように、応力、電気的応力、機械的応力が繰返
しかかる所への使用が十分可能になる0 さらに言えば、焼成用のノート状物を成形ずのに、抄造
技術を用いるので、均一な厚さのシト状物な連続製造す
ることが可能であり、そのさも様々な範囲で実捲可能で
ある。
In addition, it can be used in places that are subject to repeated expansion and contraction due to heat, places that are subject to stress, and in particular places that are subject to repeated stress, electrical stress, and mechanical stress, such as electrolyte tiles for fuel cells. Furthermore, since paper-making technology is used instead of forming notebook-like objects for baking, it is possible to continuously manufacture sheet-like objects of uniform thickness, and it is also possible to continuously produce sheet-like objects with a uniform thickness. Actual winding is possible within this range.

特許出願人patent applicant

Claims (1)

【特許請求の範囲】[Claims] 焼結性無機物質の粉体と繊維質な混合して水性スラリー
とし、凝集、抄造して得たソート状物質な焼成すること
により前記繊維質を焼失気化させ、焼結性無機物質の粉
本を焼結させて、薄くて緻密な多孔質体を製造する際に
、無機物質として、水酸化リチウムおよびまたはリチウ
ム塩類とr−A7?tαな1,000℃で1時間以上・
l岨焼して、放冷した焼成物をボールミルで粉砕し、平
均粒径を1μ以下に重唱に対して3〜15チを添加して
、混合した水性スラリーに、無機の酸またはアルカリ水
溶液でpHを7に調整し、その後、凝集剤と界面活性剤
な添加して凝集、抄造し、焼成は、室温から30〜80
℃A(で昇温し、500〜700’Cで1〜3時間保持
し、その後100〜300℃/Hで昇温し、1,000
〜1,300°Cで1〜3時間保持することな特徴とす
る燃料電池用′電解質タイルの製造方法。
The sinterable inorganic material powder and the fibrous material are mixed to form an aqueous slurry, and the sorted material obtained by agglomeration and papermaking is fired to burn off the fibrous material and vaporize it to form a powder of the sinterable inorganic material. When producing a thin and dense porous body by sintering lithium hydroxide and/or lithium salts, r-A7? 1 hour or more at tα 1,000℃・
The baked product, which has been left to cool after firing, is ground in a ball mill, and 3 to 15 particles per weight are added to make the average particle size 1μ or less. Adjust the pH to 7, then add a flocculant and a surfactant to agglomerate, form paper, and bake at a temperature of 30 to 80℃ from room temperature.
The temperature was raised at ℃A (and held at 500-700'C for 1-3 hours, then the temperature was raised at 100-300℃/H, 1,000
1. A method for producing an electrolyte tile for fuel cells, which is maintained at ~1,300°C for 1 to 3 hours.
JP58190058A 1983-10-12 1983-10-12 Manufacturing method of electrolytic tile for fuel cell Pending JPS6081772A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58190058A JPS6081772A (en) 1983-10-12 1983-10-12 Manufacturing method of electrolytic tile for fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58190058A JPS6081772A (en) 1983-10-12 1983-10-12 Manufacturing method of electrolytic tile for fuel cell

Publications (1)

Publication Number Publication Date
JPS6081772A true JPS6081772A (en) 1985-05-09

Family

ID=16251639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58190058A Pending JPS6081772A (en) 1983-10-12 1983-10-12 Manufacturing method of electrolytic tile for fuel cell

Country Status (1)

Country Link
JP (1) JPS6081772A (en)

Similar Documents

Publication Publication Date Title
CN110937920A (en) Ultralight high-strength anorthite porous ceramic and preparation method thereof
JPS6020868B2 (en) Method for manufacturing porous electrodes for chemical batteries
CN114933473A (en) Spinel-corundum light-weight refractory material and preparation method thereof
CN109320257B (en) Preparation method of high-strength high-porosity porous silicon nitride ceramic
JPH0258744B2 (en)
JPH06163055A (en) Manufacture of sintered electrode for battery
US5834108A (en) Multi-layered ceramic porous body
CN110526710B (en) Lanthanum zirconate porous ceramic and preparation method and application thereof
CN104311109A (en) Method for preparing foamed ceramic through foaming, injection molding and cementing of aluminum dihydrogen phosphate
JPS6081772A (en) Manufacturing method of electrolytic tile for fuel cell
JPH11240777A (en) Alpha-alumina porous aggregated sintered compact, its production and use thereof
CN115231925A (en) Method for preparing calcium hexaluminate combined silicon carbide ceramic by microwave
JPH024554B2 (en)
JP2003073182A (en) Production method for calcium phosphate-based porous ceramic sintered compact and calcium phosphate-based porous ceramic sintered compact
CN114044695A (en) Porous ceramic material and preparation method thereof
JPS6079674A (en) Manufacture of electrolyte tile for fuel cell
JPS6089074A (en) Manufacture of electrolyte tile for fuel cell
CN108863435B (en) Method for preparing alumina foamed ceramic by alumina sol self-gel forming
JPS60121679A (en) Manufacturing method of electrolytic tile for fuel cell
US4460495A (en) Cathode for molten carbonate fuel cell
JPS6172693A (en) Manufacture of porous sintered body
JPH0259592B2 (en)
KR102656700B1 (en) Manufacturing method of nasicon crystal structure compound for sodium ion solid electrolyte
CN115417667B (en) Nd 2 O 3 Doped Na-beta (beta&#39;) -Al 2 O 3 Solid electrolyte ceramic material and preparation method thereof
JPH05310469A (en) High-purity calcia sintered compact