JPH0134927B2 - - Google Patents

Info

Publication number
JPH0134927B2
JPH0134927B2 JP20469781A JP20469781A JPH0134927B2 JP H0134927 B2 JPH0134927 B2 JP H0134927B2 JP 20469781 A JP20469781 A JP 20469781A JP 20469781 A JP20469781 A JP 20469781A JP H0134927 B2 JPH0134927 B2 JP H0134927B2
Authority
JP
Japan
Prior art keywords
silica sol
aqueous solution
sio
acid
room temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP20469781A
Other languages
Japanese (ja)
Other versions
JPS58110415A (en
Inventor
Juzo Takase
Motomu Miwa
Shuichi Tada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Adeka Corp
Original Assignee
Asahi Denka Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Denka Kogyo KK filed Critical Asahi Denka Kogyo KK
Priority to JP20469781A priority Critical patent/JPS58110415A/en
Publication of JPS58110415A publication Critical patent/JPS58110415A/en
Publication of JPH0134927B2 publication Critical patent/JPH0134927B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Silicon Compounds (AREA)

Description

【発明の詳細な説明】 本発明は、安定なシリカゾル組成物の製造方法
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a stable silica sol composition.

詳しくはシリカゾル水溶液中の珪酸(SiO2
とアルカリ(R2O)のモル比(SiO2/R2O)が40
〜1000であり、SiO2の濃度が2〜50重量%であ
る様なPH6以上のシリカゾル水溶液をアンモニア
型又はアミン型に予め調整した陽イオン交換樹脂
に通し得られたアンモニア又はアミン型シリカゾ
ル水溶液にアルミン酸、スズ酸、鉛酸又は亜鉛酸
のアルカリ金属塩をSiO2/MxOy(MxOyはアル
ミニウム、亜鉛、スズ、鉛の酸化物を示す)モル
比30〜500となる量添加し安定なシリカゾル組成
物を得ることにあり、その目的とするところは、
長期間安定で且つ中性及び酸性領域において安定
となる低粘度のシリカゾル水溶液を提供するもの
である。
For details, see Silicic acid (SiO 2 ) in silica sol aqueous solution.
and alkali (R 2 O) molar ratio (SiO 2 /R 2 O) is 40
~1000, and the concentration of SiO 2 is 2 to 50% by weight, and the silica sol aqueous solution has a pH of 6 or higher and is passed through a cation exchange resin that has been adjusted to an ammonia type or amine type in advance to form an ammonia or amine type silica sol aqueous solution obtained. Stable silica sol composition by adding alkali metal salts of aluminic acid, stannic acid, lead acid, or zinc acid in an amount such that the molar ratio of SiO 2 /MxOy (MxOy indicates oxides of aluminum, zinc, tin, and lead) is 30 to 500. The goal is to obtain something,
The present invention provides a low-viscosity silica sol aqueous solution that is stable for a long period of time and stable in neutral and acidic regions.

従来から水性シリカゾルにアルミン酸ナトリウ
ムや亜鉛酸ナトリウムを添加して安定なシリカゾ
ルを作る方法は2〜3提案されている。
Conventionally, two to three methods have been proposed for producing a stable silica sol by adding sodium aluminate or sodium zincate to an aqueous silica sol.

例えば特公昭47−26959号公報には、アルカリ
性シリカゾルと塩基性塩化アルミニウムを混合し
熟成してアルミニウムでコロイダルシリカ表面の
一部を正に荷電させているが、この方法は急激な
増粘に対処する必要があり、従つて高速撹拌や急
速ポンプ循環を必要とする欠点がある。
For example, in Japanese Patent Publication No. 47-26959, alkaline silica sol and basic aluminum chloride are mixed and aged, and a part of the colloidal silica surface is positively charged with aluminum, but this method deals with rapid thickening. Therefore, it has the disadvantage of requiring high-speed stirring and rapid pump circulation.

又、特公昭49−7800号公報には、PH6以下のシ
リカゾルにアンモニアやアミンを加えた後、アル
ミン酸ナトリウムを加える方法を提案している。
この方法では短時間にせよ酸性側のシリカゾルを
取り扱う必要があり、ゲル化時間の関係から高濃
度のものは取扱いにくく、従つて低濃度のシリカ
ゾル水溶液(酸性サイド)にアミン又はアンモニ
アを加えて一度アルカリサイドに移した後アルミ
ン酸ソーダ等を加えて安定化し、更に商品に供す
る濃度まで濃縮する必要がある。
Furthermore, Japanese Patent Publication No. 49-7800 proposes a method in which ammonia or amine is added to a silica sol having a pH of 6 or less, and then sodium aluminate is added thereto.
In this method, it is necessary to handle the silica sol on the acidic side even for a short time, and it is difficult to handle high-concentration silica sol due to the gelation time. After it is transferred to the alkali side, it must be stabilized by adding sodium aluminate, etc., and further concentrated to a concentration suitable for commercial use.

更にはこの為に工業化に際して大型の装置に高
速撹拌機等の高価な設備を必要とし、又その運転
に多額の動力費が必要であつた。
Furthermore, for this reason, upon industrialization, large equipment and expensive equipment such as a high-speed stirrer were required, and a large amount of power was required for its operation.

本発明者らは、これらの欠点を完全に解決した
ばかりでなく、更に高濃度で安定なシリカゾルの
製造可能な方法を発明した。
The present inventors have not only completely solved these drawbacks, but also invented a method capable of producing a stable silica sol at a higher concentration.

即ち、本発明の方法はSiO2/R2Oモル比が40〜
1000であり、SiO2の濃度が2〜50重量%である
様なPH6以上のシリカゾル水溶液をアンモニア又
はアミン型にされている陽イオン交換樹脂に通し
一度アンモニア又はアミン型シリカゾル水溶液と
した後、アルミン酸、スズ酸、鉛酸、もしくは亜
鉛酸のアルカリ金属塩をSiO2/MxOy(MxOyは
アルミニウム、亜鉛、スズ又は鉛の酸化物を示
す)モル比30〜500となる量添加し、混合・反応
せしめることにより増粘することなく、従つて高
速撹拌や急速ポンプ循環を要せず、通常のゆるや
かな撹拌のみにてシリカゾルの安定化処理を行う
ものである。
That is, the method of the present invention has a SiO 2 /R 2 O molar ratio of 40 to
1000 and a SiO 2 concentration of 2 to 50% by weight, a silica sol aqueous solution with a pH of 6 or higher is passed through an ammonia or amine type cation exchange resin to form an ammonia or amine type silica sol aqueous solution, and then aluminium Add an alkali metal salt of acid, stannic acid, lead acid, or zinc acid in an amount to give a molar ratio of SiO 2 /MxOy (MxOy indicates an oxide of aluminum, zinc, tin, or lead) of 30 to 500, and mix and react. This method stabilizes the silica sol without increasing the viscosity by allowing the silica sol to thicken, and therefore does not require high-speed stirring or rapid pump circulation, and only requires ordinary gentle stirring.

本発明に使用するPH6以上のシリカゾル水溶液
とは例えば市販品として市場にあるシリカゾル水
溶液;ルドツクス(Du Pont製)、カタロイド
(触媒化成製)、スノーテツクス(日産化学製)、
ナルコーゲ(ナルコケミカル製)等の一般品が挙
げられる。又、アルカリ金属珪酸塩を水素型陽イ
オン交換樹脂に通して得られる活性シリカゾル水
溶液を安定化し用いても良い。使用するシリカゾ
ル水溶液のSiO2/R2O(Rはアルカリ金属)モル
比は40〜1000が好ましく、40未満ではコロイド状
珪酸となりにくく、本発明に用いるシリカゾル水
溶液としては不適当である。又、1000を越えると
コロイド状珪酸粒子が不安定となり易くやはり本
発明に用いるシリカゾル水溶液としては不適等で
ある。又、SiO2濃度としては2〜50重量%が好
ましく、2重量%未満では経済的に不適当であ
り、50重量%を越えると製造時増粘してくること
から不適当である。3〜40重量%がより好まし
い。更にR2Oのアルカリ金属としてはリチウム、
ナトリウム、カリウム、セシウム、ルビジウムが
挙げられるが、経済性、反応性の点からナトリウ
ム、カリウムがよい。
The silica sol aqueous solution with a pH of 6 or higher used in the present invention includes, for example, silica sol aqueous solutions available on the market as commercial products; Ludtux (manufactured by Du Pont), Cataloid (manufactured by Catalyst Kasei), Snotex (manufactured by Nissan Chemical),
General products such as Narcoge (manufactured by Narco Chemical) can be mentioned. Alternatively, an aqueous activated silica sol solution obtained by passing an alkali metal silicate through a hydrogen type cation exchange resin may be stabilized and used. The SiO 2 /R 2 O (R is an alkali metal) molar ratio of the aqueous silica sol solution used is preferably from 40 to 1000; if it is less than 40, it is difficult to form colloidal silicic acid, which is inappropriate as the aqueous silica sol solution used in the present invention. Moreover, if it exceeds 1000, the colloidal silicic acid particles tend to become unstable and are therefore unsuitable as the silica sol aqueous solution used in the present invention. Further, the SiO 2 concentration is preferably 2 to 50% by weight; less than 2% by weight is economically unsuitable, and more than 50% by weight is unsuitable because it increases the viscosity during production. More preferably 3 to 40% by weight. Furthermore, as the alkali metal of R 2 O, lithium,
Examples include sodium, potassium, cesium, and rubidium, but sodium and potassium are preferred from the viewpoint of economy and reactivity.

これらのシリカゾル水溶液は通常アルカリ金属
で安定化されており、このアルカリ金属が存在し
たままで例えばアルミン酸ソーダを加えた場合
は、アルカリ金属の働きでアルミン酸イオンがコ
ロイド状珪酸表面に十分近づけず、従つて、コロ
イド状珪酸表面の改質はおこらない。そこでシリ
カゾル水溶液をアンモニア又はアミン型陽イオン
交換樹脂に通し、アンモニア又はアミンで安定化
されたシリカゾル水溶液を得る。このアンモニア
又はアミンで安定化されたシリカゾル水溶液はア
ルカリサイドであるので長期の安定性に富むと同
時にアルミン酸等のイオンが共存した場合アンモ
ニア又はアミンとコロイド状珪酸との相互作用は
弱く、従つてアルミン酸イオンがコロイド状珪酸
表面まで近づき脱水縮合して表面にアルミニウム
イオンが配位し、コロイド状珪酸の電荷が正にな
る。
These silica sol aqueous solutions are usually stabilized with an alkali metal, and if, for example, sodium aluminate is added while this alkali metal is present, the alkali metal will prevent the aluminate ions from coming close enough to the colloidal silicic acid surface. , therefore, no modification of the colloidal silicic acid surface occurs. Therefore, the silica sol aqueous solution is passed through an ammonia or amine type cation exchange resin to obtain a silica sol aqueous solution stabilized with ammonia or amine. Since this silica sol aqueous solution stabilized with ammonia or amine is alkaline, it is highly stable over a long period of time, and at the same time, when ions such as aluminic acid coexist, the interaction between ammonia or amine and colloidal silicic acid is weak. Aluminate ions approach the surface of colloidal silicic acid and undergo dehydration condensation, and aluminum ions are coordinated to the surface, making the charge of colloidal silicic acid positive.

陽イオン交換樹脂をアンモニアもしくはアミン
型にする方法は通常のイオン交換樹脂再生方法に
準じて行えば良い。
The method for converting the cation exchange resin into an ammonia or amine type may be carried out in accordance with a normal ion exchange resin regeneration method.

本発明に使用するアンモニアもしくはアミン型
陽イオン交換樹脂にするアンモニア源としては、
例えばアンモニア水、塩化アンモニウム、硝酸ア
ンモニウム、硫酸アンモニウム、リン酸アンモニ
ウム等の可溶性アンモニウム塩が挙げられる。
又、アミン源としては、各種のアミンを用いるこ
とができ、例えばメチルアミン、ジメチルアミ
ン、トリメチルアミン、エチルアミン、ジエチル
アミン、トリエチルアミン、ジエチレントリアミ
ン、トリエチレンテトラミン、エタノールアミ
ン、ジエタノールアミン、モルフオリン及びこれ
らの塩が挙げられる。
The ammonia source for the ammonia or amine type cation exchange resin used in the present invention is as follows:
Examples include soluble ammonium salts such as aqueous ammonia, ammonium chloride, ammonium nitrate, ammonium sulfate, and ammonium phosphate.
Furthermore, various amines can be used as the amine source, such as methylamine, dimethylamine, trimethylamine, ethylamine, diethylamine, triethylamine, diethylenetriamine, triethylenetetramine, ethanolamine, diethanolamine, morpholine, and salts thereof. .

この様にして得られたアンモニア又はアミン型
シリカゾル水溶液に加えるアルミン酸ナトリウム
等の量的関係は、SiO2/MxOy(MxOyはアルミ
ニウム、亜鉛、スズ又は鉛の酸化物を示す)モル
比30〜500である必要である。30未満ではMイオ
ンが多すぎて不安定となり、500を越えると逆に
Mイオンが少なすぎて、中性、酸性領域での安定
度が減少する。モル比35〜400がより好ましい。
The quantitative relationship of sodium aluminate, etc. added to the ammonia or amine type silica sol aqueous solution obtained in this way is SiO 2 /MxOy (MxOy indicates an oxide of aluminum, zinc, tin or lead) molar ratio 30 to 500. It is necessary that If it is less than 30, there will be too many M ions and it will become unstable, and if it exceeds 500, there will be too few M ions and the stability will decrease in the neutral and acidic regions. A molar ratio of 35 to 400 is more preferred.

アンモニア又はアミン型コロイダルシリカへの
アルミン酸ナトリウム等の添加方法は、50℃以下
で十分に撹拌されている中へ小量ずつ粉体のまま
で添加しても良く、又、水溶液とした後に添加し
ても良い。50℃以上での添加は反応が速すぎて局
部的なゲル化を生ずることがあるので好ましくな
い。
Sodium aluminate, etc. can be added to ammonia or amine-type colloidal silica by adding it in small amounts as a powder into a well-stirred medium at 50℃ or below, or by adding it after making it into an aqueous solution. You may do so. Addition at a temperature of 50°C or higher is not preferable because the reaction is too fast and local gelation may occur.

更に又、アルミン酸ナトリウム等の全量添加後
は、70℃以上において熱処理することによりアル
ミン酸イオンとコロイド状珪酸粒子との縮合反応
を速めることもできる。
Furthermore, after adding the entire amount of sodium aluminate, etc., the condensation reaction between aluminate ions and colloidal silicic acid particles can be accelerated by heat treatment at 70° C. or higher.

本発明で添加するアルミン酸等のアルカリ金属
塩としてはリチウム、ナトリウム、カリウム等の
アルミン酸塩、スズ酸塩、鉛酸塩、亜鉛酸塩等が
あるが安価に入手できる点よりアルミン酸ナトリ
ウムがその代表的なものである。
Alkali metal salts such as aluminate added in the present invention include aluminates such as lithium, sodium, and potassium, stannate, leadate, zincate, etc., but sodium aluminate is preferable because it can be obtained at low cost. This is a typical example.

希薄シリカゾルを本発明によつて安定化処理を
行なつた後濃縮操作を行うと今までの方法では得
にくかつた濃度まで濃縮できる。この濃縮方法は
水分を蒸発して濃縮しても、あるいは又、限外
過を用いて水をしぼり出すことにより濃縮しても
良い。いずれの場合も安定でしかも高濃度の製品
が得られる。
When a dilute silica sol is stabilized according to the present invention and then subjected to a concentration operation, it can be concentrated to a concentration that is difficult to obtain using conventional methods. This concentration method may be performed by evaporating water or by squeezing out water using ultrafiltration. In either case, a stable and highly concentrated product can be obtained.

本発明によつて得られたシリカゾル水溶液は、
それ自体でも非常に安定であり、更に中性、酸性
領域においても非常に安定である。これは、コロ
イド状珪酸粒子表面の一部にアルミニウムイオン
等が結合し、全体の電荷を陽イオン型にするた
め、中性、酸性領域においても重合・ゲル化が生
じないからである。従つて、中性、酸性領域での
使用、配合等において非常に有利である。
The silica sol aqueous solution obtained by the present invention is
It is very stable by itself, and is also very stable in neutral and acidic regions. This is because aluminum ions and the like are bonded to a portion of the surface of the colloidal silicic acid particles, making the overall charge a cationic type, so that polymerization and gelation do not occur even in neutral and acidic regions. Therefore, it is very advantageous for use and formulation in neutral and acidic regions.

更に又、製品の中に不純物として存在するアン
モニアやアミンは冬期における凍結防止剤として
働くばかりでなく、凍結した場合の良き解こう剤
としての働きもある。他方、必要に応じて、水よ
り沸点の低いアミンを用いれば脱気することによ
り除くこともできる。
Furthermore, ammonia and amines present as impurities in the product not only act as antifreeze agents in the winter, but also act as good defrosting agents when frozen. On the other hand, if necessary, if an amine having a boiling point lower than that of water is used, it can be removed by degassing.

以下に実施例により本発明の実施方法を具体的
に説明するが、これによつて本発明の範囲を限定
するものではない。尚、例中の%は特記しない限
り重量基準である。
EXAMPLES The method of carrying out the present invention will be specifically explained below with reference to Examples, but the scope of the present invention is not limited thereby. Note that the percentages in the examples are based on weight unless otherwise specified.

実施例 1 SiO230%、Na20.03%、SiO2/Na2Oモル比103
の市販のシリカゾル水溶液(日産化学・スノーテ
ツクス30)500gをNH4Cl10%水溶液400gで
NH4−型とした陽イオン交換樹脂(オルガノ(株)
アンバーライト、IR−120B)500c.c.の中に通し、
SiO225%、(NH42O0.25%、Na2O200ppm、PH
9.4のNH4−型シリカゾル水溶液570gを得た。こ
のNH4−型シリカゾル水溶液500gに蒸留水87g
を加え室温で十分撹拌しながらアルミン酸ナトリ
ウム(NaAl290%純度)10%水溶液38gを加え
た。添加時の粘度上昇は殆んど生じなかつた。次
いで90℃で約1時間熱処理を行なつた。
Example 1 SiO 2 30%, Na 2 0.03%, SiO 2 /Na 2 O molar ratio 103
500g of a commercially available silica sol aqueous solution (Nissan Chemical/Snowtex 30) was mixed with 400g of a 10% NH 4 Cl aqueous solution.
Cation exchange resin in NH 4 − form (Organo Co., Ltd.)
Amberlight, IR-120B) Passed through 500c.c.
SiO2 25%, ( NH4 ) 2O0.25 %, Na2O200ppm , PH
570 g of an aqueous NH 4 -type silica sol solution of 9.4 was obtained. 500g of this NH4 -type silica sol aqueous solution and 87g of distilled water.
was added, and 38 g of a 10% aqueous solution of sodium aluminate (NaAl 2 90% purity) was added with sufficient stirring at room temperature. There was almost no increase in viscosity upon addition. Next, heat treatment was performed at 90°C for about 1 hour.

得られたシリカゾル水溶液は、SiO220%、
Al2O30.34%、Na2O0.27%、(NH42O0.20%であ
つた。このシリカゾル水溶液は室温で半年経過後
も十分安定であつた。
The obtained silica sol aqueous solution contains 20% SiO 2 ,
The concentrations were Al 2 O 3 0.34%, Na 2 O 0.27%, and (NH 4 ) 2 O 0.20%. This aqueous silica sol solution remained sufficiently stable even after half a year at room temperature.

又一部を2N塩酸で中和しPH6.0にしたシリカゾ
ル水溶液は室温で約100日間安定であつた。
Furthermore, an aqueous silica sol solution partially neutralized with 2N hydrochloric acid to pH 6.0 was stable at room temperature for about 100 days.

実施例 2 実施例1と同様にして得られたNH4−型シリ
カゾル水溶液500gに蒸留水117gを加え室温で十
分撹拌しながらZnOとして10%含む亜鉛酸カリウ
ム水溶液8.4gを加えた。添加時の粘度上昇は殆
んど生じなかつた。次いで90℃で約1時間熱処理
を行つた。
Example 2 117 g of distilled water was added to 500 g of an aqueous NH 4 -type silica sol solution obtained in the same manner as in Example 1, and 8.4 g of a potassium zincate aqueous solution containing 10% ZnO was added with sufficient stirring at room temperature. There was almost no increase in viscosity upon addition. Next, heat treatment was performed at 90°C for about 1 hour.

得られたシリカゾル水溶液は、SiO220%、
ZnO0.13%、K2O0.17%、(NH42O0.20%のもの
で室温で半年経過後も十分安定であつた。又一部
を2N塩酸で中和しPH6.0にしたシリカゾル水溶液
は、室温で120日間安定であつた。
The obtained silica sol aqueous solution contains 20% SiO 2 ,
Those containing 0.13% ZnO, 0.17% K 2 O, and 0.20% (NH 4 ) 2 O were sufficiently stable even after half a year at room temperature. Furthermore, an aqueous silica sol solution partially neutralized with 2N hydrochloric acid to pH 6.0 was stable at room temperature for 120 days.

実施例 3 実施例1と同様の市販シルカゾル水溶液500g
をジエタノールアミン10%水溶液600gでジエタ
ノールアミン型とした陽イオン交換樹脂500c.c.に
通し、SiO225%、((C2H4OH)2−N・H22O1.1
%、Na2O210ppm、PH9.0のジエタノールアミン
型シリカゾル水溶液570gを得た。このジエタノ
ールアミン型シリカゾル水溶液500gに室温で十
分に撹拌しながら蒸留水112gとアルミン酸ナト
リウム(NaAl2O2純度90%)10%水溶液13gを
加えた。添加時の粘度上昇は殆んど生じなかつ
た。次いで90℃で約1時間熱処理を行つた。
Example 3 500 g of commercially available Silkasol aqueous solution similar to Example 1
was passed through 500 c.c. of cation exchange resin made into diethanolamine type with 600 g of 10% diethanolamine aqueous solution, and SiO 2 25%, ((C 2 H 4 OH) 2 −N・H 2 ) 2 O1.1
%, Na 2 O 2 10 ppm, and PH 9.0, 570 g of a diethanolamine type silica sol aqueous solution was obtained. To 500 g of this diethanolamine type silica sol aqueous solution were added 112 g of distilled water and 13 g of a 10% aqueous solution of sodium aluminate (NaAl 2 O 2 purity 90%) with sufficient stirring at room temperature. There was almost no increase in viscosity upon addition. Next, heat treatment was performed at 90°C for about 1 hour.

得られたシリカゾル水溶液は低粘度でSiO220
%、Al2O30.11%、〔(C2H4OH)2NH22O0.89%、
Na2O0.09%のもので室温で半年経過後も十分安
定であつた。又、一部を2N−塩酸で中和しPH6.0
にしたシリカゾル水溶液は室温で90日間安定であ
つた。
The obtained silica sol aqueous solution has a low viscosity of SiO 2 20
%, Al 2 O 3 0.11%, [(C 2 H 4 OH) 2 NH 2 ] 2 O 0.89%,
The one containing 0.09% Na 2 O remained sufficiently stable even after half a year at room temperature. Also, partially neutralized with 2N-hydrochloric acid to pH 6.0.
The prepared silica sol aqueous solution was stable for 90 days at room temperature.

実施例 4 実施例1と同様にして得られたNH4−型シリ
カゾル水溶液500gに蒸留水105gを加え室温で十
分撹拌しながらスズ酸ナトリウム(Na2SnO3
2.2gを溶解した水溶液20gを加えた。この時添
加時の粘度上昇は殆んど生じなかつた。次いで90
℃で約1時間熱処理を行つた。
Example 4 105 g of distilled water was added to 500 g of an aqueous NH 4 -type silica sol solution obtained in the same manner as in Example 1, and sodium stannate (Na 2 SnO 3 ) was added with sufficient stirring at room temperature.
20 g of an aqueous solution containing 2.2 g was added. At this time, almost no increase in viscosity occurred during addition. then 90
Heat treatment was carried out at ℃ for about 1 hour.

得られたシリカゾル水溶液はSiO220%、
SnO20.25%、Na2O0.10%、(NH42O0.20%のも
ので室温で半年経過後も十分安定であつた。又、
一部を2N塩酸で中和しPH6.0にしたシリカゾル水
溶液は室温で70日間安定であつた。
The obtained silica sol aqueous solution contains 20% SiO2 ,
Those containing 0.25% SnO 2 , 0.10% Na 2 O, and 0.20% (NH 4 ) 2 O were sufficiently stable even after half a year at room temperature. or,
An aqueous silica sol solution partially neutralized with 2N hydrochloric acid to pH 6.0 was stable at room temperature for 70 days.

実施例 5 実施例1と同様にして得られたNH4−型シリ
カゾル水溶液500gに蒸留水100gを加え、室温で
十分撹拌しながら鉛酸ナトリウム(Na4PbO4
2.5gを溶解した水溶液25gを加えた。この時添
加時の粘度上昇は殆んど生じなかつた。次いで90
℃で約1時間熱処理を行つた。
Example 5 100 g of distilled water was added to 500 g of an aqueous NH 4 -type silica sol solution obtained in the same manner as in Example 1, and sodium leadate (Na 4 PbO 4 ) was added with sufficient stirring at room temperature.
25 g of an aqueous solution containing 2.5 g was added. At this time, almost no increase in viscosity occurred during addition. then 90
Heat treatment was carried out at ℃ for about 1 hour.

得られたシリカゾル水溶液はSiO220%、
PbO20.26%、Na2O0.14%、(NH42O0.2%のも
ので室温で半年経過後も十分安定であつた。又、
一部を2N塩酸で中和し、PH6.0にしたシリカゾル
水溶液は室温で60日間安定であつた。
The obtained silica sol aqueous solution contains 20% SiO2 ,
Those containing 0.26% PbO 2 , 0.14% Na 2 O, and 0.2% (NH 4 ) 2 O were sufficiently stable even after half a year at room temperature. or,
A silica sol aqueous solution partially neutralized with 2N hydrochloric acid to pH 6.0 was stable at room temperature for 60 days.

比較例 1 実施例1で用いた市販シリカゾル(日産化学、
スノーテツクス30)を蒸留水で希釈し、SiO220
%、Na2O0.2%とした。このシリカゾル水溶液は
室温において半年経過後も十分安定であつた。し
かし2N塩酸で中和してPH6.0にしたシリカゾル水
溶液は、室温で5時間後にゲル化した。
Comparative Example 1 Commercially available silica sol used in Example 1 (Nissan Chemical,
Dilute Snotex 30) with distilled water, SiO 2 20
%, Na 2 O 0.2%. This silica sol aqueous solution remained sufficiently stable even after half a year at room temperature. However, the silica sol aqueous solution neutralized to pH 6.0 with 2N hydrochloric acid gelled after 5 hours at room temperature.

比較例 2 実施例1と同様の方法を用いてNH4−型シリ
カゾル水溶液((NH42O0.25%、SiO225%、PH
9.4、Na2O200ppm)を得た。このNH4−型シリ
カゾル水溶液は室温で半年経過後も十分安定であ
つた。しかし2N塩酸を用いて中和し、PH6.0にし
たシリカゾル水溶液は、室温で4時間後にゲル化
した。
Comparative Example 2 Using the same method as in Example 1, an aqueous NH 4 -type silica sol solution ((NH 4 ) 2 O 0.25%, SiO 2 25%, PH
9.4, Na2O200ppm ) was obtained. This NH 4 -type silica sol aqueous solution remained sufficiently stable even after half a year at room temperature. However, the silica sol aqueous solution that was neutralized to pH 6.0 using 2N hydrochloric acid turned into a gel after 4 hours at room temperature.

比較例 3 実施例1と同様にして得られたNH4−型シリ
カゾル水溶液500gを室温で十分に撹拌しながら
アルミン酸ナトリウム15.2gをとかした水溶液
125gを加えた。添加時、粘度は少々上がつたが
その後低下した。次いで90℃で約1時間熱処理し
た。
Comparative Example 3 An aqueous solution in which 15.2 g of sodium aluminate was dissolved in 500 g of an aqueous NH 4 -type silica sol solution obtained in the same manner as in Example 1 while thoroughly stirring at room temperature.
Added 125g. Upon addition, the viscosity rose slightly, but then decreased. Then, it was heat-treated at 90°C for about 1 hour.

得られたシリカゾル水溶液は、SiO220%、
Al2O31.36%、Na2O1.07%、(NH42O0.2%で、
室温で半年経過しても十分安定であつた。しかし
一部を2N塩酸で中和しPH6.0にしたシリカゾル水
溶液は室温で7日後にゲル化した。
The obtained silica sol aqueous solution contains 20% SiO 2 ,
Al 2 O 3 1.36%, Na 2 O 1.07%, (NH 4 ) 2 O 0.2%,
It remained sufficiently stable even after half a year at room temperature. However, an aqueous silica sol solution partially neutralized with 2N hydrochloric acid to pH 6.0 gelled after 7 days at room temperature.

比較例 4 アルミン酸ナトリウム0.63gを溶かした水溶液
125gをNH4型シリカゾル水溶液に添加する以外
は比較例3と全く同一条件で行つた。得られたシ
リカゾル水溶液はSiO220%、Al2O30.06%、
Na2O0.05%、(NH42O0.20%であり、室温で半
年経過しても十分安定であつた。しかし、一部を
2N塩酸で中和しPH6.0にしたシリカゾル水溶液は
室温で10日間でゲル化した。
Comparative Example 4 Aqueous solution containing 0.63g of sodium aluminate
Comparative Example 3 was carried out under exactly the same conditions as in Comparative Example 3 except that 125 g was added to the aqueous NH 4 silica sol solution. The obtained silica sol aqueous solution contains 20% SiO 2 , 0.06% Al 2 O 3 ,
The contents were 0.05% Na 2 O and 0.20% (NH 4 ) 2 O, and remained sufficiently stable even after half a year at room temperature. However, some
A silica sol aqueous solution neutralized with 2N hydrochloric acid to pH 6.0 gelled at room temperature for 10 days.

Claims (1)

【特許請求の範囲】 1 SiO2/R2O(式中Rはアルカリ金属を示す)
モル比が40〜1000でSiO2濃度2〜50重量%、PH
6以上のシリカゾル水溶液をアンモニア型又はア
ミン型とした陽イオン交換樹脂で処理し、次いで
アルミン酸、スズ酸、鉛酸又は亜鉛酸のアルカリ
金属塩をSiO2/MxOy(式中MxOyはアルミン酸
塩等中のアルミン酸等成分を酸化物の形で表わし
たものでMはアルミニウム、スズ、鉛又は亜鉛を
示す)モル比30〜500となる量添加することを特
徴とする安定なシリカゾル組成物の製法。 2 RがLi、Na、K、Cs又はRbである特許請求
の範囲第1項記載の製法。 3 更に70℃以上で熱処理する特許請求の範囲第
1項記載の製法。
[Claims] 1 SiO 2 /R 2 O (in the formula, R represents an alkali metal)
Molar ratio is 40-1000, SiO2 concentration is 2-50% by weight, PH
A 6 or more silica sol aqueous solution is treated with an ammonia-type or amine-type cation exchange resin, and then an alkali metal salt of aluminic acid, stannic acid, lead acid, or zinc acid is added to SiO 2 /MxOy (where MxOy is aluminate). A stable silica sol composition characterized by adding a component such as aluminic acid in the form of an oxide, where M represents aluminum, tin, lead or zinc) in an amount such that the molar ratio is 30 to 500. Manufacturing method. 2. The manufacturing method according to claim 1, wherein R is Li, Na, K, Cs or Rb. 3. The manufacturing method according to claim 1, further comprising heat treatment at 70°C or higher.
JP20469781A 1981-12-18 1981-12-18 Manufacture of stable silica sol composition Granted JPS58110415A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20469781A JPS58110415A (en) 1981-12-18 1981-12-18 Manufacture of stable silica sol composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20469781A JPS58110415A (en) 1981-12-18 1981-12-18 Manufacture of stable silica sol composition

Publications (2)

Publication Number Publication Date
JPS58110415A JPS58110415A (en) 1983-07-01
JPH0134927B2 true JPH0134927B2 (en) 1989-07-21

Family

ID=16494809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20469781A Granted JPS58110415A (en) 1981-12-18 1981-12-18 Manufacture of stable silica sol composition

Country Status (1)

Country Link
JP (1) JPS58110415A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5591530B2 (en) 2009-06-24 2014-09-17 日揮触媒化成株式会社 Method for producing silica-based fine particle dispersed sol, silica-based fine particle dispersed sol, coating composition containing the dispersed sol, curable coating film, and substrate with curable coating film
JP5507420B2 (en) * 2010-11-09 2014-05-28 株式会社リスダンケミカル Aqueous release agent composition
CN115703931A (en) * 2021-08-03 2023-02-17 浙江新创纳电子科技有限公司 Modified colloidal silicon dioxide and preparation method and application thereof

Also Published As

Publication number Publication date
JPS58110415A (en) 1983-07-01

Similar Documents

Publication Publication Date Title
US3956171A (en) Process for preparing stable positively charged alumina coated silica sols and product thereof
JPH0123414B2 (en)
US3719607A (en) Stable positively charged alumina coated silica sols and their preparation by postneutralization
JP5221517B2 (en) Aluminum modified colloidal silica and method for producing the same
JP3463328B2 (en) Method for producing acidic silica sol
JPS60105609A (en) Silica base for dentifrice and its preparation
JPH0769621A (en) Magnesium fluoride hydrate sol and production thereof
JPH0796447B2 (en) Method for producing high-purity silica
KR101185696B1 (en) A Method of Manufacturing a Low Metal Active Silica
JPH0134927B2 (en)
JPS63123807A (en) Production of acidic silica sol
JPH0127975B2 (en)
JPH0859230A (en) Production of aqueous solution of basic aluminum acetate
JP3362793B2 (en) Method for producing silica sol
FI71113C (en) FOERFARANDE FOER UTVINNING AV NYTTIGA PRODUKTER UR AVFALLSPRODUKTER ERHAOLLNA VID FRAMSTAELLNING AV ALUMINIUMFLORORID
JP2694163B2 (en) Method for producing high-purity silica
US4693878A (en) Process for the production of soluble alkali silicates
JPH03223112A (en) Preparation of stannous oxide
JPH0123412B2 (en)
IE40516L (en) Cation exchanging aluminium silicates
JPS6133622B2 (en)
US1906202A (en) Process of making zeolites
Kim et al. Crystal structure of [CoIII. cntdot. Br3-] 4 [Na+] 4Si12Al12O48. cntdot. 2Br2, a bromine sorption complex of dehydrated partially cobalt (II)-exchanged zeolite A
JPS58156527A (en) Preparation of amorphous aluminosilicate
JPH044981B2 (en)