JPH0134333B2 - - Google Patents

Info

Publication number
JPH0134333B2
JPH0134333B2 JP14844081A JP14844081A JPH0134333B2 JP H0134333 B2 JPH0134333 B2 JP H0134333B2 JP 14844081 A JP14844081 A JP 14844081A JP 14844081 A JP14844081 A JP 14844081A JP H0134333 B2 JPH0134333 B2 JP H0134333B2
Authority
JP
Japan
Prior art keywords
calculation means
inspected
correction
detection data
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14844081A
Other languages
Japanese (ja)
Other versions
JPS5850445A (en
Inventor
Kyoshi Furuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP14844081A priority Critical patent/JPS5850445A/en
Publication of JPS5850445A publication Critical patent/JPS5850445A/en
Publication of JPH0134333B2 publication Critical patent/JPH0134333B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3263Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers using a differential pressure detector

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 この発明は測定雰囲気などにより生ずる検出デ
ータの誤差を自動的に補正することができる誤差
自動補正漏れ検査装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an automatic error correction leakage inspection device that can automatically correct errors in detected data caused by measurement atmosphere and the like.

使用状態で流体漏れの存在がないことが必要な
製品もしくは部品を、その生産工程ライン中にお
いて、順次検査し、その検査データを設定基準値
と比較して製品もしくは部品の良否の判定をする
ことが行なわれている。
A product or part that must be free of fluid leakage during use is sequentially inspected during its production process line, and the inspection data is compared with set standard values to determine the quality of the product or part. is being carried out.

第1図はこの種の漏れ検査装置の構成を示すブ
ロツク図で、空圧源11の出力側に接続された流
管10は調圧弁12及び電磁弁14を介して電磁
弁14の出口側で分岐される分岐路15−1,1
5−2にそれぞれ接続されている。調圧弁12の
出口側と電磁弁14の入口側間には検査圧を設定
する圧力計13が接続されている。
FIG. 1 is a block diagram showing the configuration of this type of leak testing device, in which a flow pipe 10 connected to the output side of a pneumatic pressure source 11 is connected to the outlet side of the solenoid valve 14 via a pressure regulating valve 12 and a solenoid valve 14. Branching road 15-1, 1
5-2, respectively. A pressure gauge 13 for setting a test pressure is connected between the outlet side of the pressure regulating valve 12 and the inlet side of the electromagnetic valve 14.

分岐路15−1は電磁弁16を介して導管18
の一端に接続され、この導管18の他端部には漏
れが検査される被検査物20が接続可能な機構が
設けられる。この導管18の他端部の機構により
被検査物20が順次接続されて漏れ検査可能な構
成となつている。一方、分岐路15−2は電磁弁
17も介して導管19の一端に接続され、この導
管19の他端部には基準タンク21が接続されて
いる。電磁弁16及び17の出口側において導管
18及び19がそれぞれ延長して取り出されそれ
ぞれの端部間に差圧検出器22が取り付けられて
いる。
The branch 15-1 connects to the conduit 18 via the solenoid valve 16.
A mechanism is provided at the other end of the conduit 18 to which an object 20 to be inspected for leakage can be connected. A mechanism at the other end of the conduit 18 connects the objects 20 to be tested one after another, so that a leakage test can be performed. On the other hand, the branch path 15-2 is also connected to one end of the conduit 19 via the solenoid valve 17, and the reference tank 21 is connected to the other end of the conduit 19. At the outlet sides of the electromagnetic valves 16 and 17, conduits 18 and 19 are extended and taken out, respectively, and a differential pressure detector 22 is installed between their respective ends.

差圧検出器22の出力信号は増幅器31を介し
て比較器32に与えられ、比較器32において基
準信号設定器33の出力基準値と比較可能な構成
とされる。
The output signal of the differential pressure detector 22 is given to a comparator 32 via an amplifier 31, and the comparator 32 is configured to be able to compare it with the output reference value of the reference signal setter 33.

被検査物20を導管18の端部に取り付け、導
管19には漏れのない基準タンク21を取り付け
て電磁弁14を閉状態とし、調圧弁12を開いて
圧力計13によつて空圧源11からの所定の空気
圧が得られらるように調整する。電磁弁16及び
17を開状態とし、電磁弁14を開状態にして設
定された一定圧の空気を分岐路15−1,15−
2、導管18,19を通じてそれぞれ被検査物2
0及び基準タンク21に供給する。
The object to be inspected 20 is attached to the end of the conduit 18, a leak-free reference tank 21 is attached to the conduit 19, the solenoid valve 14 is closed, the pressure regulating valve 12 is opened, and the pressure gauge 13 is used to detect the air pressure source 11. Adjust so that the specified air pressure is obtained. The solenoid valves 16 and 17 are opened, and the solenoid valve 14 is opened to send air at a constant pressure to the branch paths 15-1 and 15-.
2. Test object 2 through conduits 18 and 19, respectively.
0 and reference tank 21.

一定時間が経過して被検査物20及び基準タン
ク21内の圧力が安定した後に、電磁弁16及び
17を閉状態にする。更に所定の安定時間後に差
圧検出器22に接続された自動零補正式増幅器3
1の出力信号の読み取りが行なわれる。被検査物
20の気密が完全で漏れが存在しない状態では、
増幅器31からの出力信号は一定検出時において
理想的には零となる。被検査物20に漏れが存在
すると、その内部の圧力が正圧の場合は漸次減少
し、負圧の場合は漸次増加する出力信号が得ら
れ、一定検出時間内の出力信号は負又は正の漏れ
量にほぼ比例した値となる。
After a certain period of time has passed and the pressures in the test object 20 and the reference tank 21 have stabilized, the solenoid valves 16 and 17 are closed. Further, after a predetermined stabilization time, the automatic zero correction amplifier 3 is connected to the differential pressure detector 22.
1 output signal is read. When the inspection object 20 is completely airtight and there is no leakage,
Ideally, the output signal from the amplifier 31 becomes zero during constant detection. When there is a leak in the test object 20, an output signal is obtained that gradually decreases when the internal pressure is positive, and gradually increases when the internal pressure is negative, and the output signal within a certain detection time is either negative or positive. The value is almost proportional to the amount of leakage.

基準信号設定器33から与えられる基準信号と
増幅器31の出力信号が比較器32で比較され、
出力信号が基準信号を越えないかどうかにより良
品もしくは不良品を示す良否判定出力35が得ら
れる。
The reference signal given from the reference signal setter 33 and the output signal of the amplifier 31 are compared by the comparator 32,
A quality determination output 35 indicating whether the product is good or defective is obtained depending on whether the output signal does not exceed the reference signal.

この従来の漏れ検査装置においては基準タンク
21を被検査物20と全く同一形状で漏れのない
ものを使用しても、被検査物20と基準タンク2
1との温度、内容量、形状の僅かな変形歪み、付
着水分の差などの因子によつて影響を受け出力信
号の理想的に零の状態は得られない。即ち、これ
らの因子によつて被検査物20に全く漏れがなく
ても、一定検出時間中の出力信号は理想的な零状
態とならず、正又は負の相当な漏れ量に匹敵する
値を示すのが通常である。
In this conventional leakage testing device, even if the reference tank 21 is exactly the same shape as the test object 20 and has no leakage, the test object 20 and the reference tank 21
An ideal state of zero output signal cannot be obtained because of the influence of factors such as temperature, internal capacity, slight deformation distortion of shape, and difference in attached moisture. In other words, due to these factors, even if there is no leakage at all in the inspected object 20, the output signal during a certain detection time will not be in the ideal zero state, but will have a value comparable to a significant amount of positive or negative leakage. This is usually shown.

これらの因子による誤差が各被検査ごとに常に
一定であれば、使用に際して予め補正をすること
ができるが、実際には長時間、長期間における雰
囲気条件、即ち周囲温度、湿度、供給空気温度、
被検査物20及び基準タンク21の温度、付着水
分などの因子が徐々に変化する。
If the errors caused by these factors are always constant for each inspected object, they can be corrected in advance during use, but in reality, the atmospheric conditions over a long period of time, such as ambient temperature, humidity, supply air temperature,
Factors such as the temperature of the test object 20 and the reference tank 21, and the attached moisture gradually change.

又、被検査物20の開口部をシールするゴムの
変形の発生などもあり、これらの因子に基づいて
生産工程ラインを流れる多数の被検査物20を次
次と漏れ検査する場合には、必ず1日の間又は各
日毎に或は季節的経年的にこれらの因子に基づく
誤差が変化する。
In addition, deformation of the rubber that seals the opening of the inspection object 20 may occur, and based on these factors, when leakage inspection is performed one after another on a large number of inspection objects 20 flowing through the production process line, it is necessary to Errors based on these factors change during the day, from day to day, or seasonally and over time.

このため、従来の漏れ検査装置においては、時
間と共に変化する因子に基づく誤差が存在し、基
準信号設定器33の出力基準値をひんぱんに変更
する必要があつた。しかし、これは省力化、自動
化を目的とする漏れ検査装置にとつては望ましい
ことでなく、且つこの操作によつては高精度の漏
れ検査の実施は困難であつた。
Therefore, in the conventional leakage testing device, there is an error based on factors that change over time, and it is necessary to frequently change the output reference value of the reference signal setting device 33. However, this is not desirable for a leak testing device intended for labor saving and automation, and it has been difficult to perform highly accurate leak testing with this operation.

この発明は上述の従来の漏れ検査装置における
諸難点を解決し、被検査物自体のばらつきに依存
せず、所定の期間内の因子の変化を自動的に補正
し、常に一定の検査精度を維持することが可能な
誤差自動補正漏れ検査装置を提供するものであ
る。
This invention solves the problems with the conventional leakage testing device described above, and automatically corrects for changes in factors within a predetermined period without depending on variations in the inspected object itself, thereby always maintaining a constant testing accuracy. The purpose of the present invention is to provide an error automatic correction leakage inspection device that is capable of automatically correcting errors.

この発明によると、被検査物に一定流体圧を印
加し、この被検査物の圧力変化を時間的にとらえ
るかもしくは一定流体圧が印加された漏れのない
基準タンクとの間の差圧変化を時間的にとらえて
予め設定した基準判定値との比較により、被検査
物の良否の判定を行なう漏れ検査装置において、
良品と判定された被検査物の検出データを所定数
記憶する記憶手段が設けられる。又この記憶手段
で記憶された検出データの平均値を演算する演算
手段が設けられ、この演算手段で得られた平均値
を被検査物の検出データに対する補正値とし、こ
の補正値に基づいて得られた検出データを補正す
る補正手段が具備されている。
According to this invention, a constant fluid pressure is applied to the object to be inspected, and the pressure change of the object to be inspected is measured over time, or the differential pressure change between it and a leak-free reference tank to which a constant fluid pressure is applied is measured. In a leak test device that determines the quality of the inspected object by comparing it with a preset standard judgment value based on time,
A storage means is provided for storing a predetermined number of detection data of inspection objects determined to be non-defective. Further, a calculation means for calculating the average value of the detection data stored in the storage means is provided, and the average value obtained by the calculation means is used as a correction value for the detection data of the object to be inspected, and the correction value is obtained based on this correction value. A correction means for correcting the detected data is provided.

以下この発明の誤差自動補正漏れ検査装置を、
その実施例に基づき、図面を使用して詳細に説明
する。
The automatic error correction leakage inspection device of this invention will be described below.
The embodiment will be described in detail with reference to the drawings.

第2図はこの発明の実施例の要部の構成を示す
図で、差圧検出器22の出力端は増幅器31の入
力端に接続され、増幅器31の出力端にはA−D
変換器41の入力端が接続される。このA−D変
換器41の出力端はデータ補正部47を介して出
力表示器48及び比較部49の入力端に接続され
る。
FIG. 2 is a diagram showing the configuration of a main part of an embodiment of the present invention, in which the output terminal of the differential pressure detector 22 is connected to the input terminal of an amplifier 31, and the output terminal of the amplifier 31
The input end of converter 41 is connected. The output terminal of this A-D converter 41 is connected to the input terminals of an output display 48 and a comparison section 49 via a data correction section 47 .

一方、A−D変換器41の出力端は誤差データ
記憶部42の入力端に接続され、誤差データ記憶
部42の出力端には平均値演算部44の入力端が
接続され、平均値演算部44の出力端が補正量変
換部45の入力端に接続される。
On the other hand, the output end of the A-D converter 41 is connected to the input end of the error data storage section 42, and the input end of the average value calculation section 44 is connected to the output end of the error data storage section 42. The output end of 44 is connected to the input end of correction amount converter 45 .

補正量変換部45の出力端は補正入切スイツチ
46を経てデータ補正部47に接続される。誤差
データ記憶部42に対してサンプリング数設定器
43からの出力信号が供給可能にされ、比較部4
9に対しては許容値設定器50から出力信号が供
給可能な構成となつている。
The output end of the correction amount converting section 45 is connected to a data correcting section 47 via a correction on/off switch 46. The output signal from the sampling number setter 43 can be supplied to the error data storage section 42, and the comparison section 4
9, the configuration is such that an output signal can be supplied from the tolerance value setter 50.

一般に生産工程ライン中の多数の生産物の漏れ
量の大きさは良品においては全く零である場合が
多く、しかもその不良率は数%以下である。この
ような状態下においてこの発明に基づく漏れ検査
装置が多数の生産物を連続測定する生産工程ライ
ンに組み込まれて或る被検査物20−iを測定し
ているものとする。
Generally, the amount of leakage from many products in a production process line is often completely zero for non-defective products, and the defective rate is less than a few percent. Under such conditions, it is assumed that the leakage testing device according to the present invention is installed in a production process line that continuously measures a large number of products, and is measuring a certain object to be inspected 20-i.

差圧検出器22の出力は自動零補正式増幅器3
1の入力として与えられ、更に検出開始と同時に
自動零補正信号34が与えられると増幅器31に
おいて自動的に零点が補正されて差圧変化出力信
号が得られる。この出力信号はA−D変換器41
でA−D変換され、検出時間中の差圧変化出力値
ΔPiを示す測定データとしてのデイジタル出力信
号が得られる。
The output of the differential pressure detector 22 is output to the automatic zero correction amplifier 3.
1 as an input, and when an automatic zero correction signal 34 is further applied at the same time as the start of detection, the zero point is automatically corrected in the amplifier 31 and a differential pressure change output signal is obtained. This output signal is sent to the A-D converter 41
A/D conversion is performed at , and a digital output signal is obtained as measurement data indicating the differential pressure change output value ΔPi during the detection time.

この際被検査物が良品だとするとΔPiの値の大
部分は誤差出力Eiとみなすことができる。被検査
物が不良品の場合にはΔPiがすべて漏れによるも
のでなく、相当の誤差Eiを含むことが多いが、誤
差Eiの値は時間的にゆるやかに変動する要素が多
い。
At this time, if the object to be inspected is a good product, most of the value of ΔPi can be regarded as the error output Ei. When the inspected object is a defective product, ΔPi is not entirely due to leakage and often includes a considerable error Ei, but the value of the error Ei has many factors that vary slowly over time.

そこで被検査物20−iの測定の前回からさか
のぼつて第3図に示すように任意のn個の良品と
判定された被検査物の測定データΔP1,ΔP2,…
…ΔPnを誤差データE1,E2,……E7とみなして
誤差データ記憶部42に取り込み、遂次記憶する
と共に、平均値演算部44においてn個の誤差デ
ータの平均値Ei=1/n(E1+E2+……+En)が演 算される。
Therefore, as shown in FIG. 3, going back from the previous measurement of the inspected object 20-i, measurement data ΔP 1 , ΔP 2 , . . .
...ΔPn is regarded as error data E 1 , E 2 , . n(E 1 +E 2 +...+En) is calculated.

なお、サンプル数nはサンプル数設定器43で
誤差出力の時間的傾向を考慮して最適の数に設定
される。このようにして被検査物20−iの直前
の平均誤差データEiは被検査物20−iの測定デ
ータΔPiに対する最も確実な補正量とみなすこと
ができる。
Note that the number of samples n is set to the optimum number by the sample number setter 43 in consideration of the temporal trend of the error output. In this way, the immediately preceding average error data Ei of the inspected object 20-i can be regarded as the most reliable correction amount for the measured data ΔPi of the inspected object 20-i.

従つて平均値演算部44よりの出力信号Eiは補
正入切スイツチ46を介してデータ補正部47で
測定データΔPiより差し引かれた値ΔPi−Eiが誤
差補生されたより正確な測定データとして出力表
示器48に表示される。同時に比較部49にこの
測定データが与えられ、許容設定器50に設定さ
れた良否判定許容値ΔP0と比較されて良否判定出
力信号51が得られる。
Therefore, the output signal Ei from the average value calculation unit 44 is sent to the data correction unit 47 via the correction on/off switch 46, and the value ΔPi−Ei is subtracted from the measurement data ΔPi, which is output and displayed as more accurate measurement data with error compensation. displayed on the display 48. At the same time, this measurement data is given to the comparator 49 and compared with a pass/fail determination tolerance value ΔP 0 set in the tolerance setter 50 to obtain a pass/fail determination output signal 51.

なお補正入切スイツチ46は通常はONとして
使用するが、随時OFFに設定し、良品被検査物
における誤差出力信号の大小をチエツクするため
に使用することが可能である。又実施例では被検
査物20の圧力を基準タンク21の圧力と比較す
る差圧式検出の場合を示したが被検査物20のみ
に圧力を印加する方式に対しても同様に適用可能
である。又実施例に示したこの発明の誤差自動補
正漏れ検査装置の電子回路部は各種のLSI(マイ
コンチツプ等)で容易に構成することが可能であ
る。
Although the correction on/off switch 46 is normally turned ON, it can be turned OFF at any time and used to check the magnitude of the error output signal in a non-defective inspected object. Furthermore, although the embodiment has shown a differential pressure detection method in which the pressure of the object 20 to be inspected is compared with the pressure of the reference tank 21, it is equally applicable to a method in which pressure is applied only to the object 20 to be inspected. Further, the electronic circuit section of the automatic error correction/leakage inspection apparatus of the present invention shown in the embodiment can be easily constructed using various LSIs (microcomputer chips, etc.).

以上詳細に説明したように、この発明によると
生産工程ラインにおける連続漏れ検査において、
被検査物に対する供給空気、温度、湿度などの雰
囲気条件の時間的変化や治具部の温度や気密シー
ル部の変形状態などの各因子の時的変化により生
ずる各漏れ検査毎の出力値の変動の内の大部分の
要素である時間的にゆるやかな変動部分を補正し
た測定出力を得ることができる。このようにして
この発明によると精度の高い良否の判定を行な
い、生産工程ライン中の被検査物の漏れ検査を行
なう誤差自動補正漏れ検査装置を提供することが
できる。
As explained in detail above, according to the present invention, in continuous leakage inspection in a production process line,
Fluctuations in the output value for each leakage test caused by temporal changes in atmospheric conditions such as air supplied to the test object, temperature, and humidity, as well as changes in various factors such as the temperature of the jig and the deformation of the airtight seal. It is possible to obtain a measurement output that corrects for the temporally gradual fluctuations, which are most of the elements. In this manner, according to the present invention, it is possible to provide an automatic error correction leakage inspection device that performs highly accurate pass/fail judgment and performs leakage inspection of objects to be inspected in a production process line.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来使用されている漏れ検査装置の構
成を示す図、第2図はこの発明の誤差自動補正漏
れ検査装置の実施例の構成を示す図、第3図はこ
の発明の原理を説明する原理説明図である。 11:空圧源、20:被検査物、21:基準タ
ンク、22:差圧検出器、31:増幅器、32:
比較器、33:基準信号設定器、42:誤差デー
タ記憶部、43:サンプリング数設定器、44:
平均値演算部、45:補正量変換部、47:デー
タ補正部、48:出力表示器、49:比較部。
FIG. 1 is a diagram showing the configuration of a conventionally used leak testing device, FIG. 2 is a diagram showing the configuration of an embodiment of the automatic error correction leak testing device of the present invention, and FIG. 3 is a diagram illustrating the principle of the present invention. FIG. 11: Air pressure source, 20: Test object, 21: Reference tank, 22: Differential pressure detector, 31: Amplifier, 32:
Comparator, 33: Reference signal setter, 42: Error data storage section, 43: Sampling number setter, 44:
Average value calculation section, 45: Correction amount conversion section, 47: Data correction section, 48: Output display, 49: Comparison section.

Claims (1)

【特許請求の範囲】[Claims] 1 被検査物に一定流体圧を印加し、この被検査
物の圧力変化を時間的にとらえるかもしくは前記
一定流体圧が印加された漏れのない基準タンクと
の間の差圧変化を時間的にとらえて、判定手段に
おいて予め設定した基準判定値との比較により、
前記被検査物の良否の判定を行なう漏れ検査装置
において、前記被検査物の測定の前回からさかの
ぼつて良品と判定された前記被検査物の検出デー
タを所定数記憶する記憶手段と、この記憶手段で
記憶された検出データの平均値を演算する演算手
段と、この演算手段で得られた平均値を今回の前
記被検査物の検出データに対する補正値とし、こ
の補正値に基づいて得られた検出データを補正し
て前記判定手段へ供給する補正手段とを有するこ
とを特徴とする誤差自動補正漏れ検査装置。
1. Apply a constant fluid pressure to the object to be inspected and capture the pressure change of this object over time, or measure the change in differential pressure between it and a leak-free reference tank to which the constant fluid pressure is applied over time. By comparing with the standard judgment value set in advance in the judgment means,
In the leak testing device for determining the quality of the inspected object, the storage means stores a predetermined number of detection data of the inspected object determined to be non-defective starting from the previous measurement of the inspected object; a calculation means for calculating the average value of the detection data stored in the calculation means; and a calculation means for calculating the average value of the detection data stored in the calculation means; and a calculation means for calculating the average value of the detection data stored in the calculation means; An automatic error correction/leakage inspection device comprising a correction means for correcting data and supplying the corrected data to the determination means.
JP14844081A 1981-09-18 1981-09-18 Device for inspection omission of error automatic correction Granted JPS5850445A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14844081A JPS5850445A (en) 1981-09-18 1981-09-18 Device for inspection omission of error automatic correction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14844081A JPS5850445A (en) 1981-09-18 1981-09-18 Device for inspection omission of error automatic correction

Publications (2)

Publication Number Publication Date
JPS5850445A JPS5850445A (en) 1983-03-24
JPH0134333B2 true JPH0134333B2 (en) 1989-07-19

Family

ID=15452837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14844081A Granted JPS5850445A (en) 1981-09-18 1981-09-18 Device for inspection omission of error automatic correction

Country Status (1)

Country Link
JP (1) JPS5850445A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59206737A (en) * 1983-05-11 1984-11-22 Cosmo Keiki:Kk Leakage testing device having temperature compensating function
JPS6079132U (en) * 1983-11-04 1985-06-01 株式会社コスモ計器 Leak test device
JPS6435340A (en) * 1987-07-31 1989-02-06 Yoshino Kogyosho Co Ltd Airtightness measuring method for container

Also Published As

Publication number Publication date
JPS5850445A (en) 1983-03-24

Similar Documents

Publication Publication Date Title
EP0139752B1 (en) Pressure variation detecting type leakage inspection equipment
US4675834A (en) Pressure variation detecting type leakage inspection system with temperature compensation
US10816434B2 (en) Apparatus and method for leak testing
US4686638A (en) Leakage inspection method with object type compensation
US7818133B2 (en) Leak inspection method and leak inspector
JP4684135B2 (en) Leakage inspection method and leak inspection apparatus for piping
JPH11118657A (en) Drift correction value calculator and leakage detector equipped with calculator
US20150135803A1 (en) Manifold assembly for a portable leak tester
JPH0134333B2 (en)
US5442957A (en) Calibration technique for production mass air flow sensor flow stands
JPH0240515Y2 (en)
KR870003633Y1 (en) Leak checking device
JPH0157299B2 (en)
JP3143299B2 (en) How to measure gas leaks from containers
JPH0465967B2 (en)
JPH11304632A (en) Computing device for drift correction value for leak inspection and leak inspection apparatus using it
JPH0222666Y2 (en)
KR100205508B1 (en) A device and a method for checking function of an automatic gas meter
JP3382727B2 (en) Leak test equipment
JP3186644B2 (en) Gas leak inspection method
CN216645537U (en) Temperature and pressure measurement system of sound velocity nozzle standard device
JP2017067714A (en) Leakage inspection device and method
JPH09145524A (en) Leak detector with automatic error correcting function
JPH09166515A (en) Leak test device
KR940000885B1 (en) Automatic inspecting method for electric valve