JPH0133797B2 - - Google Patents
Info
- Publication number
- JPH0133797B2 JPH0133797B2 JP57169375A JP16937582A JPH0133797B2 JP H0133797 B2 JPH0133797 B2 JP H0133797B2 JP 57169375 A JP57169375 A JP 57169375A JP 16937582 A JP16937582 A JP 16937582A JP H0133797 B2 JPH0133797 B2 JP H0133797B2
- Authority
- JP
- Japan
- Prior art keywords
- plenum
- insulating structure
- reactor
- support plate
- vertical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005192 partition Methods 0.000 claims description 19
- 239000011261 inert gas Substances 0.000 claims description 4
- 229910001338 liquidmetal Inorganic materials 0.000 claims description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 7
- 239000010935 stainless steel Substances 0.000 description 7
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 5
- 239000002826 coolant Substances 0.000 description 5
- 229910052708 sodium Inorganic materials 0.000 description 5
- 239000011734 sodium Substances 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Description
【発明の詳細な説明】
本発明は、原子炉隔壁の断熱構造に関するもの
である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat insulating structure for a nuclear reactor bulkhead.
一般に、タンク型液体金属冷却高速増殖炉
(LMFBR)の原子炉構造は、第1図の概略構成
図に示すようになつている。すなわち、図におい
て原子炉容器1はルーフスラブ2に取り付けら
れ、炉心3は原子炉容器1に取り付けられた炉心
支持構造4により支持されている。 Generally, the reactor structure of a tank-type liquid metal cooled fast breeder reactor (LMFBR) is as shown in the schematic diagram of FIG. 1. That is, in the figure, a reactor vessel 1 is attached to a roof slab 2, and a reactor core 3 is supported by a core support structure 4 attached to the reactor vessel 1.
また、5は水平隔壁、6は垂直隔壁であり、炉
心上部機構7、ポンプ8、及び中間熱交換器9が
設置され、上部プレナム10、中間プレナム1
1、下部プレナム12等の各領域が形成されてい
る。ここで上記水平隔壁5及び垂直隔壁6は上部
プレナム10と中間プレナム11との間を仕切る
とともに、高温の上部プレナム10から低温の中
間プレナム11を経て下部プレナム12へ伝達さ
れる熱の移行を抑制する機能を有するものであ
り、この水平隔壁5及び垂直隔壁6には、必要に
より所定の断熱構造が施されている。 Further, 5 is a horizontal bulkhead, 6 is a vertical bulkhead, on which are installed a core upper mechanism 7, a pump 8, and an intermediate heat exchanger 9, an upper plenum 10, an intermediate plenum 1
1, a lower plenum 12, and other regions are formed. Here, the horizontal partition wall 5 and the vertical partition wall 6 partition the upper plenum 10 and the intermediate plenum 11, and suppress the transfer of heat from the high temperature upper plenum 10 to the lower temperature plenum 12 via the low temperature intermediate plenum 11. The horizontal partition wall 5 and the vertical partition wall 6 are provided with a predetermined heat insulating structure as necessary.
第2図は、従来の断熱構造を示す断面図であ
り、ステンレス製の板13をスペーサ14により
適当な間隔を保持した状態で多数積層し、ボルト
15により環状の支持板16上に取り付けた構造
になつており、10の高温の上部プレナムの領域
と、11の低温の中間プレナムの領域との間を仕
切るように設置され、この間に熱移行を上記断熱
構造で抑制している。 FIG. 2 is a sectional view showing a conventional heat insulating structure, in which a large number of stainless steel plates 13 are stacked at appropriate intervals with spacers 14 and attached to an annular support plate 16 with bolts 15. It is installed so as to partition between the high-temperature upper plenum region 10 and the low-temperature middle plenum region 11, and the heat transfer between these regions is suppressed by the above-mentioned heat insulating structure.
尚、中間プレナム11と下部プレナム12との
間は冷却材の流通をほぼ遮断するように、炉心支
持構造4および高圧プレナム18を囲む炉心槽1
7底面により仕切られており、前記水平隔壁5及
び垂直隔壁6を通つた熱は中間プレナム11を通
り、下部プレナム12に伝わるようになつてい
る。そしてポンプ8は下部プレナム12から冷却
材を吸い込み、パイプ8aを通り高圧プレナム1
8に吐出する。高圧プレナム18に入つた冷却材
は炉心3を通つて加熱され上部プレナム10へ上
昇する。この上部プレナム10の高温冷却材は中
間熱交換器9に吸い込まれ、熱交換されて低温と
なり下部プレナムに放出される。 The core tank 1 surrounding the core support structure 4 and the high pressure plenum 18 is designed to substantially block the flow of coolant between the intermediate plenum 11 and the lower plenum 12.
The heat passing through the horizontal partition wall 5 and the vertical partition wall 6 passes through the intermediate plenum 11 and is transmitted to the lower plenum 12. The pump 8 then sucks the coolant from the lower plenum 12 and passes it through the pipe 8a to the high pressure plenum 1.
Discharge at 8. Coolant entering high pressure plenum 18 is heated through core 3 and rises to upper plenum 10 . The high-temperature coolant in the upper plenum 10 is sucked into the intermediate heat exchanger 9, undergoes heat exchange, becomes lower temperature, and is discharged to the lower plenum.
しかるに、上記断熱構造の部材間にはナトリウ
ム等の冷却材が満たされている。ナトリウムは熱
伝導率が高く、一方断熱構造のステンレス板13
もナトリウムの1/3〜1/4程度の熱伝導率を有して
いるため、熱遮蔽効率が大きくなく、従つて高断
熱性能を持たせるためには、積層板の各ステンレ
ス板13の板厚や、枚数を相当に増やす必要があ
り、物量への影響が大きいだけでなく、コスト高
になり耐震上も問題である。 However, a coolant such as sodium is filled between the members of the heat insulating structure. Sodium has high thermal conductivity, and on the other hand, stainless steel plate 13 with an insulating structure
Since stainless steel has a thermal conductivity that is about 1/3 to 1/4 that of sodium, the heat shielding efficiency is not large. It is necessary to significantly increase the thickness and number of sheets, which not only has a large impact on the quantity of materials, but also increases costs and poses problems in terms of earthquake resistance.
また、その断熱構造内部に生じる温度分布によ
り、積層板は弓状に変形し、このためボルト15
には過大な力が作用して破損のおそれがある等の
問題がある。 Also, due to the temperature distribution that occurs inside the heat insulating structure, the laminate deforms into an arched shape, which causes the bolt 15 to deform.
There are problems such as the risk of damage due to the application of excessive force.
そこで、上述した問題を解決するため、コスト
及び耐震性の観点から、軽量で断熱性能が高く、
しかも製作取付が比較的簡単で、断熱構造におい
て生じる熱変形を適切に吸収し得る支持構造等を
備えた有効な断熱構造の開発がのぞまれていた。 Therefore, in order to solve the above-mentioned problems, from the viewpoint of cost and earthquake resistance, we developed a
Moreover, there has been a desire to develop an effective heat insulating structure that is relatively easy to manufacture and install, and is equipped with a support structure that can appropriately absorb the thermal deformation that occurs in the heat insulating structure.
本発明は上述した要望に応えるためになされた
もので、内部を真空にするか、または内部に不活
性ガスを封入したステンレス製円筒体を多数積み
重ねて断熱構造にするとともに、上記断熱構造の
水平隔壁と垂直隔壁とで上部プレナムから中間プ
レナムを経た下部プレナムへの熱の移動を抑制す
るようにした原子炉隔壁の断熱構造を提供するも
のである。 The present invention has been made in response to the above-mentioned demands.The present invention has been made to create a heat insulating structure by stacking a large number of stainless steel cylindrical bodies, each of which has a vacuum inside or is filled with an inert gas. The present invention provides a heat insulating structure for a nuclear reactor bulkhead in which a bulkhead and a vertical bulkhead suppress the transfer of heat from an upper plenum to a lower plenum via an intermediate plenum.
以下、本発明による実施例を第3図ないし第5
図を参照して詳細に説明する。 Embodiments according to the present invention will be described below with reference to FIGS. 3 to 5.
This will be explained in detail with reference to the drawings.
第3図は本発明によるステンレス製円筒体20
の断面図であり、内部を真空状態にするか、また
はアルゴンガス等の不活性ガスを封入し、両端部
を密閉したものであり、任意の長さと太さに成形
される。 FIG. 3 shows a stainless steel cylindrical body 20 according to the present invention.
This is a cross-sectional view of , the inside of which is evacuated or filled with an inert gas such as argon gas, both ends of which are sealed, and which are molded to any desired length and thickness.
第4図a〜dは本発明による断熱構造の設置例
を示す概念図であり、第4図a,bは第1図の原
子炉の上下方向の熱移動を抑制するために取り付
けられた水平隔壁5の平面図であり、殊に第4図
aは第3図に示した本発明による円筒体20を周
方向に沿つて配置した例であり、輸環状の平面の
外側にゆくに従つて、少しずつ直管の長さを延長
して多数積み重ねた構造で、第4図bは円筒体2
0をリング状又はコイル状に成形して配置し、多
数積み重ねた構造である。 Figures 4a to 4d are conceptual diagrams showing installation examples of the heat insulating structure according to the present invention, and Figures 4a and b are horizontal FIG. 4a is a plan view of the partition wall 5, and in particular, FIG. 4a is an example in which the cylindrical bodies 20 according to the present invention shown in FIG. , the length of straight pipes is gradually extended and a large number of them are stacked on top of each other.
It has a structure in which a large number of 0's are formed and arranged in a ring or coil shape and stacked on top of each other.
また、第4図C及びdは第1図の原子炉の半径
方向の熱移動を抑制するために取り付けられた垂
直隔壁6の斜視図であり、垂直板6aは第1図に
示す炉心3外周の炉心槽17上端に設けられ、そ
の上縁は支持板の内縁16aに連続した構造であ
り、前記支持板16と前記垂直板6aとで上部プ
レナム10と中間プレナム11との間を仕切つて
いる。第4図cは、円筒体20を縦方向に設置し
た例であり、第4図dは円筒体20を横方向に設
置した例である。上記第4図dの例においては、
円筒体20は第4図aに示すように比較的短い直
管を周方向に沿つて配置する方式であるが、第4
図bに示すようにリング状又はコイル状に成形し
て配置することも可能である。 Furthermore, FIGS. 4C and 4D are perspective views of the vertical partition wall 6 installed to suppress heat transfer in the radial direction of the nuclear reactor shown in FIG. The upper plenum 10 and the intermediate plenum 11 are separated from each other by the support plate 16 and the vertical plate 6a, and the upper edge thereof is continuous with the inner edge 16a of the support plate. . FIG. 4c shows an example in which the cylindrical body 20 is installed in the vertical direction, and FIG. 4d shows an example in which the cylindrical body 20 is installed in the horizontal direction. In the example of FIG. 4d above,
The cylindrical body 20 is constructed by arranging relatively short straight pipes along the circumferential direction as shown in FIG.
It is also possible to form and arrange it into a ring shape or a coil shape as shown in FIG. b.
一方、第5図は第4図a,bのA−A矢視部の
詳細図であり、10は高温の上部プレナム、11
が低温の中間プレナムである。 On the other hand, FIG. 5 is a detailed view of the section taken along arrow A-A in FIGS.
is the low temperature intermediate plenum.
上記高温の上部プレナム10と低温の中間プレ
ナム11との間の熱移動は円筒体20により抑制
されるものであり、上記円筒体20を多数重ねた
状態で、大きな隙間が生じている部分には細い円
筒体20aを用いて充填効率を高めている。 Heat transfer between the high-temperature upper plenum 10 and the low-temperature middle plenum 11 is suppressed by the cylindrical body 20, and when a large number of the cylindrical bodies 20 are stacked, there is a large gap in the area. Filling efficiency is increased by using the thin cylindrical body 20a.
また、上記円筒体20及び20aは、支持板2
1の上に仕切板22で分割されたブロツク別に積
み重ねられている。 Further, the cylindrical bodies 20 and 20a are connected to the support plate 2.
1, the blocks are divided by partition plates 22 and stacked on top of each other.
上記円筒体20及び20aは仕切板22で区切
られた各ブロツク別に支持板21と押え板23で
挟持され、該押え板23は仕切板22にボルト締
めで固定された梁25に取り付けられた板ばね・
コイルばね等のバネ体24により押え付けられる
ことで円筒体20及び20aが適切に積み重ねら
れた状態を保持する構造になつてる。 The cylindrical bodies 20 and 20a are each separated by a partition plate 22 and held between a support plate 21 and a presser plate 23, and the presser plate 23 is a plate attached to a beam 25 bolted to the partition plate 22. Spring
The cylindrical bodies 20 and 20a are held in a properly stacked state by being pressed down by a spring body 24 such as a coil spring.
なお、上記梁25のボルト締め部は、支持板2
1と梁25の間の熱膨張差を吸収できるようにバ
カ穴構造となつている。 Note that the bolted portion of the beam 25 is connected to the support plate 2.
It has a hole structure so that the difference in thermal expansion between the beam 1 and the beam 25 can be absorbed.
また、円筒体は径、板厚を適切に選定すること
により、例え上記押え板23及びバネ体24によ
る上からの押えがなくとも浮き上がることがない
ようにしている。また、仕切板22は適当な間隔
毎に設けられているが、円筒体20及び20aの
熱膨張を拘束しないように、円筒群及び仕切板2
2が完全に密着した状態ではなく、わずかの隙間
を有して据え付けられるように、仕切板22の取
付間隔が設定されている。 Further, by appropriately selecting the diameter and plate thickness of the cylindrical body, it is possible to prevent the cylindrical body from floating up even without being pressed from above by the press plate 23 and the spring body 24. Furthermore, although the partition plates 22 are provided at appropriate intervals, the cylinder groups and the partition plates 22 are
The mounting intervals of the partition plates 22 are set so that the partition plates 22 are not installed in a completely close contact state but with a slight gap between them.
以上詳細に説明したように、本発明による原子
炉の断熱構造は、内部を真空にすかる、又は内部
にアルゴンガス等の不活性ガスを封入みた円筒体
を多数積み重ねてなる簡単な構造であり、以下の
ような効果を奏する。 As explained in detail above, the heat insulating structure of the nuclear reactor according to the present invention is a simple structure consisting of a stack of many cylindrical bodies whose interiors are evacuated or filled with an inert gas such as argon gas. , has the following effects.
熱伝導率の非常に小さいガス、又は真空部分
の占める割合を大きくすると共に、熱伝導率の
大きいナトリウムの占める割合を小さくし、か
つ随所でそお伝熱流路を寸断することで熱抵抗
性をを高めている。 Thermal resistance can be improved by increasing the proportion of gas with very low thermal conductivity or the vacuum area, reducing the proportion of sodium with high thermal conductivity, and cutting off heat transfer channels at various places. It's increasing.
比較的軽量で、、コンパクトな構造にするこ
とが可能である。例えば従来のステンレス製板
を積層した構造と比べて、同等の断熱性能を得
るには約1/10以下の物量となる。 It is relatively lightweight and can have a compact structure. For example, compared to a conventional structure made of laminated stainless steel plates, the amount of material required is about 1/10 or less to achieve the same insulation performance.
万一、一部の円筒体に不都合が生じ、内部に
ナトリウムが侵入した場合も、断熱構造全体の
機能に与える影響は軽微で済む。また、断熱構
造自体の応力を低減しうるため、構造健全性に
関する信頼性が高い。 Even if a problem were to occur in some of the cylindrical bodies and sodium entered the interior, the effect on the overall function of the insulation structure would be minimal. Furthermore, since the stress of the heat insulating structure itself can be reduced, reliability regarding structural soundness is high.
高温の上部プレナムから低温の中間プレナム
を経て下部プレナムへの熱移行が少なくなり、
熱効率が向上する。 Heat transfer from the hot upper plenum through the cooler middle plenum to the lower plenum is reduced;
Improves thermal efficiency.
第1図はタンク型LMFBRの原子炉構造を示す
概略構成図、第2図は従来の実施例を示す断熱構
造の平面図、第3図は本発明による実施例を示す
ステンレス製円筒体の断面図、第4図a〜dは本
発明による断熱構造の設置例を示す概念図、第5
図は第4図a,bのA−A矢視部の詳細図であ
る。
1……原子炉容器、5……水平隔壁、6……垂
直隔壁、6a……垂直板、10……上部プレナ
ム、11……中間プレナム、12……下部プレナ
ム、16……支持板、16a……内縁、17……
炉心槽、20……円筒体、21……支持板、22
……仕切板、23……押え板、24……バネ体、
25……梁。
Fig. 1 is a schematic block diagram showing the reactor structure of a tank-type LMFBR, Fig. 2 is a plan view of a heat insulating structure showing a conventional embodiment, and Fig. 3 is a cross section of a stainless steel cylindrical body showing an embodiment according to the present invention. Figures 4a to 4d are conceptual diagrams showing installation examples of the heat insulating structure according to the present invention.
The figure is a detailed view of the section taken along the line A-A in FIGS. 4a and 4b. DESCRIPTION OF SYMBOLS 1...Reactor vessel, 5...Horizontal bulkhead, 6...Vertical bulkhead, 6a...Vertical plate, 10...Upper plenum, 11...Middle plenum, 12...Lower plenum, 16...Support plate, 16a ... Common-law, 17...
Core tank, 20...Cylindrical body, 21...Support plate, 22
... Partition plate, 23 ... Pressing plate, 24 ... Spring body,
25...beam.
Claims (1)
内部を真空にするか、または内部に不活性ガスを
封入した円筒体を、上部プレナムと中間プレナム
の境界に設けた環状の支持板上に多数重ねて、上
下方向の熱の移動を抑制した水平隔壁と、 前記円筒体を、炉心を収容する炉心槽上端に設
けられ、上縁が前記支持板内縁に連続する垂直板
に沿つて多数重ねて、半経方向の熱移動を抑制し
た垂直隔壁とより成ることを特徴とする原子炉隔
壁の断熱構造。[Claims] 1. In a tank-type liquid metal cooled fast breeder reactor,
A horizontal structure that suppresses vertical heat transfer by stacking a number of cylindrical bodies with a vacuum inside or filled with inert gas on an annular support plate installed at the boundary between the upper and middle plenums. A vertical partition wall in which a large number of the cylindrical bodies are stacked along a vertical plate provided at the upper end of the core tank housing the reactor core and whose upper edge is continuous with the inner edge of the support plate to suppress heat transfer in the semi-longitudinal direction. An insulating structure for a nuclear reactor bulkhead, characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57169375A JPS5958391A (en) | 1982-09-28 | 1982-09-28 | Thermal shield structure of reactor barrier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57169375A JPS5958391A (en) | 1982-09-28 | 1982-09-28 | Thermal shield structure of reactor barrier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5958391A JPS5958391A (en) | 1984-04-04 |
JPH0133797B2 true JPH0133797B2 (en) | 1989-07-14 |
Family
ID=15885420
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57169375A Granted JPS5958391A (en) | 1982-09-28 | 1982-09-28 | Thermal shield structure of reactor barrier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5958391A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6331736B2 (en) | 2014-06-13 | 2018-05-30 | 株式会社Ihi | Variable nozzle unit and variable capacity turbocharger |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191990A (en) * | 1982-05-06 | 1983-11-09 | 株式会社東芝 | Thermal shielding device for fast breeder |
-
1982
- 1982-09-28 JP JP57169375A patent/JPS5958391A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58191990A (en) * | 1982-05-06 | 1983-11-09 | 株式会社東芝 | Thermal shielding device for fast breeder |
Also Published As
Publication number | Publication date |
---|---|
JPS5958391A (en) | 1984-04-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4289113A (en) | Evacuated flat-plate solar collectors | |
US4000595A (en) | Insulation structure for pressure vessel cavity | |
US4859402A (en) | Bottom supported liquid metal nuclear reactor | |
GB2191886A (en) | A pump/intermediate heat exchanger assembly for a liquid metal reactor | |
US3945887A (en) | Heat-insulating lining for a fast reactor | |
JPS5814639B2 (en) | Genshiro Yodanetsu Sochi | |
JPH0133797B2 (en) | ||
US4949363A (en) | Bottom supported liquid metal nuclear reactor | |
US3844885A (en) | Insulation and cooling system for a nuclear reactor condenser compartment | |
JPS62112094A (en) | Liquid metal cooling type reactor structure | |
US3297189A (en) | Thermal insulators | |
CN215373654U (en) | Heat pipe type reboiling condensation heat exchange device and rectifying tower thereof | |
JPS6256476B2 (en) | ||
JPS6017964B2 (en) | Anti-corrosion structure of bellows that absorbs thermal expansion differences for heat exchangers | |
JPS61268994A (en) | Intermediate heat exchanger | |
KR101568021B1 (en) | Reflective Metal Insulation | |
JPS6130070Y2 (en) | ||
JPS6331078B2 (en) | ||
JPS601549B2 (en) | Heat exchanger | |
Quiroz | Solar panel, particularly for facades of buildings | |
Suzuki | Solar heat collector | |
Baumeister et al. | Selection of the Piqua OMR Fuel Element | |
Fortescue | Insulation structure for pressure vessel cavity | |
JPS58144785A (en) | Liquid metal cooled type fast breeder | |
JPS61218989A (en) | Tank type fast breeder reactor |