JPS6017964B2 - Anti-corrosion structure of bellows that absorbs thermal expansion differences for heat exchangers - Google Patents

Anti-corrosion structure of bellows that absorbs thermal expansion differences for heat exchangers

Info

Publication number
JPS6017964B2
JPS6017964B2 JP6658478A JP6658478A JPS6017964B2 JP S6017964 B2 JPS6017964 B2 JP S6017964B2 JP 6658478 A JP6658478 A JP 6658478A JP 6658478 A JP6658478 A JP 6658478A JP S6017964 B2 JPS6017964 B2 JP S6017964B2
Authority
JP
Japan
Prior art keywords
bellows
oxygen
thermal expansion
heat exchanger
sodium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6658478A
Other languages
Japanese (ja)
Other versions
JPS54158501A (en
Inventor
重広 下屋敷
邦夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP6658478A priority Critical patent/JPS6017964B2/en
Publication of JPS54158501A publication Critical patent/JPS54158501A/en
Publication of JPS6017964B2 publication Critical patent/JPS6017964B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Diaphragms And Bellows (AREA)

Description

【発明の詳細な説明】 本発明は、熱交換器用熱膨張差吸収べローズの防食構造
、特に、ナトリウム冷却高速増殖炉用中間熱交換器に用
いて好適なこの種べローズの防食構造に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an anti-corrosion structure for a bellows absorbing thermal expansion difference for a heat exchanger, and in particular to an anti-corrosion structure for a bellows of this type suitable for use in an intermediate heat exchanger for a sodium-cooled fast breeder reactor.

第1図にナトリウム冷却高速増殖炉用中間熱交換器の構
造を示す。
Figure 1 shows the structure of an intermediate heat exchanger for a sodium-cooled fast breeder reactor.

外胴1内には、内胴2が設けられており、内胴2内には
、伝熱管3が配置されている。加熱媒体である一次ナト
リウムは、一次ナトリウム入口ノズル4を介して外胴1
と内胴2との間の空間部に供聯合され、さらに内胴入口
孔5から内胴2内へと供V給される。続いて、上記ナト
リウムは、内且同2内を下降し、内胴出口孔6から再び
外胸1と内胴2との間の空間部に導ぴかれ、さらに一次
ナトリウム出口ノズル7を介して外胴1外へと導びかれ
る。なお、内8同2に供給されるナトリウムと内耳同出
口孔6から流出するナトリウムとが、外胴1と内胴2と
の間の空間部で混合しないよう、外胸1と内胴2との間
には、ナトリウムバイパス防止板8が取付けられている
。一方、二次ナトリウムは、下降管9内を下降し、下部
プレナム1川こ至る。続いて、上記ナトリウムは、内胴
2内に配直されている伝熱管3内を通り、上部プレナム
11に導びかれる。内胴2および上部プレナム11には
、それぞれ断熱円筒12および隔離円筒13が設けられ
ており、これらと下降管9との間には、環状隙間14が
設けられている。下降管9と上部プレナム1 1とは、
ベローズ15を介して接続されており、このべローズ1
5によってシールされた環状隙間14内には、一次ナト
リウムが充填されており、ベローズ15により、内外両
胴体2,1側と下降管9との闇の熱駒彰娘差の吸収がお
こなわれる。図中、16は下部管板、17は胴体振れ止
め、18は上部管板を示す。以上のごとき構成において
、環状隙間14内に一且充填されたナトリウムは停滞し
た状態にあるが、このナトリウム中の酸素含有量が増加
すると、これと接触する熱交換器構成部村の腐食も増大
する。これを第1図について説明すると、環状隙間14
内に充填されているナトリウム中の酸素量は、このナト
リウム中に当初から含まれている少量の初期酸素量にべ
ローズの金属表面に吸着されている多量の酸素が拡散し
て加わったものの総和であるため、ベローズを構成する
金属材料に与える腐食の影響は大きく、無視することは
できない。しかして、ベローズの肉厚を厚くすれば、こ
の問題も一応解決されるが、伸縮作用をおこなうべロー
ズの肉厚を厚くすることは、その機能上好ましくなく、
これに代る解決策が望まれる。本発明の目的は、以上の
点を考慮し、ベローズの伸縮機能を損なうことなく、こ
のべローズを酸素による腐食から防ぐようにしたもので
ある。本発明の要旨とするところは、伝熱管を配遣した
胴体と下降管との間の熱膨張差をべローズによって吸収
する機構を備えた熱交換器において、上記下降管とべロ
−ズとの間に酸素吸着材を介袋した点にある。以下、本
発明を、第2図の一実施例により説明すると、第1図と
同一符号は同一部分、19はべローズ15と対応する下
降管9の外周に取付けたかご枠、2川まかご枠!9内に
収容した、たとえばジルコニウム、チタンなど、酸素に
対する親和力の大きな酸素吸着材である。
An inner shell 2 is provided within the outer shell 1, and a heat transfer tube 3 is disposed within the inner shell 2. Primary sodium, which is a heating medium, enters the outer shell 1 through a primary sodium inlet nozzle 4.
and the inner shell 2, and is further supplied into the inner shell 2 from the inner shell inlet hole 5. Subsequently, the sodium descends inside the body 2, is led back to the space between the outer chest 1 and the inner chest 2 through the inner body outlet hole 6, and is further passed through the primary sodium outlet nozzle 7. It is guided outside the outer trunk 1. In addition, the outer chest 1 and the inner trunk 2 are connected to each other so that the sodium supplied to the inner ear 2 and the sodium flowing out from the inner ear outlet hole 6 do not mix in the space between the outer chest 1 and the inner trunk 2. A sodium bypass prevention plate 8 is attached between them. On the other hand, the secondary sodium descends in the downcomer pipe 9 and reaches the lower plenum. Subsequently, the sodium passes through the heat exchanger tubes 3 arranged within the inner shell 2 and is led to the upper plenum 11. The inner shell 2 and the upper plenum 11 are provided with an insulating cylinder 12 and an isolation cylinder 13, respectively, and between these and the downcomer pipe 9 an annular gap 14 is provided. The downcomer pipe 9 and the upper plenum 11 are:
It is connected via a bellows 15, and this bellows 1
The annular gap 14 sealed by the bellows 15 is filled with primary sodium, and the bellows 15 absorbs the dark heat difference between the inner and outer fuselage 2, 1 sides and the downcomer pipe 9. In the figure, 16 is a lower tube plate, 17 is a body rest, and 18 is an upper tube plate. In the above configuration, the sodium filled in the annular gap 14 is in a stagnant state, but as the oxygen content in this sodium increases, the corrosion of the heat exchanger components that come into contact with it also increases. do. To explain this with reference to FIG. 1, the annular gap 14
The amount of oxygen in the sodium filled in the bellows is the sum of the small amount of initial oxygen contained in the sodium and the large amount of oxygen adsorbed on the metal surface of the bellows that has been diffused. Therefore, the influence of corrosion on the metal material constituting the bellows is significant and cannot be ignored. However, increasing the thickness of the bellows would solve this problem, but increasing the thickness of the bellows, which performs expansion and contraction, is undesirable in terms of its functionality.
An alternative solution is desired. In consideration of the above points, an object of the present invention is to prevent the bellows from being corroded by oxygen without impairing the expansion and contraction function of the bellows. The gist of the present invention is to provide a heat exchanger equipped with a mechanism in which a bellows absorbs the difference in thermal expansion between a downcomer pipe and a body in which heat transfer tubes are disposed. The point is that an oxygen adsorbent material is inserted in between. Hereinafter, the present invention will be explained with reference to an embodiment shown in FIG. 2. The same reference numerals as in FIG. frame! 9 is an oxygen adsorbent having a high affinity for oxygen, such as zirconium or titanium.

以上のごとき構成において、環状隙間14内に充填され
ている冷却材は高濃度の酸素を含んでいるものであるが
、本発明においては「下降管9とべローズ15との間に
酸素吸着材20を介装したから、当該部分に存在する高
濃度の酸素は酸素吸着材20‘こ吸着され、ベローズ1
5部分の酸素による腐食を防止することができる。
In the above configuration, the coolant filled in the annular gap 14 contains a high concentration of oxygen, but in the present invention, "an oxygen adsorbent 20 is inserted, the high concentration of oxygen present in the area is adsorbed by the oxygen adsorbent 20', and the bellows 1
5 parts can be prevented from being corroded by oxygen.

したがって、本発明において「上記べローズ15は、何
等その肉厚を厚くする必要もなく、熱膨張差を吸収する
ために伸縮するべローズ本来の機能を損うものではない
。なお、本発明において、酸素吸着材20は、その実効
々果を向上させるために吸着材表面積をできるだけ大き
くとることが望ましく、たとえば細線状にしたり箔状に
したものを使用するとよい。
Therefore, in the present invention, there is no need to increase the wall thickness of the bellows 15, and the original function of the bellows, which expands and contracts to absorb the difference in thermal expansion, is not impaired. In order to improve the effectiveness of the oxygen adsorbent 20, it is desirable that the surface area of the adsorbent be as large as possible, and for example, a thin wire or foil may be used.

しかして、酸素吸着材20を箔状にする場合は、第3図
に示すように、材料箔に斜め方向の連続波を付し、これ
を第4図および第5図に示すように巻回してかご枠19
内に収容するとよい。この構造によると、第6図aに示
すように、内側に位置する波板20aの山と外側に位置
する波板20bの谷とが後触交差する部分を有し、この
接触交差部分以外では第6図bに示すごとき横断面形状
を有するため、内外両波板20aおよび20bは完全に
重なり合うものではなく、その両者間に第5図に矢印で
示すような斜め上下方向に貫通する通路21を各層ごと
に多数形成する。したがって、べローズ15内に停滞す
る冷却材中の酸素は、上記内外両波板20aおよび20
b間に多数形成した通路21内において各波板の表裏両
面部と効率よく接触するため、単位容量当りの酸素吸着
効果を向上させることができる。ここで、熱交換器とし
てナトリウム冷却高速増殖炉用中間熱交換器を使用し、
また、下降管とべローズとの間に介袋する酸素吸着材と
してジルコニウムを使用し、ナトリウム量を30〆(=
30×10‐が)、下降管とべローズとの間に停滞する
ナトリウム中の酸素濃度を130脚とした場合に、その
ナトリウム中の酸素濃度を当該ナトリウムの初期酸素濃
度である1功岬こまで精製する場合のジルコニウムの必
要量を求めてみると、除去すべき酸素の量0wは、 ○w=30×10‐3×10‐6(130−10)×y
When the oxygen adsorbing material 20 is made into a foil, as shown in FIG. 3, diagonal continuous waves are applied to the material foil, and this is wound as shown in FIGS. 4 and 5. Basket frame 19
It is best to store it inside. According to this structure, as shown in FIG. 6a, there is a portion where the peaks of the corrugated sheet 20a located on the inside and the valleys of the corrugated sheet 20b located on the outside intersect with each other. Since they have a cross-sectional shape as shown in FIG. 6b, the inner and outer corrugated plates 20a and 20b do not completely overlap, but there is a passage 21 between them that penetrates obliquely in the vertical direction as shown by the arrow in FIG. A large number of layers are formed for each layer. Therefore, oxygen in the coolant stagnant in the bellows 15 is removed from the inner and outer corrugated plates 20a and 20.
Since it makes efficient contact with both the front and back surfaces of each corrugated plate in the passages 21 formed in large numbers between b, the oxygen adsorption effect per unit capacity can be improved. Here, an intermediate heat exchanger for a sodium-cooled fast breeder reactor is used as a heat exchanger,
In addition, zirconium is used as an oxygen adsorbent between the downcomer pipe and the bellows, and the amount of sodium is reduced to 30〆 (=
If the oxygen concentration in the sodium stagnant between the downcomer and the bellows is 130 legs, then the oxygen concentration in the sodium is the initial oxygen concentration of the sodium, which is the initial oxygen concentration of the sodium. When calculating the required amount of zirconium for purification, the amount of oxygen to be removed 0w is: ○w=30×10-3×10-6(130-10)×y
.

〔yo =酸素の比重量1.33k9/で(ただし「
20午○、labの場合)〕ェ4.8×10‐6k9で
あらわされる。
[yo = specific weight of oxygen 1.33k9/(however,
20 pm ○, in the case of a lab)] is expressed as 4.8 x 10-6k9.

ジルコニウムの反応速度は5の902/めh、除去容量
は12夕02/lk9(ただし、中間熱交換器の設計温
度が55ぴ○の場合)であるから、ジルコニウムの必要
な表面積(所要時間を2皿rとすると)は、4.8/5
〆h÷2帆;0.048〆、 また、ジルコニウムの重量は 4.8xlo‐3ノ12io.4夕 となる。
The reaction rate of zirconium is 5902/meh, and the removal capacity is 1202/lk9 (provided that the design temperature of the intermediate heat exchanger is 55 pi), so the required surface area of zirconium (required time) is 2 dishes r) is 4.8/5
〆h÷2 sail; 0.048〆, and the weight of zirconium is 4.8xlo-3 no 12io. It will be 4 evenings.

この式から明らかなように、上記した条件下におけるジ
ルコニウムの必要量は、表面積にして約0.05〆、重
量にして0.4夕でよいことがわかる。
As is clear from this formula, the required amount of zirconium under the above conditions is approximately 0.05 mm in surface area and 0.4 mm in weight.

以上、本発明によれば、熱交換器用熱膨張差吸収べロー
ズの肉厚を厚くしなくても当該べローズを酸素による腐
食から防ぐことができるものであって、その効果は大き
く、ベローズの機能を損なうことなくこの種機器の安全
性を向上させることができるという実利性がある。
As described above, according to the present invention, it is possible to prevent the bellows from being corroded by oxygen without increasing the wall thickness of the bellows for absorbing thermal expansion difference for a heat exchanger. There is a practical benefit in that the safety of this type of equipment can be improved without impairing its functionality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はナトリウム冷却高速増殖炉用中間熱交換器の内
部構造を示す縦断面図、第2図は本発明の一実施例を示
す姿部の拡大縦断面図、第3図は本発明で使用する酸素
吸着材の具体的一例を示す展開図、第4図は第3図の酸
素吸着材を巻回した状態の平面図、第5図は同斜視図、
第6図aおよびbはいずれも第4図に示す酸素吸着材の
一部横断面図である。 1・…・・外胴、2・・・・・・内胸、3・…・・伝熱
管、9・・・・・・下降管、15・・・・・・ベローズ
、20・・・・・・酸素吸着材。 猪r図 第2図 策、3図 第4図 ※づ図 豹6図
FIG. 1 is a vertical sectional view showing the internal structure of an intermediate heat exchanger for a sodium-cooled fast breeder reactor, FIG. A developed view showing a specific example of the oxygen adsorbent used, FIG. 4 is a plan view of the oxygen adsorbent shown in FIG. 3 in a rolled state, and FIG. 5 is a perspective view of the same.
FIGS. 6a and 6b are both partial cross-sectional views of the oxygen adsorbent shown in FIG. 4. 1... Outer body, 2... Inner chest, 3... Heat transfer tube, 9... Downpipe, 15... Bellows, 20... ...Oxygen adsorbent. Pig, Figure 2, Figure 3, Figure 4, Leopard, Figure 6.

Claims (1)

【特許請求の範囲】 1 伝熱管を配置した胴体と下降管との間の熱膨張差を
ベローズによつて吸収する機構を備えた熱交換器におい
て、上記下降管とベローズとの間に酸素吸着材を介装し
たことを特徴とする熱交換器用熱膨張差吸収ベローズの
防食構造。 2 酸素吸着材を箔状に形成してその材料箔に斜め方向
の連続波を付し、これを巻回して内側に位置する波板の
山と外側に位置する波板の谷とが接触交差する立体構造
とした特許請求の範囲第1項記載の熱交換器用熱膨張差
吸収ベローズの防食構造。
[Scope of Claims] 1. A heat exchanger equipped with a mechanism in which a bellows absorbs the difference in thermal expansion between a body in which heat transfer tubes are disposed and a downcomer, in which oxygen adsorption occurs between the downcomer and the bellows. An anti-corrosion structure of a bellows for absorbing thermal expansion difference for a heat exchanger, which is characterized by having a material interposed therein. 2 Form the oxygen adsorbing material into a foil shape, add continuous diagonal waves to the material foil, and wind it so that the peaks of the inner corrugated sheet and the troughs of the outer corrugated sheet meet and cross. An anti-corrosion structure of a bellows for absorbing thermal expansion difference for a heat exchanger according to claim 1, which has a three-dimensional structure.
JP6658478A 1978-06-02 1978-06-02 Anti-corrosion structure of bellows that absorbs thermal expansion differences for heat exchangers Expired JPS6017964B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6658478A JPS6017964B2 (en) 1978-06-02 1978-06-02 Anti-corrosion structure of bellows that absorbs thermal expansion differences for heat exchangers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6658478A JPS6017964B2 (en) 1978-06-02 1978-06-02 Anti-corrosion structure of bellows that absorbs thermal expansion differences for heat exchangers

Publications (2)

Publication Number Publication Date
JPS54158501A JPS54158501A (en) 1979-12-14
JPS6017964B2 true JPS6017964B2 (en) 1985-05-08

Family

ID=13320138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6658478A Expired JPS6017964B2 (en) 1978-06-02 1978-06-02 Anti-corrosion structure of bellows that absorbs thermal expansion differences for heat exchangers

Country Status (1)

Country Link
JP (1) JPS6017964B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295766A (en) * 1988-05-18 1989-11-29 Honda Motor Co Ltd Open end wrench
JPH03103165U (en) * 1990-02-07 1991-10-25

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100393584B1 (en) * 2001-06-11 2003-08-02 엘지전자 주식회사 a heat exchanger
KR100683285B1 (en) 2005-10-24 2007-02-15 하재민 Dividable metal bellows

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01295766A (en) * 1988-05-18 1989-11-29 Honda Motor Co Ltd Open end wrench
JPH03103165U (en) * 1990-02-07 1991-10-25

Also Published As

Publication number Publication date
JPS54158501A (en) 1979-12-14

Similar Documents

Publication Publication Date Title
JPS6017964B2 (en) Anti-corrosion structure of bellows that absorbs thermal expansion differences for heat exchangers
CN1005868B (en) Solar water heater with heating tubes
JPS6142194B2 (en)
JPS61112888A (en) High-temperature double piping
CN218673265U (en) Single-tube-pass floating head heat exchanger
JPS5937991U (en) Shell-and-tube heat exchanger
JPH0619794Y2 (en) Exhaust gas purification device
JPS62246698A (en) Metal hydride container
JPH0133797B2 (en)
JPS61218989A (en) Tank type fast breeder reactor
JPS5965290U (en) Multi-tube cylindrical heat exchanger
JP2558360Y2 (en) Boiler economizer
JPS5842589U (en) Heat exchanger
JPS60179335U (en) reactor
JPS59995U (en) nuclear reactor equipment
JPS643979Y2 (en)
JPS6167837U (en)
JPS59180290A (en) Hot water reservoir tank having heat exchanger
JPS6224095A (en) Heat-insulating piping
JPS63718B2 (en)
JPS5987587U (en) High temperature shell heat exchanger
JPS5811347A (en) Solar energy panel
JPS60111892U (en) Shell-and-tube heat exchanger
JPS60148893U (en) heat exchange equipment
JPS5832292U (en) Heat exchanger