JPS6130070Y2 - - Google Patents

Info

Publication number
JPS6130070Y2
JPS6130070Y2 JP1982019535U JP1953582U JPS6130070Y2 JP S6130070 Y2 JPS6130070 Y2 JP S6130070Y2 JP 1982019535 U JP1982019535 U JP 1982019535U JP 1953582 U JP1953582 U JP 1953582U JP S6130070 Y2 JPS6130070 Y2 JP S6130070Y2
Authority
JP
Japan
Prior art keywords
heat storage
storage body
briquette
heat
pebble
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982019535U
Other languages
Japanese (ja)
Other versions
JPS58122880U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1982019535U priority Critical patent/JPS58122880U/en
Publication of JPS58122880U publication Critical patent/JPS58122880U/en
Application granted granted Critical
Publication of JPS6130070Y2 publication Critical patent/JPS6130070Y2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【考案の詳細な説明】 〔考案の技術分野〕 本考案は蓄熱型熱交換器に係り、特に孔明煉炭
式蓄熱体とペブル式蓄熱体とを組合わせて構成さ
れる蓄熱体を備えた蓄熱型熱交換器に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a heat storage type heat exchanger, and particularly to a heat storage type heat exchanger equipped with a heat storage body configured by combining a kongming briquette type heat storage body and a pebble type heat storage body. Regarding heat exchangers.

〔考案の技術的背景と問題点〕[Technical background and problems of the invention]

従来、蓄熱型熱交換器としては、第1図および
第2図に示す孔明煉炭式蓄熱型熱交換器、および
第3図に示すペブル式蓄熱型熱交換器が一般に知
られている。
Conventionally, as regenerative heat exchangers, the Kongming briquette type regenerative heat exchanger shown in FIGS. 1 and 2 and the pebble type regenerative type heat exchanger shown in FIG. 3 are generally known.

孔明煉炭式蓄熱型熱交換器は、第1図および第
2図に示すように被熱交換媒体が通過する多数の
孔を有する煉炭式単位蓄熱体を上下に多層積み重
ねて形成される煉炭式蓄熱体1、この蓄熱体1の
重量を支える支え板2、蓄熱体1を保温する耐熱
レンガ3、およびこれらを内包する圧力容器4等
から構成されている。そして孔明煉炭式蓄熱体1
は、圧力容器4頂部に配された燃焼器5により加
熱されて所要の温度となり、一方被熱交換媒体
(例えば常温の気体)はその直後に入口管6から
圧力容器4内に取入れられて高温の孔明煉炭式蓄
熱体1内を通過し、この際に蓄熱体1との間で熱
交換が行なわれて昇温し、所要の温度となつた被
熱交換媒体は圧力容器4上部の出口管7から排出
されるようになつている。
The Kongming briquette type heat storage type heat exchanger is a briquette type heat storage type heat exchanger, which is formed by stacking briquette type unit heat storage bodies vertically in multiple layers, each having a large number of holes through which the heat exchange medium passes, as shown in Figures 1 and 2. It is composed of a body 1, a support plate 2 that supports the weight of the heat storage body 1, a heat-resistant brick 3 that keeps the heat storage body 1 warm, a pressure vessel 4 containing these, and the like. And Kongming briquette type heat storage body 1
is heated to the required temperature by the combustor 5 placed at the top of the pressure vessel 4, while the heat exchange medium (e.g. room temperature gas) is immediately taken into the pressure vessel 4 from the inlet pipe 6 and brought to a high temperature. The heat exchange medium passes through the Kongming briquette type heat storage body 1, and at this time, heat exchange is performed with the heat storage body 1 to raise the temperature, and the heat exchange medium that has reached the required temperature is passed through the outlet pipe at the upper part of the pressure vessel 4. It is designed to be discharged from 7 onwards.

ところで、この種の熱交換器において、充分に
加熱された蓄熱体1下部は、突然に常温の被熱交
換媒体に晒されるため、蓄熱体1の耐熱衝撃性が
問題となる。ところが一般に、孔明煉炭式蓄熱体
1は耐熱衝撃性に優れているので、熱衝撃により
蓄熱体1に割れや破損を生じるおそれはない。
By the way, in this type of heat exchanger, the sufficiently heated lower part of the heat storage body 1 is suddenly exposed to the heat exchange medium at room temperature, so the thermal shock resistance of the heat storage body 1 becomes a problem. However, since the Kongming briquette type heat storage body 1 generally has excellent thermal shock resistance, there is no fear that the heat storage body 1 will be cracked or damaged due to thermal shock.

また、蓄熱体1の下部は、それにより上層にあ
る蓄熱体重量を支えているとともに高温に加熱さ
れているため、クリープ発生のおそれがある。し
かしながら、孔明煉炭式蓄熱体1は、相互に面接
触しているため、局所的に集中荷重がかかるおそ
れはなく、高温下でのクリープ発生は極めて少な
い。したがつてこれによる蓄熱体1の割れや破損
もない。
Further, since the lower part of the heat storage body 1 supports the weight of the heat storage in the upper layer and is heated to a high temperature, there is a risk of creep occurring. However, since the Kongming briquette type heat storage body 1 is in surface contact with each other, there is no risk of locally concentrated load being applied, and the occurrence of creep at high temperatures is extremely small. Therefore, there is no cracking or damage to the heat storage body 1 due to this.

さらに、被熱交換媒体は、高速吹出し風胴や
MHD(magneto−hydro−dynanic)発電機等の
作動流体として用いられる場合には、出口管7か
ら排出される際に高圧力状態であることが要求さ
れる。このため、蓄熱体1を通過する被熱交換媒
体を高圧力・高速にする必要があり、これにより
蓄熱体1上部に浮上がり現象が発生するおそれが
ある。しかしながら、孔明煉炭式蓄熱体1は、そ
れ自身充分な重量を有しているため、被熱交換媒
体の通過圧力に耐えて浮上がり現象が発生するお
それは全くない。
Furthermore, the heat exchange medium can be a high-speed blowing wind cylinder or
When used as a working fluid for an MHD (magneto-hydro-dynamic) generator or the like, it is required that the fluid be at a high pressure when being discharged from the outlet pipe 7. For this reason, it is necessary to make the heat exchange medium passing through the heat storage body 1 under high pressure and at high speed, which may cause a floating phenomenon in the upper part of the heat storage body 1. However, since the Kongming briquette type heat storage body 1 itself has sufficient weight, there is no possibility that it will withstand the passing pressure of the heat exchange medium and cause a floating phenomenon.

このように孔明煉炭式蓄熱型熱交換器は数多く
の利点を有しているが、反面蓄熱体1の伝熱面積
が孔部に限定されているため伝熱面積が狭く、充
分な伝熱面積を確保するためには多大な蓄熱体容
積を要し、熱交換器が非常に大きくなるという欠
点がある。
As described above, the Kongming briquette heat storage type heat exchanger has many advantages, but on the other hand, the heat transfer area of the heat storage body 1 is limited to the holes, so the heat transfer area is small, and there is no sufficient heat transfer area. In order to ensure this, a large volume of heat storage is required, which has the disadvantage that the heat exchanger becomes very large.

一方、ペブル式蓄熱型熱交換器は、第3図に示
すようにペブルと称する球型蓄熱単体を多層積み
重ねて形成されるペブル式蓄熱体8、この蓄熱体
8の重量を支える支え板2、蓄熱体8を保温する
耐熱レンガ3、およびこれら内包し燃焼器5、入
口管6および出口管7を備えた圧力容器4から構
成されている。
On the other hand, as shown in FIG. 3, the pebble heat storage type heat exchanger includes a pebble heat storage body 8 formed by stacking multiple layers of spherical heat storage units called pebbles, a support plate 2 that supports the weight of this heat storage body 8, It is composed of heat-resistant bricks 3 that keep a heat storage body 8 warm, and a pressure vessel 4 that includes a combustor 5, an inlet pipe 6, and an outlet pipe 7.

ところでこの種の熱交換器は、ペブルが互に点
接触しているので個々のペブル球表面積のほとん
どが伝熱面として有効に活用され、伝熱面積が格
段に広くなつて前記孔明煉炭式蓄熱体1に比較し
て同一熱容量の蓄熱体をコンパクトに構成するこ
とができる。
By the way, in this type of heat exchanger, since the pebbles are in point contact with each other, most of the surface area of the individual pebble balls is effectively used as a heat transfer surface, and the heat transfer area is greatly expanded, making it possible to Compared to body 1, a heat storage body having the same heat capacity can be constructed more compactly.

しかしながら、一般にペブル式蓄熱体8下部に
おける耐熱衝撃性は孔明煉炭式蓄熱体1に比較し
て劣つており、またペブルは互に点接触している
ので、高温下において局所的に荷重が集中してク
リープが発生し易い。このため、特に蓄熱体8の
下部においてペブルの割れや破損が生じ易くな
る。
However, the thermal shock resistance of the lower part of the pebble heat storage body 8 is generally inferior to that of the Kongming briquette heat storage body 1, and since the pebbles are in point contact with each other, the load is locally concentrated at high temperatures. Creep is likely to occur. For this reason, the pebbles are likely to crack or break, especially in the lower part of the heat storage body 8.

また、蓄熱体8の最上部においては、高圧力・
高速の被熱交換媒体の通過圧力に対して自重のみ
でこの力に対抗せざるを得ない。ところがペブル
単体は軽量であるため、被熱交換媒体の通過圧力
に抗しきれずに最上層のペブルに浮上がり現象が
発生する。このため、ペブル最上層においてペブ
ル相互が激しく衝突し、ペブルに割れや破損が生
じるおそれがある。
In addition, at the top of the heat storage body 8, high pressure
It has no choice but to counteract the pressure of the passing heat exchange medium at high speed using only its own weight. However, since the individual pebbles are lightweight, they cannot withstand the pressure of the heat exchange medium passing through them, and a phenomenon occurs in which the top layer of pebbles floats up. Therefore, the pebbles may violently collide with each other in the uppermost layer of the pebbles, which may cause cracks or damage to the pebbles.

〔考案の目的〕[Purpose of invention]

本考案はかかる現況に鑑みなされたもので、そ
の目的とするところは、蓄熱体が耐熱衝撃性、耐
クリープ性に優れ、かつ浮上がり現象が発生する
おそれがなく、しかもコンパクトに構成すること
ができる蓄熱型熱交換器を提供するにある。
The present invention was devised in view of the current situation, and its purpose is to provide a heat storage body with excellent thermal shock resistance and creep resistance, without the risk of floating phenomenon, and with a compact structure. The objective is to provide a heat storage type heat exchanger that can be used.

〔考案の概要〕[Summary of the idea]

本考案は、蓄熱体を、板状の複数の孔明煉炭式
蓄熱体を上下に任意の間隔で配置するとともに、
相互の孔明煉炭蓄熱体の上下間隔を間隔保持部材
で保持し、かつ上下の孔明煉炭式蓄熱体の間に形
成される空間内にペブル式蓄熱体を充填して構成
し、これにより、蓄熱体の耐熱衝撃性、耐クリー
プ性の向上、浮上がり現象の防止、およびコンパ
クト化を図るようにしたことを特徴とする。
The present invention is a method of arranging a plurality of plate-shaped perforated briquette-type heat storage bodies at any intervals above and below,
The vertical gap between the perforated briquette heat storage bodies is maintained by a spacing member, and the space formed between the upper and lower perforated briquette heat storage bodies is filled with a pebble-type heat storage body, thereby improving the thermal shock resistance and creep resistance of the heat storage body, preventing the floating phenomenon, and making it compact.

〔考案の実施例〕[Example of idea]

以下本考案を第4図および第5図に示す一実施
例に基づいて説明する。
The present invention will be explained below based on an embodiment shown in FIGS. 4 and 5.

図において4は、下端部に入口管6が設けられ
ているとともに上端近傍に出口管7が設けられて
いる縦長の圧力容器であり、この圧力容器4の内
周面には耐熱レンガ3が配置され、また圧力容器
4の頂部には燃焼器5が設置されている。そして
この容器4の内部には、第4図に示すように下端
が支え板2で支持された蓄熱体10が配設されて
いる。
In the figure, 4 is a vertically long pressure vessel having an inlet pipe 6 at the lower end and an outlet pipe 7 near the upper end, and heat-resistant bricks 3 are arranged on the inner peripheral surface of the pressure vessel 4. A combustor 5 is installed at the top of the pressure vessel 4. Inside this container 4, as shown in FIG. 4, a heat storage body 10 whose lower end is supported by a support plate 2 is disposed.

この蓄熱体10は、第4図に示すように上下方
向に所要間隔で4枚配された円板状の孔明煉炭式
蓄熱体11と、上下2枚の孔明煉炭式蓄熱体11
の間に充填されたペブル式蓄熱体12と、このペ
ブル式蓄熱体12を内包するとともに相隣る2枚
の孔明煉炭式蓄熱体11の上下間隔を保持する筒
状の煉炭式蓄熱体13とから構成されている。
As shown in FIG. 4, this heat storage body 10 includes four disk-shaped pore briquette type heat storage bodies 11 arranged at required intervals in the vertical direction, and two pore briquette type heat storage bodies 11 on top and bottom.
A cylindrical briquette heat storage body 13 that encloses the pebble heat storage body 12 and maintains the vertical distance between the two adjacent perforated briquette heat storage bodies 11. It consists of

次に作用について説明する。 Next, the effect will be explained.

圧力容器4内に配された蓄熱体11は、第4図
に示すように圧力容器4の頂部に配された燃焼器
5により加熱されて所要の温度となる。そしてそ
の直後に、高圧力・高速の常温被熱交換媒体が入
口管6から圧力容器4内に導入され、蓄熱体10
内部を通過する間に熱交換が行なわれて所要の温
度に昇温する。昇温した被熱交換媒体は出口管7
から排出される。
The heat storage body 11 disposed within the pressure vessel 4 is heated to a required temperature by the combustor 5 disposed at the top of the pressure vessel 4, as shown in FIG. Immediately thereafter, a high-pressure, high-speed room temperature heat exchange medium is introduced into the pressure vessel 4 from the inlet pipe 6, and the heat storage body 10 is introduced into the pressure vessel 4 through the inlet pipe 6.
While passing through the interior, heat exchange takes place and the temperature is raised to the required temperature. The heated heat exchange medium passes through the outlet pipe 7.
is discharged from.

ところで、充分に加熱された蓄熱体10の下部
は常温の被熱交換媒体に晒されることになるが、
蓄熱体10の最下部には耐熱衝撃性に優れた孔明
煉炭式蓄熱体11が配されているので、熱衝撃に
より蓄熱体11に割れや破損を生じることはな
い。そして常温で入つた被熱交換媒体は、この最
下部の孔明煉炭式蓄熱体11を通過する際に熱交
換され、その後その上層に配されたペブル式蓄熱
体12を通過することになるが、この際被熱交換
媒体は既にペブル層温度と同程度まで昇温してい
るので、もはや熱衝撃が発生するおそれはなく、
ペブルの割れや破損は有効に回避される。なおペ
ブル式蓄熱体12は、伝熱表面積が孔明煉炭式蓄
熱体11に比較して格段に広いので、熱交換の大
部分はこのペブル層で行なわれる。
By the way, the lower part of the sufficiently heated heat storage body 10 is exposed to the heat exchange medium at room temperature.
Since the perforated briquette type heat storage body 11 having excellent thermal shock resistance is disposed at the lowest part of the heat storage body 10, the heat storage body 11 will not be cracked or damaged due to thermal shock. The heat exchange medium entered at room temperature undergoes heat exchange when passing through the lowest pore briquette type heat storage body 11, and then passes through the pebble type heat storage body 12 placed above it. At this time, the temperature of the heat exchange medium has already risen to the same level as the pebble layer temperature, so there is no longer any risk of thermal shock occurring.
Pebble cracking and breakage are effectively avoided. Since the pebble type heat storage body 12 has a much wider heat transfer surface area than the pore briquette type heat storage body 11, most of the heat exchange is performed in this pebble layer.

一方、蓄熱体10の重量は、強度的に強い孔明
煉炭蓄熱体11およびこれを位置保持する煉炭式
蓄熱体13によつて支えられている。このため、
両煉炭式蓄熱体11,13に内包されたペブル式
蓄熱体12にはほとんど荷重がかからず、高温下
におけるペブルのクリープは発生しない。これに
より、ペブルの割れや破損が有効に回避される。
On the other hand, the weight of the heat storage body 10 is supported by the strong-strength Kongming briquette heat storage body 11 and the briquette type heat storage body 13 that holds it in position. For this reason,
Almost no load is applied to the pebble type heat storage element 12 contained in both the briquette type heat storage elements 11 and 13, and no creep of the pebbles occurs at high temperatures. This effectively avoids cracking and breakage of the pebble.

さらに、高圧力・高速の被熱交換媒体が蓄熱体
10の最上層を通過する際には、この部分を押し
上げようとする力が作用する。ところが、最上部
ペブル層の上部には大重量の孔明煉炭式蓄熱体1
1が配されているので、蓄熱体10上端部分に浮
上がり現象が生じるおそれはない。
Furthermore, when the high-pressure, high-speed heat exchange medium passes through the uppermost layer of the heat storage body 10, a force acts to push up this portion. However, there is a heavy Kongming briquette type heat storage body 1 on top of the top pebble layer.
1, there is no possibility that the upper end portion of the heat storage body 10 will rise.

しかして、煉炭式蓄熱体11,13とペブル式
蓄熱体12とを組合わせて蓄熱体10を構成する
ことにより、耐衝撃性、耐クリープ性に優れてい
るとともに浮上がり現象発生のおそれがなく、し
かもコンパクトな蓄熱体が得られる。
By configuring the heat storage body 10 by combining the briquette type heat storage bodies 11 and 13 and the pebble type heat storage body 12, it has excellent impact resistance and creep resistance, and there is no fear of floating phenomenon occurring. Moreover, a compact heat storage body can be obtained.

第6図および第7図は本考案の他の実施例を示
すもので、前記実施例における筒状の煉炭式蓄熱
体13は代え、柱状の蓄熱体14を用いて孔明煉
炭式蓄熱体11を支持するようにしたものであ
る。
6 and 7 show another embodiment of the present invention, in which the cylindrical briquette heat storage body 13 in the previous embodiment is replaced with a columnar heat storage body 14 to form the Kongming briquette heat storage body 11. It was designed to be supported.

すなわち、図において4は、下端に入口管6
が、また上端近傍に出口管7がそれぞれ設けられ
た圧力容器であり、周面が耐熱レンガ3で覆われ
た前記圧力容器4の内部には、下端が支え板2で
支えられた蓄熱体20が配されている。そしてこ
の蓄熱体20は圧力容器4の頂部に配された燃焼
器5により所要の温度に加熱されるようになつて
いる。
That is, in the figure, 4 has an inlet pipe 6 at the lower end.
However, each pressure vessel is provided with an outlet pipe 7 near its upper end, and inside the pressure vessel 4 whose circumferential surface is covered with heat-resistant bricks 3 is a heat storage body 20 whose lower end is supported by a support plate 2. are arranged. This heat storage body 20 is heated to a required temperature by a combustor 5 disposed at the top of the pressure vessel 4.

前記蓄熱体20は、第6図および第7図に示す
ように上下方向に所要間隔で4枚配された円板状
の孔明煉炭式蓄熱体11と、上下2枚の孔明煉炭
式蓄熱体11で形成される空間内に充填されたペ
ブル式蓄熱体12と、上下2枚の孔明煉炭式蓄熱
体11の間に4本ずつ配されてその上下間隔を保
持する柱状の蓄熱体14とから構成されており、
入口管6から取入れられた被熱交換媒体は、この
蓄熱体20を通過する間に熱交換されて昇温し、
その後出口管7から排出されるようになつてい
る。
As shown in FIGS. 6 and 7, the heat storage body 20 includes four disk-shaped kongming briquette type heat storage bodies 11 arranged at required intervals in the vertical direction, and two kongming briquette type heat storage bodies 11 on the upper and lower sides. It consists of a pebble type heat storage body 12 filled in a space formed by a pebble type heat storage body 12, and four columnar heat storage bodies 14 arranged between the two upper and lower perforated briquette type heat storage bodies 11 to maintain the vertical spacing. has been
The medium to be heat exchanged taken in from the inlet pipe 6 undergoes heat exchange while passing through this heat storage body 20, and its temperature rises.
Thereafter, it is discharged from an outlet pipe 7.

しかして、このように、構成することにより、
伝熱面積の広いペブル式蓄熱体12の蓄熱体20
内に占める容積が前記蓄熱体10の場合に比較し
て大きくなり、蓄熱体20のコンパクト化、これ
に伴なう熱交換器のコンパクト化をより充分に図
ることができる。
However, by configuring like this,
Heat storage body 20 of pebble type heat storage body 12 with a large heat transfer area
The volume occupied by the heat storage body 10 is larger than that of the heat storage body 10, and the heat storage body 20 and the heat exchanger can be made more compact accordingly.

〔考案の効果〕[Effect of idea]

以上説明したように本考案は、間隔保持部材に
より上下間隔が保持された孔明煉炭式蓄熱体の間
にペブル式蓄熱体を充填しているので、蓄熱体の
荷重がペブル式蓄熱体にかかることはほとんどな
い。このため、高温下におけるペブルのクリープ
が発生しない。また、蓄熱体の最上部には孔明煉
炭式蓄熱体が配されているので、蓄熱体に浮上が
り現象が発生することがなく、ペブルの割れや破
損を有効に回避できる。したがつて、蓄熱体破損
によつて生じる微粉体が被熱交換媒体に混入する
こともない。
As explained above, in the present invention, the pebble type heat storage element is filled between the Kongming briquette type heat storage elements whose vertical distance is maintained by the spacing member, so that the load of the heat storage element is not applied to the pebble type heat storage element. There are almost no Therefore, pebble creep does not occur under high temperatures. In addition, since the Kongming briquette type heat storage body is disposed on the top of the heat storage body, no floating phenomenon occurs in the heat storage body, and cracking and damage of the pebbles can be effectively avoided. Therefore, fine powder produced by damage to the heat storage element will not be mixed into the heat exchange medium.

また、蓄熱体のほとんどの容積がペブル式蓄熱
体で占められているので、伝熱面積を広く取るこ
とができ、蓄熱体のコンパクト化および熱交換器
のコンパクト化を図ることができる。
Moreover, since most of the volume of the heat storage body is occupied by the pebble type heat storage body, a large heat transfer area can be secured, and the heat storage body and the heat exchanger can be made compact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の孔明煉炭式蓄熱型熱交換器の構
成を示す縦断面図、第2図は第1図の−線断
面図、第3図は従来のペブル式蓄熱型熱交換器の
構成を示す縦断面図、第4図は本考案の一実施例
を示す縦断面図、第5図は第4図の−線断面
図、第6図は本考案の他の実施例を示す縦断面
図、第7図は第6図の−線断面図である。 2……支え板、4……圧力容器、5……燃焼
器、6……入口管、7……出口管、10,20…
…蓄熱体、11……孔明煉炭式蓄熱体、12……
ペブル式蓄熱体、13……煉炭式蓄熱体、14…
…蓄熱体。
Figure 1 is a longitudinal sectional view showing the configuration of a conventional Kongming briquette type regenerative heat exchanger, Figure 2 is a sectional view taken along the - line in Figure 1, and Figure 3 is the configuration of a conventional pebble type regenerative type heat exchanger. FIG. 4 is a vertical cross-sectional view showing one embodiment of the present invention, FIG. 5 is a cross-sectional view taken along the line -- of FIG. 4, and FIG. 6 is a longitudinal cross-sectional view showing another embodiment of the present invention. FIG. 7 is a sectional view taken along the line -- in FIG. 6. 2... Support plate, 4... Pressure vessel, 5... Combustor, 6... Inlet pipe, 7... Outlet pipe, 10, 20...
... Heat storage body, 11... Kongming briquette type heat storage body, 12...
Pebble type heat storage body, 13... Briquette type heat storage body, 14...
...Heat storage body.

Claims (1)

【実用新案登録請求の範囲】 1 熱交換器内部に蓄熱体を配置し、熱交換器下
部から取入れられた被熱交換媒体を蓄熱体の内
部を通して熱交換し、昇温した被熱交換媒体を
熱交換器上部から取出す蓄熱型熱交換器におい
て、前記蓄熱体を、板状の複数の孔明煉炭式蓄
熱体を上下に任意の間隔で配置するとともに、
相互の孔明煉炭式蓄熱体の上下間隔を間隔保持
部材で保持し、かつ上下の孔明煉炭式蓄熱体の
間に形成される空間内にペブル式蓄熱体を充填
して構成したことを特徴とする蓄熱型熱交換
器。 2 間隔保持部材を、内部にペブル式蓄熱体が充
填される筒状の煉炭式蓄熱体で構成したことを
特徴とする実用新案登録請求の範囲第1項記載
の蓄熱型熱交換器。
[Claims for Utility Model Registration] 1. A heat storage device is placed inside a heat exchanger, and a heat exchange medium taken in from the lower part of the heat exchanger is exchanged through the inside of the heat storage body, and the heated heat exchange medium is heated. In the heat storage type heat exchanger that is taken out from the upper part of the heat exchanger, the heat storage body includes a plurality of plate-shaped pore briquette type heat storage bodies arranged vertically at arbitrary intervals,
It is characterized in that the vertical spacing between the two kongming briquette heat storage bodies is maintained by a spacing member, and the space formed between the upper and lower kongming briquette heat storage bodies is filled with pebble heat storage bodies. Regenerative heat exchanger. 2. The regenerative heat exchanger according to claim 1, wherein the spacing member is constituted by a cylindrical briquette type heat storage body filled with a pebble type heat storage body.
JP1982019535U 1982-02-15 1982-02-15 Regenerative heat exchanger Granted JPS58122880U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1982019535U JPS58122880U (en) 1982-02-15 1982-02-15 Regenerative heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1982019535U JPS58122880U (en) 1982-02-15 1982-02-15 Regenerative heat exchanger

Publications (2)

Publication Number Publication Date
JPS58122880U JPS58122880U (en) 1983-08-20
JPS6130070Y2 true JPS6130070Y2 (en) 1986-09-03

Family

ID=30031741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1982019535U Granted JPS58122880U (en) 1982-02-15 1982-02-15 Regenerative heat exchanger

Country Status (1)

Country Link
JP (1) JPS58122880U (en)

Also Published As

Publication number Publication date
JPS58122880U (en) 1983-08-20

Similar Documents

Publication Publication Date Title
JPH0356354Y2 (en)
JP5133321B2 (en) Heat storage device
CN113074387B (en) Regenerative cooling channel with truss structure
JPS5952796B2 (en) Insulation device for reactor main vessel
US4072561A (en) Bottom cooler for nuclear reactors
JPS6130070Y2 (en)
CN102870164B (en) Melted-core retention structure
US4234384A (en) Support structure for the core of a high capacity gas cooled high temperature reactor
JPS5814639B2 (en) Genshiro Yodanetsu Sochi
EP2976588B1 (en) Molten salts insulated storage tank
US3403076A (en) Molten salt breeder reactor and fuel cell for use therein
US4189347A (en) Base for vessel subject to high temperature, especially for a pebble bed reactor vessel
EP3714228B1 (en) Heat sink vessel
JP6283410B2 (en) COOLER, COOLING DEVICE USING SAME, AND METHOD OF COOLING HEAT GENERATOR
CN214529128U (en) Multilayer heat treatment tool
RU2006131103A (en) EMERGENCY PROTECTION DEVICE FOR NUCLEAR REACTOR
CN109794211B (en) High-temperature reactor and heat exchange system thereof
JPS6210622Y2 (en)
JPH07333383A (en) Nuclear power plant
JPH05272884A (en) Regenerative heat exchanger
JP2020026907A (en) Manufacturing method for heat exchanger
KR20150137898A (en) Hydrogen storage vessel and hydrogen storage tank improved heat exchange efficiency
CN212566892U (en) Bathroom kiln car
KR20010031450A (en) Rotary regenerative heat exchanger
CN216925258U (en) Water storage supporting column of temperature-uniforming plate