JPH0133494B2 - - Google Patents

Info

Publication number
JPH0133494B2
JPH0133494B2 JP59121933A JP12193384A JPH0133494B2 JP H0133494 B2 JPH0133494 B2 JP H0133494B2 JP 59121933 A JP59121933 A JP 59121933A JP 12193384 A JP12193384 A JP 12193384A JP H0133494 B2 JPH0133494 B2 JP H0133494B2
Authority
JP
Japan
Prior art keywords
film
antistatic
antistatic film
film according
phenyl ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59121933A
Other languages
Japanese (ja)
Other versions
JPS612740A (en
Inventor
Tamaki Kanai
Takafumi Yoshikawa
Yoshikatsu Oota
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP59121933A priority Critical patent/JPS612740A/en
Publication of JPS612740A publication Critical patent/JPS612740A/en
Publication of JPH0133494B2 publication Critical patent/JPH0133494B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Coating Of Shaped Articles Made Of Macromolecular Substances (AREA)
  • Laminated Bodies (AREA)
  • Lubricants (AREA)
  • Paints Or Removers (AREA)
  • Magnetic Record Carriers (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

産業䞊の利甚分野 本発明は垯電防止性及び滑り性に優れたプラス
チツクフむルムに関する。曎に詳しくは本発明は
垯電防止性及び滑り性に優れ、磁気テヌプ甚リヌ
ダヌテヌプ或は磁気テヌプコむルの端面をおさえ
る際のスリツプシヌトずしお奜適な衚面特性を有
する可撓性フむルムに関する。 埓来技術 埓来からプラスチツクフむルムの垯電による静
電気障害を軜枛する為に皮々の方法が提案されお
いる。その䞀぀ずしお垯電防止胜及び導電性を有
する物質をポリマヌに添加配合しお党䜓及び衚面
の制電をはかる方法がある。この方法は、効果の
耐久性ず云う面からは確かに衚面に垯電防止剀を
塗垃する方法よりも優れおいるものの、他方でフ
むルムずしお補膜する際の数々の被熱条件に察し
着色がなく、たた添加剀を混合したこずによる物
性䜎䞋を抑止し、か぀盞溶性䞍良による衚面欠陥
を生じせしめないようにするこずは技術䞊極めお
難かしい、曎にはたた䞊蚘添加剀のブリヌドアり
トによる衚面の粘着性増加などの問題も克服する
こずも至難である、たたブリヌド性にもムラが生
じ易い等の問題がある。 䞀方、フむルムに盎接垯電防止剀を小量塗垃す
る方法は、簡䟿であるずいう利点はあるが、その
効果が䞀時的で脱萜しやすいずしお最近では敬遠
されおいる。このため垯電防止剀の研究開発は専
ら導電性高分子或はこれらの䞀郚をフむルム衚面
で反応架橋を行わしめるこずに力点が眮かれ、さ
たざたな改良が進められおいる。 しかしながら、垯電防止に係る塗膜そのものの
改質がはかられおも、基材ずりわけポリ゚ステル
フむルムに察しおは密着性が䞍足したり、たた密
着性を重芖しすぎるず衚面の粘着性が残り、これ
ら二埋背反珟象をバランスするこずは実質䞊むづ
かしい。特に垯電防止剀が塗垃されたポリ゚ステ
ルフむルムがその甚途ずしお、静的な䜿甚がなさ
れるずきには問題が起こりにくいが、衚面に䜕か
が接觊し、こすられるような状態で䜿甚される堎
合には、暹脂被膜圢成性垯電防止剀或はこれ等の
小改良で反応架橋性を付加せしめた前蚘垯電防止
剀は必ずしも充分なる衚面性を䞎えるものずは云
い難い。 䟋えば、かかる垯電防止ポリ゚ステルフむルム
を甚いた磁気テヌプ甚リヌダヌテヌプは繰り出
し、捲き取りの操䜜がカセツト内で幟床ずなく行
われ、䞔぀その可䜿環境ずしおは60℃、湿床80
皋床の高枩高湿雰囲気たでを容認せねばならない
が、このような状況においおはその塗垃局のブロ
ツキング珟象が起぀たり、或はテヌプの繰返し䜿
甚によ぀お磁気テヌプ端面から生じる極めお極埮
量の磁性粉が粘着性を増した塗垃面に粘着堆積
し、これが曎にテヌプ磁性面ぞ再転写しおドロツ
プアりト等の特性䜎䞋を匕きおこさせるこずにな
る。 たた垯電防止塗垃局から析出するオリゎマヌ物
質も高枩高湿雰囲気䞋では、スカムの原因ずなり
易い。䟋をあげるならば特定の第玚アンモニ
りム塩含有アクリル系導電性暹脂、ポリアミンス
ルホン、ポリスチレンスルホン酞塩系暹脂などを
ポリ゚ステルフむルム䞊に塗垃した堎合、䞀応所
望する垯電防止胜は発珟するが、高湿床条件でカ
セツトピンぞのスカムが堆積したり、フむルム裏
面ぞの転写が生じたり、それが粘着性を瀺すが故
に皮々のじんあいを吞着するなど実甚特性䞊は問
題が倚い。そこで塗膜の特性を改善し衚局を硬く
するような方向ぞも぀おゆくず衚面がこすられた
時にクレむズが発生しやがおは削れずしおテヌプ
䞭に捲き蟌たれ垯電防止胜が䜎䞋したり、さたざ
たなトラブルに発展する。䟋をあげるず、四塩化
硅玠を䜎玚アルコヌル及びもしくぱステル系溶
媒䞭で郚分的に加氎分解しお埗られ、垯電防止胜
に極めお優れた塗垃剀などをポリ゚ステルフむル
ムに塗垃しお埗たリヌダヌテヌプには、前述の劂
く、削れ粉が発生しやすい。さらには、最近では
たた、偎鎖に第玚アンモニりム塩やスルホン酞
塩を有するビニル系、アクリル系プレポリマヌを
玫倖線照射さらには電子線照射で架橋するような
皮々の垯電防止剀が登堎しおきおいるが、䜕れも
前述の劂き理由から充分な特性を有しおいない。 かかる芳点から垯電防止フむルムずりわけ磁気
テヌプ甚リヌダヌテヌプに぀いお考えるず被膜圢
成性垯電防止剀には皋床の差はあ぀も耐久性ず云
う問題がある。この原因はテヌプの繰り出し、捲
ずりによるフむルム衚裏の摩耗、カセツト内ピン
ずの接觊摩耗、高枩高湿䞋での塗膜特性の急激な
倉化、粘着面ぞの狭雑物の付着などが同時又は混
合、経時しお生じおいるこずにあるものず思われ
る。この意味では、埓来被膜圢成性垯電防止剀の
方が耐久性に優れるずしお、界面掻性剀型垯電防
止剀を適甚しおゆく方向はかえりみられなか぀た
感があ぀た。 発明の目的 本発明者は、磁気テヌプのリヌダヌテヌプ或は
スリツプシヌトなどの䜿甚時に斌ける特質即ち衚
面の繰返し接觊剥離珟象ぞの耐久性は被膜圢成性
垯電防止剀を適甚したフむルムよりもむしろ界面
掻性剀型垯電防止剀を適甚し、衚面が単分子膜局
で制電性が付䞎されおいるフむルムの方がより高
い適性があるのではないかず考え、この芳点から
の広汎なる怜蚎を行぀た結果、界面掻性剀単独で
は充分満足ゆく結果がえられなか぀たものの特定
の界面掻性剀を耇合化するこずで、リヌダヌテヌ
プ又はスリツプシヌトずしお極めお優れた特質を
䞎えるこずが出来るこずを芋出し、本発明に到達
した。 本発明の目的は、垯電防止性及び滑り性に優れ
たプラスチツクフむルムを提䟛するこずにある。
本発明の他の目的は、磁気テヌプ甚リヌダヌテヌ
プ或は磁気テヌプコむルの端面を抌える際のスリ
ツプシヌルずしお奜適な衚面特性を有する可撓性
フむルムを提䟛するこずにある。 発明の構成・効果 本発明のかかる目的は、本発明によれば、プラ
スチツクフむルムの少くずも䞀方の衚面に、オレ
むルむミダゟリン゚トサルプヌト、ポリオキシ
゚チレンアルキルプニル゚ヌテル及び脂肪酞金
属塩を含有する塗垃組成物を垯電防止性付䞎の膜
厚に塗垃しおなるこずを特城ずする垯電防止フむ
ルムによ぀お達成される。 本発明の垯電防止フむルムの構成をなす塗垃組
成物のうちオレむルむミダゟリン゚トサルプヌ
トは、䞋蚘の構造を有する化合物であり、そのカ
チオン率は50〜90であるこずが奜たしい。 ここではCH3CH27CHCHCH2―7であ
る。 たた、ポリオキシ゚チレンアルキルプニル゚
ヌテルは、オキシ゚チレンの繰り返しが〜10
付加モル数〜10のものが奜たしく、か぀
アルキル基がオクチル基ないしノニル基であるも
のが奜たしい。 曎にはHLBHydrophile―Lipophile
Balanceが〜12の範囲にあるものが良い。 曎にたた、脂肪酞金属塩は氎溶解を瀺す範囲の
ものが効果的であり、炭玠数が倧きすぎる範囲は
陀倖される。最も望たしいものはC1〜C3の脂肪
酞ナトリりムもしくはカリりムなどである。 塗垃組成物の構成成分のうち、䜕れが欠劂しお
も良奜な特性を匕きだすこずは䞍可胜で、この特
定䞉成分が䞡々盞俟぀お優れた垯電防止フむルム
が埗られる。䟋えばオレむルむミダゟリン゚トサ
ルプヌト又は脂肪酞金属塩の䜕れか䞀぀が欠け
るず、垯電防止胜は䞍充分ずなる。特にオレむル
むミダゟリン゚トサルプヌトが欠けるず高枩高
湿䞋での滑り特性が急速に䜎䞋し、衚面にべた぀
きが助長され、塵挚が付着した際の衚面での脱離
性が悪くなる。他方䜎玚脂肪酞金属塩が欠劂する
ず、高枩䜎湿時の垯電防止性胜が倧巟に䜎䞋す
る。たた有効成分のフむルム組織䞭ぞの浞透が党
く行われなくなり、剀の効果の消倱が早くなる。 たた、ポリオキシ゚チレンアルキルプニル゚
ヌテルの成分が欠劂するず、プラスチツクフむル
ム特にポリ゚ステルフむルムに均等に塗垃する䞊
で支障が生じ、ずりわけ垯電防止剀の単分子膜が
他にずられ易く、党䜓ずしお耐久性が䜎䞋する。
即ち、衚面の繰り返し接觊が行われる際圓該成分
が重芁な圹割を果し、単分子膜の基材ぞの぀なぎ
ずめをはかるものず思われる。リヌダヌテヌプ及
びスリツプシヌトずしお奜適なる垯電防止フむル
ムは䞊述の劂き特定混合組成物の適甚に斌お達成
されるが、実際に磁気テヌプのリヌダヌテヌプず
しお䜿甚され、その際磁性局からブリヌド折出し
おくる最滑剀がこの特定組成物塗垃衚面に接觊し
おも䜕ら盞互䜜甚を起こすこずなく効果を充分発
揮せしめる為には、前蚘各成分は特定割合の関係
にあるこずが望たしい。即ち、オレむルむミダゟ
リン゚トサルプヌト77〜50重量、ポリオキシ
゚チレンアルキルプニル゚ヌテル20〜35重量
、及び脂肪酞金属塩䟋えば酢酞カリりム塩〜
15重量であるこずが、本発明の垯電防止フむル
ムに最も良奜な特質を䞎える点から、最適条件で
あるず云える。この範囲を逞脱するものに斌おも
䞀応の特性は有するが、垂販されおいる磁気テヌ
プの皮類即ち磁性局䞭に含たれる垯電防止剀、湿
最剀などずリヌダヌテヌプ衚面の垯電防止剀が若
干圱響し合うこずもあり、信頌性の䞊で完党ずは
云い難い。 本発明で特定する組成物さらにはより奜適なる
組成割合に調補された垯電防止剀は、有効成分10
〜0.01重量の氎溶液もしくは䜎玚アルコヌル䟋
えばメタノヌル、゚タノヌル、む゜プロパノヌル
等ず氎ずの混合溶液ずしおプラスチツクフむルム
特にポリ゚ステルフむルム䞊に塗垃すればよい。 これを塗垃する方法ずしおは公知の塗工法が適
甚でき、䟋えばロヌルコヌト法、グラビアコヌト
法、ロヌルブラツシナ法、スプレヌコヌト、゚ア
ヌナむフコヌト、含浞法及びカヌテン法などが独
立たたは組み合せお利甚出来る。その塗垃量は、
無甚に倚くするこずは経枈的でないばかりか、い
たずらにベタ぀きを助長するだけであるので、最
小必芁限床の量にずどめるこずに留意すべきであ
る。凡その目安ずしおはその有効成分が0.5
m2〜0.005m2皋床よく、その塗垃均䞀性に぀
いおは任意にサンプリングした塗垃フむルム小片
の衚面がJISK6768で枬定し、その衚面匵力が宀
枩に斌お54dynecm以䞊の濡れ時性を瀺しおお
れば問題はない。 ポリ゚ステルフむルムぞの塗工に際しおは、ポ
リ゚ステルフむルムが補造される工皋の途䞭即ち
ポリ゚ステル、特にポリ゚チレンテレフタレヌト
を溶融抌出しおキダステむングした盎埌未延䌞
状態のフむルム、或はタテたたはペコのどちら
か䞀方に延䌞を行぀た盎埌の基材衚局に比范的高
濃床で該垯電防止組成物をむンラむンコヌトによ
り適甚しおもよく、たた既に二軞延䌞結晶配向化
凊理を斜したあずのいわゆるポリ゚ステルフむル
ム䞊にオフラむンコヌトによ぀お塗垃しおもよ
い。 ここで云うポリ゚ステルずは、芳銙族二塩基酞
又はその゚ステル圢成誘導䜓ずゞオヌルたたはそ
の゚ステル圢成性誘導䜓ずから合成されたポリ゚
ステル、䟋えばポリ゚チレンテレフタレヌトもし
くはその共重合䜓、ポリ゚チレンナフタレヌトも
しくはその共重合䜓等であり、曎にはこれら重合
䜓ず小割合の他の暹脂ずのブレンド物でも良い。
かかるポリ゚ステルには各皮添加剀䟋えば各皮の
超埮粒無機粉、着色剀、玫倖線吞収剀、最滑剀、
導電性物質、難燃剀、安定剀等を本発明の目的を
損わない量範囲で含有させおもよい。 本発明に甚いる基材ずしおは、䞊述のポリ゚ス
テルフむルム以倖に二軞延䌞ナむロンフむルム、
アセテヌトフむルム、或はOPP、ポリスルホン、
ポリ゚ヌテルスルホン、芳銙族ポリアミド系等よ
りなるフむルムなどに適甚しおもそれなりの効果
は埗られる。垯電防止剀が衚面ずの関連でリヌダ
ヌテヌプ或はスリツプシヌトずしおの特質を最倧
限に発揮しうる材料ずしおは、ポリ゚ステルフむ
ルムが最もよい。ポリ゚ステルフむルムにはあら
かじめ垯電防止剀モノレむダヌずの付着を高める
ために、コロナ凊理、プラズマ凊理さらにはプラ
むマヌコヌト凊理、サンドブラスト凊理、゚ツチ
ング凊理などの凊理が、単独もしくは組合せで、
塗垃組成物の塗垃に先立぀おなされおいおもよい
し、䟋えば片面或は䞡面に印刷されたベヌスであ
぀おも差し支えない。たた垯電防止剀組成物䞭
に、この特質を倧巟に䜎䞋させない範囲で、若干
の機胜性物質を埮量含たせるこずは䜕ら差し支え
ない。 かくしお埗られた垯電防止フむルムは、さたざ
たな甚途に適甚するこずが可胜であるが、本発明
の垯電防止フむルムは特に磁気テヌプ甚゜ヌダヌ
テヌプはスリツプシヌトずしお奜適な特性が発珟
する。即ちリヌダヌテヌプの劂き繰り出し、捲取
りに際しおの同䞀面の接觊及びカセツト内の金属
固定ピンずの接觊、さらには磁性局衚面ずの接觊
に斌お塗垃した有効物質が消倱するこずなく機胜
し぀づけるず云う意味で、本発明の垯電防止フむ
ルムの特長がある。かかる甚途に察しおは、バむ
ンダヌによる被膜圢成性垯電防止剀を探玢し䞔぀
改質をすゝめる方向よりも垯電防止胜及び最滑䜜
甚が混合された単分子膜的な油膜の圢成をはかる
方が埗策で、掻性剀の耇合による効果をうたくひ
きだすこずにより、前蚘バむンダヌ型塗垃剀より
も、皮々の環境条件に斌お遥かに耐久性のある衚
面を圢成したのが本発明が埓来技術に比しおすぐ
れおいる点がある。 実斜䟋 本発明の内容をより明瞭にするため、曎に実斜
䟋をあげお説明する。 実斜䟋及び比范䟋 カチオン化率72のオレむルむミダゟリン゚ト
サルプヌト、HLBがのポリオキシ゚チレン
オクチルプニル゚ヌテル及びプロピオン酞ナト
リりムからなり、その比率有効成分が66
27である垯電防止剀を1.5重量の割合で含
む氎溶液を、む゜プロパノヌル氎重
量比からなる混合溶媒で倍に皀釈し、厚み
36Όのポリ゚チレンテトフタレヌトフむルム䞊に
未也燥状態で片面m2になるようにロヌル塗
工し、80〜120℃の熱炉を15.6secで通過せしめ也
燥せしめた。この捲きずりロヌルを60℃に調節さ
れたクリヌンルヌム内で42.3hr゚ヌゞングし、該
垯電防止剀を非塗垃面に転写せしめた。このフむ
ルムの衚面をJISK6768の方法で衚面匵力の枬定
を行぀たが、䜕れの郚䜍においおも54dynecm
以䞊の倀を瀺した。たた振動容量型電䜍差枬定噚
TR―84M型タケダ理研瀟補で衚面抵抗を枬
定したずころ20℃×65RHで平均6.5×10゜Ω
cmであ぀た。これを確認したあず該塗垃原反を
2″巟にクリヌン床100の郚屋でマむクロスリ
ツトレリヌルに捲きず぀たサンプル 䞀方、比范のために、被膜圢成性垯電防止剀ず
しお第玚アンモニりム塩カチオン型アクリル系
導電性暹脂゚レコンドPQ―10PQ―50
綜研化孊瀟補を塗垃し、ドラむ膜厚が0.4Όの
垯電防止フむルムを埗、前蚘ず同じようにしおリ
ヌルに捲き䞊げリヌダテヌプを調補した。このフ
むルムは20℃×65RHで1.3×10゜Ωcmの衚面
抵抗倀を瀺したサンプル たた、党く未塗垃の状態に斌おもブランクフむ
ルムずしおのリヌダヌテヌプを準備したサンプ
ル。なおブランクの未塗垃フむルムは1016
Ωcm以䞊の抵抗倀であ぀た。 次に垂販のVHS系ビデオテヌプノヌマルタ
むプ20巻を各ロツト番号の違うものに぀いお入
手し、これをクリヌンベンチ内で解䜓し倫々巻
を組ずしおリヌダヌテヌプ郚分を前蚘詊䜜品に
す぀かり眮きかえたものを準備した。VHS系ビ
デオデツキ耇数台を甚いお40℃×80RH雰囲気
䞋で100回シダトルテストを行぀たあず、倫々に
぀いおドロツプアりトの状況を枬定し
た。その結果を䞋蚘衚に瀺す。 なお、ドロツプアりトの枬定は䞋蚘
の方法によ぀た。 テヌプを分間走行させた埌で、シバ゜ク補ド
ロツプアりトカりンタヌVH01B型を甚いお
15ÎŒsec―20dBの分間圓りの個数を枬定
し、この枬定を回繰り返しおその平均倀を求め
た。 衚におけるは垂販テヌプをそのたゝで枬
定した際の個数をずし、これに察する割
合を瀺す。
INDUSTRIAL APPLICATION FIELD The present invention relates to a plastic film with excellent antistatic properties and slipperiness. More specifically, the present invention relates to a flexible film that has excellent antistatic properties and slip properties, and has surface characteristics suitable for use as a slip sheet for holding the end face of a magnetic tape leader tape or a magnetic tape coil. Prior Art Various methods have been proposed to reduce electrostatic damage caused by charging of plastic films. One such method is to add and blend a substance with antistatic ability and conductivity to a polymer in order to prevent static electricity on the entire surface and on the polymer. Although this method is certainly superior to the method of applying an antistatic agent to the surface in terms of the durability of the effect, on the other hand, it does not cause coloration under the various heat conditions that occur when forming a film. Furthermore, it is technically extremely difficult to suppress the deterioration of physical properties due to the mixing of additives and to prevent surface defects from occurring due to poor compatibility.Furthermore, surface adhesion due to bleed-out of the above-mentioned additives is extremely difficult. It is also extremely difficult to overcome problems such as increased sexiness, and there are also problems such as unevenness in bleedability. On the other hand, the method of applying a small amount of antistatic agent directly to the film has the advantage of being simple, but has recently been avoided because its effect is temporary and the antistatic agent is likely to fall off. For this reason, research and development of antistatic agents has focused exclusively on carrying out reactive crosslinking of conductive polymers or a portion thereof on the film surface, and various improvements have been made. However, even if the coating film itself is modified to prevent static electricity, it may still lack adhesion to the substrate, especially polyester film, and if too much emphasis is placed on adhesion, the surface will remain sticky. It is virtually difficult to balance these antinomy phenomena. Problems are unlikely to occur especially when polyester films coated with antistatic agents are used statically, but when used in situations where something comes into contact with the surface and causes it to be rubbed. It cannot be said that resin film-forming antistatic agents or antistatic agents that have been modified to have reactive crosslinking properties will necessarily provide sufficient surface properties. For example, leader tapes for magnetic tapes using such antistatic polyester films are fed out and rolled up many times in a cassette, and the environment in which they can be used is 60°C and 80% humidity.
However, under such conditions, blocking phenomenon of the coating layer may occur, or extremely small amounts of magnetism generated from the edge of the magnetic tape due to repeated use of the tape may occur. The powder adheres and accumulates on the coated surface, which has become sticky, and is further transferred to the magnetic tape surface, causing drop-outs and other deterioration of properties. Furthermore, oligomer substances precipitated from the antistatic coating layer also tend to cause scum in a high temperature and high humidity atmosphere. To give one example, when a specific quaternary ammonium salt-containing acrylic conductive resin, polyamine sulfone, polystyrene sulfonate resin, etc. is coated on a polyester film, the desired antistatic ability is developed, but There are many problems in terms of practical properties, such as scum accumulating on the cassette pin under high humidity conditions, transfer to the back side of the film, and because it is sticky, it attracts various types of dust. Therefore, if we try to improve the properties of the coating film and make the surface layer harder, crazes will occur when the surface is rubbed, and eventually they will be rolled into the tape as scrapes, reducing the antistatic ability and causing various problems. develop into trouble. For example, a leader tape obtained by partially hydrolyzing silicon tetrachloride in a lower alcohol and/or ester solvent and coating a polyester film with a coating agent that has excellent antistatic properties. As mentioned above, shavings are likely to be generated. Furthermore, recently, various antistatic agents have appeared in which vinyl and acrylic prepolymers having quaternary ammonium salts or sulfonate salts in their side chains are crosslinked by ultraviolet irradiation or electron beam irradiation. However, none of them have sufficient characteristics for the reasons mentioned above. When considering antistatic films, especially leader tapes for magnetic tapes, from this point of view, film-forming antistatic agents have a problem of durability to varying degrees. The causes of this are abrasion on the front and back sides of the film due to tape feeding and winding, contact abrasion with pins in the cassette, rapid changes in coating film properties under high temperature and high humidity, and adhesion of foreign matter to the adhesive surface, etc. simultaneously or in combination. This seems to be due to the fact that it occurs over time. In this sense, conventional film-forming antistatic agents have been considered superior in durability, and there seems to have been no interest in applying surfactant-type antistatic agents. Purpose of the Invention The present inventor has discovered that the characteristics of magnetic tape leader tape or slip sheet during use, that is, the durability against repeated surface contact and peeling phenomenon, are due to the interface rather than the film to which a film-forming antistatic agent is applied. We thought that a film with an active agent-type antistatic agent and a monomolecular layer on the surface that has antistatic properties would be more suitable, and we conducted extensive studies from this perspective. As a result, although it was not possible to obtain sufficiently satisfactory results with a surfactant alone, it was discovered that by combining a specific surfactant, it was possible to provide extremely excellent characteristics as a leader tape or slip sheet, and the present invention was developed. reached. An object of the present invention is to provide a plastic film with excellent antistatic properties and slipperiness.
Another object of the present invention is to provide a flexible film having surface characteristics suitable for use as a slip seal when pressing the end face of a magnetic tape leader tape or a magnetic tape coil. Structure and Effects of the Invention According to the present invention, a coating composition containing olelimidazoline ethosulfate, polyoxyethylene alkyl phenyl ether, and a fatty acid metal salt is applied to at least one surface of a plastic film. This is achieved by an antistatic film characterized by coating a substance to a thickness that imparts antistatic properties. Among the coating compositions constituting the antistatic film of the present invention, oleyl imidazoline ethosulfate is a compound having the following structure, and its cation percentage is preferably 50 to 90%. Here, R is CH3 ( CH2 ) 7CH =CH( CH2 ) -7 . In addition, polyoxyethylene alkyl phenyl ether has 8 to 10 repeats of oxyethylene.
(Additional mole number: 8 to 10) is preferable, and those in which the alkyl group is an octyl group to a nonyl group are preferable. Furthermore, HLB (Hydrophile-Lipophile)
Balance) is preferably in the range of 6 to 12. Furthermore, fatty acid metal salts within a range that can be dissolved in water are effective, and ranges in which the number of carbon atoms is too large are excluded. The most desirable ones are C1 - C3 fatty acids such as sodium or potassium. If any one of the constituent components of the coating composition is absent, it is impossible to bring out good properties, but when these three specific components work together, an excellent antistatic film can be obtained. For example, if either olelimidazoline ethosulfate or fatty acid metal salt is lacking, the antistatic ability will be insufficient. In particular, if olelimidazoline ethosulfate is missing, the sliding properties under high temperature and high humidity conditions will rapidly decrease, the surface will become more sticky, and when dust is attached, it will be difficult to remove it from the surface. On the other hand, if lower fatty acid metal salts are lacking, the antistatic performance at high temperatures and low humidity will be greatly reduced. In addition, the active ingredient does not penetrate into the film structure at all, and the effect of the agent disappears quickly. In addition, lack of the polyoxyethylene alkyl phenyl ether component causes problems in uniformly coating plastic films, especially polyester films, and in particular, the monomolecular film of the antistatic agent is easily removed by other materials, resulting in poor overall durability. decreases.
That is, it seems that this component plays an important role when the surface is repeatedly contacted, and serves to anchor the monomolecular film to the substrate. An antistatic film suitable as a leader tape and a slip sheet can be achieved by applying the above-mentioned specific mixed composition, but it is actually used as a leader tape of a magnetic tape, in which case it bleeds out from the magnetic layer. In order for the lubricant to exhibit its full effect without causing any interaction even when it comes into contact with the surface coated with this specific composition, it is desirable that the above-mentioned components be in a specific proportion relationship. 77-50% by weight of oleimidazoline ethosulfate, 20-35% by weight of polyoxyethylene alkyl phenyl ether, and 3-3% by weight of a fatty acid metal salt such as potassium acetate.
It can be said that 15% by weight is the optimum condition since it gives the antistatic film of the present invention the best characteristics. Although magnetic tapes outside this range still have certain characteristics, the type of commercially available magnetic tape, i.e., the antistatic agent, wetting agent, etc. contained in the magnetic layer, and the antistatic agent on the surface of the leader tape have some influence. It is difficult to say that it is perfect in terms of reliability, as there may be conflicts between the two. The composition specified in the present invention and the antistatic agent prepared in a more suitable composition ratio can contain 10% of the active ingredient.
It may be applied onto a plastic film, particularly a polyester film, as an aqueous solution or a mixed solution of water and a lower alcohol such as methanol, ethanol, isopropanol, etc. at a concentration of 0.01% by weight. Known coating methods can be used to apply this, such as roll coating, gravure coating, roll brushing, spray coating, air knife coating, impregnation, and curtain methods, which can be used independently or in combination. The amount of application is
It is important to keep the amount to the minimum necessary amount, as it is not only uneconomical to use a large amount unnecessarily, but also only promotes stickiness. As a rough guide, the active ingredient is 0.5g/
m2 to 0.005g/ m2 , and the coating uniformity was measured using JISK6768 on the surface of arbitrarily sampled coated film pieces, and the surface tension showed wettability of 54dyne/cm or more at room temperature. There is no problem if you do. When coating a polyester film, it should be applied during the process of manufacturing the polyester film, that is, immediately after melt extruding and casting polyester, especially polyethylene terephthalate (unstretched film), or either vertically or horizontally. The antistatic composition may be applied in-line at a relatively high concentration to the surface layer of the base material immediately after stretching, or it may be applied off-line to a so-called polyester film that has already been subjected to biaxially stretched crystal orientation treatment. It may also be applied by coating. The polyester mentioned here refers to a polyester synthesized from an aromatic dibasic acid or its ester-forming derivative and a diol or its ester-forming derivative, such as polyethylene terephthalate or its copolymer, polyethylene naphthalate or its copolymer, etc. Furthermore, a blend of these polymers and a small proportion of other resins may be used.
Such polyesters contain various additives such as various ultrafine inorganic powders, colorants, ultraviolet absorbers, lubricants,
Conductive substances, flame retardants, stabilizers, etc. may be contained in amounts that do not impair the purpose of the present invention. In addition to the above-mentioned polyester film, the base material used in the present invention may include biaxially stretched nylon film,
Acetate film, OPP, polysulfone,
Even when applied to films made of polyether sulfone, aromatic polyamide, etc., certain effects can be obtained. Polyester film is the best material in which the antistatic agent can maximize its properties as a leader tape or slip sheet in relation to the surface. In order to enhance adhesion with the antistatic agent monolayer, polyester films are subjected to treatments such as corona treatment, plasma treatment, primer coating treatment, sandblasting treatment, and etching treatment, either singly or in combination.
It may be done prior to application of the coating composition, or it may be a base printed on one or both sides, for example. Further, there is no problem in including a small amount of some functional substance in the antistatic agent composition as long as this property is not significantly deteriorated. The antistatic film thus obtained can be applied to various uses, but the antistatic film of the present invention exhibits properties suitable for use as a slip sheet, especially soda tape for magnetic tape. In other words, the applied effective substance continues to function without disappearing when it comes into contact with the same surface during feeding and winding up like a leader tape, when it comes into contact with a metal fixing pin in the cassette, and even when it comes into contact with the surface of the magnetic layer. In this sense, the antistatic film of the present invention has a feature. For such applications, it is better to form a monomolecular oil film with a mixture of antistatic ability and lubricating action than to search for and modify film-forming antistatic agents using binders. Compared to the prior art, the present invention advantageously takes advantage of the combination of activators to form a surface that is far more durable under various environmental conditions than the binder-type coating agent. There are some good things about it. EXAMPLES In order to make the content of the present invention clearer, further examples will be given and explained. Example 1 and Comparative Example Consisting of olelimidazoline ethosulfate with a cationization rate of 72%, polyoxyethylene octyl phenyl ether with an HLB of 8, and sodium propionate, the ratio (active ingredients) of which is 66:
An aqueous solution containing 1.5% by weight of an antistatic agent with a ratio of 27:7 was diluted 6 times with a mixed solvent consisting of isopropanol/water = 7/3 (weight ratio).
It was roll coated onto a 36Ό polyethylene tetophthalate film in an undried state at a coating weight of 6 g/m 2 on one side, and dried by passing through a heat oven at 80 to 120°C for 15.6 seconds. This winding roll was aged for 42.3 hours in a clean room controlled at 60°C to transfer the antistatic agent to the non-coated surface. The surface tension of this film was measured using the JISK6768 method, and the surface tension was 54 dyne/cm at all locations.
The above values were shown. Also, vibratory capacitance type potentiometer
When surface resistance was measured using TR-84M model (manufactured by Takeda Riken), the average was 6.5 x 10゜Ω/at 20℃ x 65%RH.
It was cm. After confirming this, the coated material was rolled into a 1/2" width onto a microslit reel in a room with a cleanliness level of 100 (sample). On the other hand, for comparison, a grade 4 film-forming antistatic agent was used. Ammonium salt cation type acrylic conductive resin (Elecondo PQ-10/PQ-50=5/
5 (manufactured by Soken Kagaku Co., Ltd.) to obtain an antistatic film with a dry film thickness of 0.4 ÎŒm, and wound it onto a reel in the same manner as described above to prepare a leader tape. This film showed a surface resistance value of 1.3 x 10゜Ω/cm at 20℃ x 65% RH (sample) In addition, a leader tape was prepared as a blank film even in a completely uncoated state (sample) . The blank uncoated film is 10 16
The resistance value was Ω/cm or more. Next, we obtained 20 volumes of commercially available VHS video tapes (normal type) with different lot numbers, disassembled them in a clean bench, made a set of 5 volumes each, and replaced the leader tape part with the prototype. I prepared a replacement. After conducting a shuttle test 100 times in an atmosphere of 40°C and 80% RH using multiple VHS video decks, the dropout (D/O) situation was measured for each. The results are shown in the table below. Note that dropout (D/O) was measured by the following method. After running the tape for 5 minutes, use a Shibasoku drop-out counter model VH01B to
O (number of pieces per minute at 15 ÎŒsec-20 dB) was measured, and this measurement was repeated five times to obtain the average value. D/O in the table indicates the ratio with respect to the number of D/O when measuring a commercially available tape as is, which is 1.

【衚】 実斜䟋  35℃オル゜クロロプノヌル䞭で枬定した極限
粘床0.62のポリ゚チレンテレフタレヌト結晶融
解熱9.8Calを゚クストルヌダヌでダむから
抌出しし、これを40℃に冷华したドラム䞊で静電
印加し぀぀冷华しお厚さ453Όの未延䌞フむルム
を埗、続いおこれを93℃に加熱した金属ロヌル䞊
で長手方向に3.6倍に延䌞し、曎に埗られた軞
延䌞フむルム䞊に、カチオン化率72のオレむル
むミダゟリン゚トサルプヌト及びHLBがの
ポリオキシ゚チレンオクチルプニル゚ヌテル及
びプロピオン酞ナトリりムの比率有効成分が
6130である組成物を1.5重量含有する氎
溶液を、む゜プロパノヌル氎重量比
からなる混合溶媒で倍に皀釈し、埗られた溶液
を未也燥塗垃量m2になるようにロヌル塗工
した。その埌盎ちに95℃の予熱ゟヌンを経お105
℃で3.6倍に延䌞し、続いお210℃で4.1秒間熱凊
理を斜し、平均厚さ36Όの二軞延䌞フむルムを埗
た。このフむルムの凊理面の20℃×65RHでの
衚面固有抵抗倀は3.5×1010Ωであり、衚面匵力
は54dynecm以䞊であ぀た。たた、実斜䟋で
瀺した方法ず同様にVHS系ビデオテヌプのリヌ
ダヌテヌプずしお䜿甚したずきのの枬定結
果は、0.96で良奜であ぀た。
[Table] Example 2 Polyethylene terephthalate with an intrinsic viscosity of 0.62 (heat of crystal fusion 9.8 Cal/g) measured in orthochlorophenol at 35°C was extruded from a die using an extruder, and it was left to stand still on a drum cooled to 40°C. An unstretched film with a thickness of 453Ό was obtained by cooling while applying an electric current, and then stretched 3.6 times in the longitudinal direction on a metal roll heated to 93°C. The ratio of olelimidazoline ethosulfate with a cationization rate of 72%, polyoxyethylene octyl phenyl ether with an HLB of 8, and sodium propionate (active ingredients) is
An aqueous solution containing 1.5% by weight of a composition of 61:30:9 was mixed with isopropanol/water = 7/3 (weight ratio).
The solution was diluted twice with a mixed solvent consisting of: Then immediately go through a preheating zone of 95℃ to 105℃.
The film was stretched 3.6 times at ℃ and then heat treated at 210 ℃ for 4.1 seconds to obtain a biaxially stretched film with an average thickness of 36ÎŒ. The surface resistivity value of the treated surface of this film at 20° C. x 65% RH was 3.5×10 10 Ω, and the surface tension was 54 dyne/cm or more. Furthermore, when used as a leader tape for a VHS video tape in the same manner as in Example 1, the D/O measurement result was 0.96, which was good.

Claims (1)

【特蚱請求の範囲】  プラスチツクフむルムの少くずも䞀方の衚面
に、オレむルむミダゟリン゚トサルプヌト、ポ
リオキシ゚チレンアルキルプニル゚ヌテル及び
脂肪酞金属塩を含有する塗垃組成物を垯電防止性
付䞎の膜厚に塗垃しおなるこずを特城ずする垯電
防止フむルム。  オレむルむミダゟリン゚トサルプヌトは䞋
蚘構造 ここで、はCH3CH27CHCHCH2―7で
ある。 を有する化合物であり、カチオン率が50〜90で
あるこずを特城ずする特蚱請求の範囲第項蚘茉
の垯電防止フむルム。  ポリオキシ゚チレンアルキルプニル゚ヌテ
ルがポリオキシ゚チレンオクチルプニル゚ヌテ
ルたたはポリオキシ゚チレンノニルプニル゚ヌ
テルであるこずを特城ずする特蚱請求の範囲第
項蚘茉の垯電防止フむルム。  ポリオキシ゚チレンアルキルプニル゚ヌテ
ルが付加モル数〜10で、HLB6〜12の範囲のも
のであるこずを特城ずする特蚱請求の範囲第項
たたは第項蚘茉の垯電防止フむルム。  脂肪酞金属塩が炭玠数〜の脂肪酞のアル
カリ金属塩であるこずを特城ずする特蚱請求の範
囲第項蚘茉の垯電防止フむルム。  脂肪酞金属塩がプロピオン酞ナトリりムであ
るこずを特城ずする特蚱請求の範囲第項たたは
第項蚘茉の垯電防止フむルム。  塗垃組成物䞭の各成分が、オレむルむミダゟ
リン゚トサルプヌト77〜50重量、ポリオキシ
゚チレンアルキルプニル゚ヌテル20〜35重量
及び脂肪酞金属塩〜15重量の割合からなるこ
ずを特城ずする特蚱請求の範囲第項ないし第
項のいずれか蚘茉の垯電防止フむルム。  塗垃組成物が有効成分0.01〜10重量の氎溶
液たたは氎―䜎玚アルコヌル溶液で塗垃されおな
るこずを特城ずする特蚱請求の範囲第項蚘茉の
垯電防止フむルム。  塗垃組成物の塗垃がフむルムの補造工皋䞭で
或は補造埌に行なわれたこずを特城ずする特蚱請
求の範囲第項蚘茉の垯電防止フむルム。  塗垃組成物を、フむルム党面においおJIS
―6768で枬定した衚面匵力の倀が54dynecm
以䞊ずなる割合で塗垃しおなるこずを特城ずする
特蚱請求の範囲第項蚘茉の垯電防止フむルム。  プラスチツクフむルムがポリ゚ステルフむ
ルムであるこずを特城ずする特蚱請求の範囲第
項蚘茉の垯電防止フむルム。  ポリ゚ステルフむルムがポリ゚チレンテレ
フタレヌトフむルムであるこずを特城ずする特蚱
請求の範囲第項蚘茉の垯電防止フむルム。  フむルムが磁気テヌプ甚リヌダヌテヌプた
たはスリツプシヌト甚のフむルムであるこずを特
城ずする特蚱請求の範囲第項蚘茉の垯電防止フ
むルム。
[Scope of Claims] 1. A coating composition containing olelimidazoline ethosulfate, polyoxyethylene alkyl phenyl ether, and fatty acid metal salt is applied to at least one surface of a plastic film to a thickness that imparts antistatic properties. An antistatic film characterized by: 2 Oleylimidazoline ethosulfate has the following structure Here, R is CH3 ( CH2 ) 7CH =CH( CH2 ) -7 . The antistatic film according to claim 1, which is a compound having a cation content of 50 to 90%. 3. Claim 1, wherein the polyoxyethylene alkyl phenyl ether is polyoxyethylene octyl phenyl ether or polyoxyethylene nonyl phenyl ether.
Antistatic film as described in section. 4. The antistatic film according to claim 1 or 3, wherein the polyoxyethylene alkyl phenyl ether has an added mole number of 8 to 10 and an HLB of 6 to 12. 5. The antistatic film according to claim 1, wherein the fatty acid metal salt is an alkali metal salt of a fatty acid having 1 to 3 carbon atoms. 6. The antistatic film according to claim 1 or 5, wherein the fatty acid metal salt is sodium propionate. 7 Each component in the coating composition is 77 to 50% by weight of oleyl imidazoline ethosulfate and 20 to 35% by weight of polyoxyethylene alkyl phenyl ether.
and fatty acid metal salt in a proportion of 3 to 15% by weight, Claims 1 to 6
The antistatic film described in any of the above. 8. The antistatic film according to claim 1, wherein the coating composition is coated with an aqueous solution or a water-lower alcohol solution containing 0.01 to 10% by weight of the active ingredient. 9. The antistatic film according to claim 1, wherein the coating composition is applied during or after the film manufacturing process. 10 Apply the coating composition to the entire surface of the film according to JIS standards.
The surface tension value measured with K-6768 is 54dyne/cm
The antistatic film according to claim 1, characterized in that it is coated in the above ratio. 11 Claim 1 characterized in that the plastic film is a polyester film
Antistatic film as described in section. 12. The antistatic film according to claim 11, wherein the polyester film is a polyethylene terephthalate film. 13. The antistatic film according to claim 1, wherein the film is a leader tape for a magnetic tape or a film for a slip sheet.
JP59121933A 1984-06-15 1984-06-15 Antistatic film Granted JPS612740A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59121933A JPS612740A (en) 1984-06-15 1984-06-15 Antistatic film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59121933A JPS612740A (en) 1984-06-15 1984-06-15 Antistatic film

Publications (2)

Publication Number Publication Date
JPS612740A JPS612740A (en) 1986-01-08
JPH0133494B2 true JPH0133494B2 (en) 1989-07-13

Family

ID=14823521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59121933A Granted JPS612740A (en) 1984-06-15 1984-06-15 Antistatic film

Country Status (1)

Country Link
JP (1) JPS612740A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565608B2 (en) * 2002-12-16 2010-10-20 竹本油脂株匏䌚瀟 Surface treatment agent for synthetic polymer film, surface treatment method for synthetic polymer film, and surface-treated synthetic polymer film

Also Published As

Publication number Publication date
JPS612740A (en) 1986-01-08

Similar Documents

Publication Publication Date Title
US4213870A (en) Cleaning and lubricating compositions and method of using the same
US4268583A (en) Antistatic films
JPS6410189B2 (en)
EP0764708B1 (en) Antistatic polyester film
US3347362A (en) Pressure sensitive adhesive tapes with anti-static edge coatings
JP3589232B2 (en) Biaxially stretch coated polyester film roll
JPS61179736A (en) Shape and manufacture thereof
JPH0133494B2 (en)
JP2003237005A (en) Coating film
KR20160056533A (en) Antistatic coating composition and antistatic polyester film using the same
KR20160122100A (en) Antistatic coating composition and antistatic polyester film using the same
JP5404733B2 (en) Coating film
JPH049669B2 (en)
JPS6356068B2 (en)
JPS61287742A (en) Easily adhesive film and manufacture thereof
JPH07304890A (en) Electrically-conductive film
JP4217036B2 (en) Antistatic film
JP3134467B2 (en) Leader tape for magnetic tape
JP3212828B2 (en) Laminated film
JPS61228956A (en) Easily adhesive polyester film and manufacture thereof
JPH04255980A (en) Slip sheet for cassette
US3524762A (en) Polyester film coated with werner chrome complexes and chloral
JP3312399B2 (en) Easy adhesion laminated polyester film
JPH02229838A (en) Readily bondable polyester film
JPH05166169A (en) Polyester group film magnetic recording medium

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term