JPH0132650B2 - - Google Patents

Info

Publication number
JPH0132650B2
JPH0132650B2 JP55038154A JP3815480A JPH0132650B2 JP H0132650 B2 JPH0132650 B2 JP H0132650B2 JP 55038154 A JP55038154 A JP 55038154A JP 3815480 A JP3815480 A JP 3815480A JP H0132650 B2 JPH0132650 B2 JP H0132650B2
Authority
JP
Japan
Prior art keywords
resin film
ladder
oxygen
plasma
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55038154A
Other languages
Japanese (ja)
Other versions
JPS56135928A (en
Inventor
Shiro Takeda
Minoru Nakajima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3815480A priority Critical patent/JPS56135928A/en
Publication of JPS56135928A publication Critical patent/JPS56135928A/en
Publication of JPH0132650B2 publication Critical patent/JPH0132650B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • H01L21/31116Etching inorganic layers by chemical means by dry-etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Drying Of Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Description

【発明の詳細な説明】 本発明は半導体装置、バルブメモリーなどのラ
ダー型オルガノポリシロキサン樹脂絶縁層をパタ
ーニングする方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for patterning a ladder-type organopolysiloxane resin insulating layer for semiconductor devices, valve memories, etc.

従来基板に設ける絶縁層として、二酸化けい素
またはりん珪素ガラスを化学成長法によつて形成
するか、またはポリイミド系樹脂をスピンコーテ
イングによつて形成した。しかし無機質層は微細
なパターニングが困難であり、またポリイミド系
樹脂は半導体基板上に普通設けられる、たとえば
二酸化けい素または窒化けい素に対する密着性が
悪いので、耐水性が十分ではない。
Conventionally, as an insulating layer provided on a substrate, silicon dioxide or phosphor silicon glass was formed by chemical growth, or polyimide resin was formed by spin coating. However, fine patterning of inorganic layers is difficult, and polyimide resins have poor adhesion to, for example, silicon dioxide or silicon nitride, which are commonly provided on semiconductor substrates, so they do not have sufficient water resistance.

これに対してオルガノポリシロキサンであるシ
リコーン樹脂、なかでもラダー型オルガノポリシ
ロキサンは二酸化けい素などに対する密着性が良
好であり、また耐熱性が高い利点を有する。シリ
コーン樹脂は、従来半導体装置の保護膜として使
用していたが、微細加工プロセスへの応用として
は、本発明者等の特願昭54−077557号がラダー型
オルガノポリシロキサン樹脂(以下シリコーン樹
脂と略称する)を湿式エツチングによつてパター
ニングする方法を開示している。
On the other hand, silicone resins that are organopolysiloxanes, especially ladder-type organopolysiloxanes, have the advantage of good adhesion to silicon dioxide and high heat resistance. Silicone resin has conventionally been used as a protective film for semiconductor devices, but for application to microfabrication processes, the present inventors' patent application No. 1983-077557 proposed ladder-type organopolysiloxane resin (hereinafter referred to as silicone resin). Discloses a method of patterning a material (abbreviated as "abbreviation") by wet etching.

本発明のパターニング形成法は、シリコーン樹
脂膜を乾式エツチングするものである。この乾式
エツチングにおいて、反応ガスとして酸素のみを
使用するときは、シリコーン樹脂膜はほとんどエ
ツチングされない。またふつ化炭素またはふつ化
炭化水素のみを使用するときは、アルキル基が重
合したと考えられる残渣が残留する。さらに、乾
式エツチングしたときのレジストは湿式によつて
は除去することが困難であるので、レジストも乾
式エツチングによつて除去しようと、反応ガスと
して酸素のみを使用するときは、パターニングさ
れたシリコーン樹脂にクラツクが入る。これは、
酸素プラズマによつてシリコーン樹脂のアルキル
基が除去されて、シリコーン樹脂膜の表面が二酸
化けい素によつて蔽われ、熱膨張係数が二酸化け
い素よりもシリコーン樹脂が大きいので、加熱後
冷却されたときにシリコーン樹脂膜は本体が表面
よりも収縮の程度が大きくなるためであると考え
られる。
The patterning method of the present invention involves dry etching a silicone resin film. In this dry etching, when only oxygen is used as the reactive gas, the silicone resin film is hardly etched. Furthermore, when only fluorinated carbon or fluorinated hydrocarbon is used, a residue that is considered to be the result of polymerization of alkyl groups remains. Furthermore, it is difficult to remove the resist after dry etching by wet etching, so when using only oxygen as a reactive gas to remove the resist by dry etching, it is difficult to remove the resist by wet etching. There is a crack. this is,
The alkyl group of the silicone resin was removed by oxygen plasma, and the surface of the silicone resin film was covered with silicon dioxide, and since the coefficient of thermal expansion of the silicone resin was larger than that of silicon dioxide, it was heated and then cooled. This is thought to be because the main body of the silicone resin film sometimes shrinks to a greater extent than the surface.

本発明の目的はこれらの欠点を解消することで
ある。
The aim of the invention is to eliminate these drawbacks.

本出願の一つの発明として、上記目的の一面は
基板上のシリコーン樹脂膜上にホトレジスト層を
設け、この層に所定のパターンを描画して、シリ
コーン樹脂膜を乾式エツチングするとき、反応ガ
スとして5〜30体積%を含む低級のふつ化炭素ま
たはふつ化炭化水素をプラズマ化してエツチング
することを特徴とする、シリコーン樹脂のパター
ン形成方法によつて達成することができる。
As one invention of the present application, one aspect of the above object is to provide a photoresist layer on a silicone resin film on a substrate, draw a predetermined pattern on this layer, and dry-etch the silicone resin film by using 5 as a reactive gas. This can be achieved by a silicone resin pattern forming method characterized in that lower fluorinated carbon or fluorinated hydrocarbon containing ~30% by volume is converted into plasma and etched.

本出願の他の発明として、上記目的の同じく一
面は、基板上のシリコーン樹脂膜上にホトレジス
ト層を設け、この層に所定のパターンを描画し
て、シリコーン樹脂膜を乾式エツチングすると
き、反応ガスとして低級のふつ化炭素またはふつ
化炭化水素をプラズマ化してエツチングする工程
と、酸素をプラズマ化してエツチングする工程と
を任意の順序で交互に行なうことを特徴とする、
シリコーン樹脂のパターン形成方法によつて達成
することができる。
Another invention of the present application is to provide a photoresist layer on a silicone resin film on a substrate, draw a predetermined pattern on this layer, and dry-etch the silicone resin film by dry etching the silicone resin film. The method is characterized in that a step of turning low-grade fluorinated carbon or fluorinated hydrocarbon into plasma and etching it, and a step of turning oxygen into plasma and etching it are carried out alternately in any order,
This can be achieved by a silicone resin pattern forming method.

本出願のさらに他の発明として、上記目的の他
の面は、上記いずれかの方法によつてエツチング
を終了したシリコーン樹脂膜上のホトレジストを
乾式除去するとき、反応ガスとして酸素2〜50体
積%を含有する低級のふつ化炭素またはふつ化炭
化水素をプラズマ化して除去することを特徴とす
る、シリコーン樹脂のパターン形成方法によつて
達成される。
As still another invention of the present application, another aspect of the above object is that when the photoresist on the silicone resin film that has been etched by any of the above methods is dry removed, 2 to 5% by volume of oxygen is used as the reactive gas. This is achieved by a silicone resin pattern forming method characterized by removing lower fluorinated carbons or fluorinated hydrocarbons containing .

これらのプラズマエツチングおよびプラズマア
ツシングにおいて使用するラダー型オルガノポリ
シロキサンは下記式(1)で表わされる。
The ladder type organopolysiloxane used in these plasma etching and plasma ashing processes is represented by the following formula (1).

式中、4個のR2は同一または相異なり、それ
ぞれが水素、メチルまたはエチルであり、2n個
のR1は同一または相異なり、半数以上のR1はメ
チルであるが、残りのR1はメチル、エチル、フ
エニル、クロルフエニル、ヒドロキシ、メトキシ
またはエトキシであり、nは数平均分子量を1500
〜200000とするのに十分な整数である。さらに、
本発明の目的に対しては、R1がすべてメチルで
あるラダーメチルポリシロキサンが特に好まし
い。
In the formula, 4 R 2 are the same or different and each is hydrogen, methyl or ethyl, 2n R 1 are the same or different, and more than half of R 1 are methyl, but the remaining R 1 is methyl, ethyl, phenyl, chlorphenyl, hydroxy, methoxy or ethoxy, and n is the number average molecular weight of 1500
~200000 is a sufficient integer. moreover,
For purposes of the present invention, ladder methyl polysiloxanes in which all R 1 are methyl are particularly preferred.

プラズマエツチング用のレジストは、ボジ型ま
たはネガ型のいずれのレジストをも使用すること
ができる。
As the resist for plasma etching, either a positive type resist or a negative type resist can be used.

反応ガスとして使用する低級のふつ化炭素また
はふつ化炭化水素は、たとえば四ふつ化メタン
CF4、三ふつ化メタンCHF3、八ふつ化プロパン
などを使用することができる。シリコーン樹脂を
エツチングするときに使用するふつ化物ガスに含
む酸素が30体積%を超えるときは、エツチングの
速度が極端に遅くなつて実用的ではない。なお酸
素を全く含まない場合も、かなり長時間エツチン
グすれば有機物と考えられる残渣を除去すること
ができるが、実用的ではないので、酸素5体積%
以上を本発明の範囲に含むものとする。さらに、
酸素を含まないふつ化物ガスと酸素とを交互に使
用してエツチングするときも、所定のパターンを
実用的な速度で得ることができる。シリコーン樹
脂膜上に残つたレジストのアツシングに使用する
ふつ化物ガスは、含有する酸素が50体積%を超え
るとシリコーン樹脂膜も少しくエツチングされ、
さらに2体積%より少ないとシリコーン樹脂膜上
にレジストの残渣が残つたので、シリコーン樹脂
膜の表面においてアルキル基が反応して酸化けい
素層が形成されることを防止できかつ、レジスト
を完全に除去できる酸素の含量は2〜50体積%で
ある。
The lower fluorinated carbons or fluorinated hydrocarbons used as reaction gases are, for example, methane tetrafluoride.
CF 4 , methane trifluoride CHF 3 , propane octafluoride, etc. can be used. If the fluoride gas used when etching silicone resin contains more than 30% by volume of oxygen, the etching speed becomes extremely slow and is not practical. Note that even if no oxygen is included, it is possible to remove residues considered to be organic substances by etching for a fairly long time, but this is not practical, so 5% by volume of oxygen is used.
The above shall be included within the scope of the present invention. moreover,
Predetermined patterns can also be obtained at a practical speed when etching using oxygen-free fluoride gas and oxygen alternately. If the fluoride gas used to ash the resist remaining on the silicone resin film contains more than 50% by volume of oxygen, the silicone resin film will be slightly etched.
Furthermore, if it is less than 2% by volume, resist residue will remain on the silicone resin film, so it is possible to prevent the alkyl groups from reacting on the surface of the silicone resin film and form a silicon oxide layer, and to completely remove the resist. The content of oxygen that can be removed is 2-50% by volume.

実施例 1 けい素基板1(第1図)上に熱酸化法により厚
み約1000Åの二酸化けい素層を形成しこの上に数
平均分子量約30000のラーダ型メチルポリシロキ
サンをセロソルブアセテート−トルエンの2:1
体積比混合液に溶解して得た約25重量%濃度の溶
液をスピンコートし、窒素雰囲気中で300℃で60
分間加熱して硬化させ、厚み約10000Åの絶縁膜
2を形成した。この上にポジ型レジスト(東京応
化社製OFPR)をスピンコートし、95℃で20分間
加熱して厚み約10000Åとし、これをパターニン
グして窓を有するレジスト層3を形成し、120℃、
20分間のアフターベークを行なつた(第2図)。
Example 1 A silicon dioxide layer with a thickness of about 1,000 Å is formed on a silicon substrate 1 (Fig. 1) by thermal oxidation, and on this layer, a layer of Radha-type methylpolysiloxane with a number average molecular weight of about 30,000 is coated with 2 of cellosolve acetate-toluene. :1
A solution with a concentration of approximately 25% by weight obtained by dissolving the volume ratio mixture was spin-coated and incubated at 300℃ for 60 minutes in a nitrogen atmosphere.
The insulating film 2 with a thickness of about 10,000 Å was formed by heating and curing for a minute. A positive resist (OFPR manufactured by Tokyo Ohka Co., Ltd.) was spin-coated on top of this, heated at 95°C for 20 minutes to a thickness of about 10,000 Å, patterned to form a resist layer 3 with windows,
After baking was performed for 20 minutes (Figure 2).

反応ガスとして酸素5体積%を含む四ふつ化メ
タンを使用し、真空度3Torrとして、周波数
13.56MHz、電力1KWを印加して発生させた高周
波プラズマを導入した円筒形プラズマエツチング
装置内で、エツチングした。窓あけ部には残渣の
付着が認められず、エツチング時間も10分間と短
かつた。
Tetrafluoromethane containing 5% by volume of oxygen was used as the reaction gas, the vacuum was 3 Torr, and the frequency was
Etching was carried out in a cylindrical plasma etching device into which a high frequency plasma generated at 13.56 MHz and a power of 1 KW was applied. No residue was observed on the window openings, and the etching time was only 10 minutes.

実施例 2 ネガ型レジスト(東京応化社製OMR83)を使
用してレジスト層3を形成したこと、および反応
ガスとして、酸素および八ふつ化プロパンを使用
したことの他は実施例1と同様にして、ラダー型
ポリメチルシロキサンからなるシリコーン樹脂層
をエツチングした。このときはプラズマガスの照
射は3分間ずつ切換えて行ない、合計12分間照射
した。照射の順序は、酸素または八ふつ化プロパ
ンのいずれを先とするときも同様に窓あけ部には
残渣が認められなかつた。
Example 2 The same procedure as in Example 1 was carried out except that the resist layer 3 was formed using a negative resist (OMR83 manufactured by Tokyo Ohka Co., Ltd.) and that oxygen and propane octafluoride were used as the reaction gas. , a silicone resin layer made of ladder-type polymethylsiloxane was etched. At this time, the plasma gas irradiation was switched for 3 minutes at a time for a total of 12 minutes. Regardless of the order of irradiation, whether oxygen or propane octafluoride was applied first, no residue was observed in the window openings.

実施例 3 実施例1で窓あけしてラダー型ポリメチルシロ
キサン膜2を有するけい素基板1のレジスト層3
をアツシングするために、20体積%の酸素を含む
四ふつ化メタンを反応ガスとし、真空度3Torrで
20分間プラズマを照射した。こうしてパターニン
グを完了したシリコーン樹脂膜にはクラツクが認
められず、またエツチングされることもなかつた
(第3図)。なおネガ型レジスト(東京応化社製
OMR83)を使用した実施例2のシリコーン樹脂
膜の場合も、これと同様な結果を得た。
Example 3 Resist layer 3 of silicon substrate 1 having ladder-type polymethylsiloxane film 2 with openings in Example 1
In order to ashe, methane tetrafluoride containing 20% by volume of oxygen was used as the reaction gas, and the vacuum level was 3 Torr.
Plasma was irradiated for 20 minutes. No cracks were observed in the silicone resin film that had been patterned in this manner, and no etching occurred (FIG. 3). In addition, negative resist (manufactured by Tokyo Ohka Co., Ltd.)
Similar results were obtained in the case of the silicone resin film of Example 2 using OMR83).

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明のパターン形成法
の工程図であつて第1図はシリコーン樹脂膜上に
設けた微細加工したレジスト層を有する基板の略
断面図であり、第2図はシリコーン樹脂膜に窓あ
けした基板の略断面図であり、第3図はレジスト
層を除去した後の基板の略断面図である。 1……基板、2……シリコーン樹脂膜、3……
レジスト層。
1 to 3 are process diagrams of the pattern forming method of the present invention, in which FIG. 1 is a schematic cross-sectional view of a substrate having a microfabricated resist layer provided on a silicone resin film, and FIG. FIG. 3 is a schematic cross-sectional view of the substrate with a window formed in the silicone resin film, and FIG. 3 is a schematic cross-sectional view of the substrate after the resist layer has been removed. 1...Substrate, 2...Silicone resin film, 3...
resist layer.

Claims (1)

【特許請求の範囲】 1 基板上のラダー型オルガノポリシロキサン樹
脂膜上にホトレジスト層を設け、その層に所定の
パターンを描画して、樹脂膜を乾式エツチングす
るとき、反応ガスとして酸素5〜30体積%を含む
低級のふつ化炭化水素またはふつ化炭化水素をプ
ラズマ化してエツチングすることを特徴とする、
ラダー型オルガノポリシロキサン樹脂のパターン
形成方法。 2 基板上のラダー型オルガノポリシロキサン樹
脂膜上にホトレジスト層を設け、この層に所定の
パターンを描画して、樹脂膜を乾式エツチングす
るとき、反応ガスとして低級のふつ化炭素または
ふつ化炭化水素をプラズマ化してエツチングする
工程と、酸素をプラズマ化してエツチングする工
程とを任意の順序で交互に行なうことを特徴とす
る、ラダー型オルガノポリシロキサン樹脂のパタ
ーン形成方法。 3 基板上のラダー型オルガノポリシロキサン樹
脂膜上にホトレジスト層を設け、この層に所定の
パターンを描画して、樹脂膜を乾式エツチングす
るとき、反応ガスとして酸素5〜30体積%を含む
低級のふつ化炭素もしくはふつ化炭化水素をプラ
ズマ化してエツチングし、 このエツチングされたラダー型オルガノポリシ
ロキサン樹脂膜上のホトレジストを乾式除去する
とき、反応ガスとして酸素2〜50体積%を含有す
る低級のふつ化炭素またはふつ化炭化水素をプラ
ズマ化して除去することを特徴とする、ラダー型
オルガノポリシロキサン樹脂のパターン形成方
法。 4 基板上のラダー型オルガノポリシロキサン樹
脂膜上にホトレジスト層を設け、この層に所定の
パターンを描画して、樹脂膜を乾式エツチングす
るとき、反応ガスとして低級のふつ化炭素もしく
はふつ化炭化水素をプラズマ化してエツチングす
る工程と、酸素をプラズマ化してエツチングする
工程とを任意の順序で交互に行なつてエツチング
し、 このエツチングされたラダー型オルガノポリシ
ロキサン樹脂膜上のホトレジストを乾式除去する
とき、反応ガスとして酸素2〜50体積%を含有す
る低級のふつ化炭素またはふつ化炭化水素をプラ
ズマ化して除去することを特徴とする、ラダー型
オルガノポリシロキサン樹脂のパターン形成方
法。
[Claims] 1. When a photoresist layer is provided on a ladder-type organopolysiloxane resin film on a substrate, a predetermined pattern is drawn on the layer, and the resin film is dry-etched, 5 to 30% of oxygen is used as a reactive gas. % by volume of low-grade fluorinated hydrocarbons or fluorinated hydrocarbons by turning them into plasma and etching them,
A pattern forming method for ladder-type organopolysiloxane resin. 2. When a photoresist layer is provided on a ladder-type organopolysiloxane resin film on a substrate, a predetermined pattern is drawn on this layer, and the resin film is dry-etched, low-grade fluorinated carbon or fluorinated hydrocarbon is used as a reactive gas. 1. A method for forming a pattern on a ladder-type organopolysiloxane resin, characterized in that a step of converting oxygen into plasma and etching the same and a step of converting oxygen into plasma and etching are performed alternately in an arbitrary order. 3. A photoresist layer is provided on the ladder-type organopolysiloxane resin film on the substrate, and when a predetermined pattern is drawn on this layer and the resin film is dry-etched, a low grade gas containing 5 to 30% by volume of oxygen is used as a reactive gas. When fluorinated carbon or fluorinated hydrocarbon is turned into plasma and etched, and the photoresist on the etched ladder-type organopolysiloxane resin film is dry removed, a low grade gas containing 2 to 50% by volume of oxygen is used as a reactive gas. A pattern forming method for a ladder-type organopolysiloxane resin, which is characterized by removing carbonized carbon or fluorinated hydrocarbon by turning it into plasma. 4. When a photoresist layer is provided on a ladder-type organopolysiloxane resin film on a substrate, a predetermined pattern is drawn on this layer, and the resin film is dry-etched, low-grade fluorinated carbon or fluorinated hydrocarbon is used as a reactive gas. When the photoresist on the etched ladder-type organopolysiloxane resin film is dry-removed by performing etching by alternating the steps of converting oxygen into plasma and etching in an arbitrary order. A method for forming a pattern on a ladder-type organopolysiloxane resin, the method comprising forming a low-grade fluorinated carbon or fluorinated hydrocarbon containing 2 to 50% by volume of oxygen as a reactive gas into plasma and removing it.
JP3815480A 1980-03-27 1980-03-27 Forming method for pattern of silicone resin Granted JPS56135928A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3815480A JPS56135928A (en) 1980-03-27 1980-03-27 Forming method for pattern of silicone resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3815480A JPS56135928A (en) 1980-03-27 1980-03-27 Forming method for pattern of silicone resin

Publications (2)

Publication Number Publication Date
JPS56135928A JPS56135928A (en) 1981-10-23
JPH0132650B2 true JPH0132650B2 (en) 1989-07-10

Family

ID=12517484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3815480A Granted JPS56135928A (en) 1980-03-27 1980-03-27 Forming method for pattern of silicone resin

Country Status (1)

Country Link
JP (1) JPS56135928A (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58147033A (en) * 1982-02-26 1983-09-01 Nippon Telegr & Teleph Corp <Ntt> Pattern formation
JPS5924846A (en) * 1982-07-26 1984-02-08 エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド Dry development for photoresist
JPS59107516A (en) * 1982-12-13 1984-06-21 Nec Corp Manufacture of semiconductor device
JP2503565B2 (en) * 1988-01-21 1996-06-05 三菱電機株式会社 Method for manufacturing semiconductor device
JP2542075B2 (en) * 1989-02-23 1996-10-09 三菱電機株式会社 Method for transferring pattern to silicone ladder resin and etching solution used therefor
JP3094909B2 (en) * 1996-04-19 2000-10-03 日本電気株式会社 Method for manufacturing semiconductor device
JP3193335B2 (en) 1997-12-12 2001-07-30 松下電器産業株式会社 Method for manufacturing semiconductor device
JP4815771B2 (en) * 2004-09-01 2011-11-16 住友電気工業株式会社 Manufacturing method of electrical parts

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136538A (en) * 1975-05-09 1976-11-26 Ibm Method of forming thin film having desired pattern on substrate
JPS5460571A (en) * 1977-10-24 1979-05-16 Cho Lsi Gijutsu Kenkyu Kumiai Dry developing and etching method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51136538A (en) * 1975-05-09 1976-11-26 Ibm Method of forming thin film having desired pattern on substrate
JPS5460571A (en) * 1977-10-24 1979-05-16 Cho Lsi Gijutsu Kenkyu Kumiai Dry developing and etching method

Also Published As

Publication number Publication date
JPS56135928A (en) 1981-10-23

Similar Documents

Publication Publication Date Title
EP0167854B1 (en) Intermediate layer material of three-layer resist system and method of forming resist pattern
US5602060A (en) Process for the production of semiconductor devices
JP4053494B2 (en) Method for removing polysilane from a semiconductor without peeling
US8475666B2 (en) Method for making toughening agent materials
JP5710308B2 (en) Method for producing silicon dioxide film
IE49016B1 (en) Selective etching of polymeric materials embodying silicones via reactor plasmas
JP2009206440A (en) Siliceous film forming method and siliceous film formed thereby
JPH0132650B2 (en)
WO2009157333A1 (en) Shallow trench isolation structure and method for forming the shallow trench isolation structure
JP2005507015A (en) Etch stop resin
JPH08236517A (en) Fluorinated amorphous carbon film material and manufacture thereof and semiconductor device
JP2006152063A (en) New polycarbosilane, method for producing the same, film-forming composition, film and method for forming the same
TWI248138B (en) Electronic device manufacture
JP2850834B2 (en) Method for manufacturing amorphous carbon film and semiconductor device
JP3610745B2 (en) Method for forming interlayer insulating film
JP2542608B2 (en) Diamond semiconductor etching method
JPH07242747A (en) Organosilicon polymer and semiconductor device
JP4513249B2 (en) Manufacturing method of copper damascene structure
JPH0677176A (en) Formation method of pattern of silicone resin
JP3660170B2 (en) Manufacturing method of semiconductor device
JP3204041B2 (en) Method of forming insulating film
JP2000021872A (en) Low-dielectric const. resin compsn., method of forming low-dielectric const. insulation film and manufacturing semiconductor device
Lai et al. Characterization and processing of polyimide thin films for microelectronics application
JP4044759B2 (en) Insulating film forming composition
JPH04262531A (en) Formation of insulating film