JPH0132288B2 - - Google Patents

Info

Publication number
JPH0132288B2
JPH0132288B2 JP57044836A JP4483682A JPH0132288B2 JP H0132288 B2 JPH0132288 B2 JP H0132288B2 JP 57044836 A JP57044836 A JP 57044836A JP 4483682 A JP4483682 A JP 4483682A JP H0132288 B2 JPH0132288 B2 JP H0132288B2
Authority
JP
Japan
Prior art keywords
steel
content
less
strength
tempering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57044836A
Other languages
Japanese (ja)
Other versions
JPS58161721A (en
Inventor
Yoshi Toomoya
Kimitaka Inoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP4483682A priority Critical patent/JPS58161721A/en
Publication of JPS58161721A publication Critical patent/JPS58161721A/en
Publication of JPH0132288B2 publication Critical patent/JPH0132288B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、降伏点80Kg/mm2以上、抗張力90Kg/
mm2以上の強度を有する高張力継目無鋼管の製造方
法に関する。 従来、上記のような高強度の継目無鋼管用素材
としては、Moを0.05〜0.10%程度含有したMn−
Mo系又はMn−Cr−Mo系の鋼が多く用いられて
おり、或いはMnを1.20〜1.70%、Crを0.30〜1.20
%程度含有したMn−Cr系の鋼も一部で使用され
ている。このような成分系の鋼を素材として熱間
圧延(マンネスマン法のような傾斜圧延方式)で
継目無管とした後、焼入し次いで焼戻処理を施し
て製品とされている。 しかし、最近Moの高騰により、Moを含有す
る高張力鋼材はコスト的に不利になり、また従来
のMn−Cr系の高張力鋼は、Moを含有する高張
力鋼に比べて靭性が劣るという難点がある。 本発明は、上記のような従来の高張力継目無鋼
管における問題点の解決を目的とするものであ
り、その狙いはMoを含有しない安価な成分系の
鋼を使用して、従来のMo含有鋼と同等或いはよ
り以上の強度及び靭性を有する高張力継目無鋼管
を製造する方法を提供するものである。 本発明者は、Moに代わる成分について種々検
討を行つた結果、Crを従来の含有量より増加す
ると、強度面では従来のMo含有鋼と同強度レベ
ルを得ることは可能であるが、焼戻脆化現象によ
り靭性が低下し、且つ特に連続鋳造後の鋼片にタ
テワレが発生し、品質が劣化する等の問題がある
ことを知つた。 そこで本発明者は、先ず連続鋳造鋳片のタテワ
レの発生について鋼中のMn量とCr量との関係を
Mn−Cr系の鋼について詳しく調査した結果、第
1図に示すような結果が得られた。 即ち、第1図よりMn量とともにCr量が多くな
るに従い、タテワレが発生し易く、かつMn+Cr
量が2.20%を越えるとタテワレが急増する。タテ
ワレの原因は旧オーステナイト粒界に帯状のフエ
ライトが生成し、又、大きな炭化物が析出するこ
とにある。鋼片の冷却過程での熱的変形が、前記
フエライト部に集中し、炭化物の析出による延性
の低下とあいまつてタテワレが発生するものと考
えられる。 Mn+Cr量を2.20%以下とすることによりタテ
ワレを防止することは可能であるが、Mn+Cr量
が2.20%以下では降伏点80Kg/mm2以上、抗張力90
Kg/mm2以上の強度が得られない。そこで、本発明
者は、Mn、Crの減少に伴う強度不足を補い、し
かもタテワレ発生を防止できる組成を追求したと
ころ、Mn+Cr量が2.20%以下のMn+Cr系の鋼
にBを添加して、固溶Bを存在させることで焼入
性が向上し、焼入れと適正な条件での焼戻しによ
つて、強度が高く、しかも靭性も優れた継目無鋼
管が得られることが判明した。しかし、前記添加
Bが鋼中のNと化合してB−N化合物を生成する
と固溶B量が減少し、Bの焼入性向上効果が小さ
くなる。このB−N化合物の生成を防止して且つ
焼入性向上に有効な固溶Bを確保するために、
Sol.Al或いはTiの1種又は2種を添加して鋼中
のNを固定し、Bの固溶化を計ることが必要であ
る。 更に本発明者は、靭性の向上について前記Bを
添加した鋼を用いて種々検討を行つた結果、P含
有量を低下し、且つ焼戻し温度を低くすることに
より靭性が向上し、更にBを添加したことにより
延性破断率が従来のMo含有鋼よりも優れること
を知見した。 第2図は、P含有量の異なるMn+Cr量が2.20
%以下のMn−Cr系の鋼における焼戻し温度と遷
移温度との関係を示したものである。図中曲線イ
はP含有量が0.020%、曲線ロはP含有量が0.025
%、曲線ハはP含有量が0.030%の場合である。 第3図は、本発明方法の素材鋼に相当するMo
を含有しない鋼と、Moを含有する従来鋼におい
て、鋼中のP含有量を変えた場合の0℃における
延性破面率とP含有量との関係を示したものであ
る。図中曲線ニはMoを含有する従来鋼、曲線ホ
はMoを含有しない鋼である。 第2図および第3図より明らかな如く、遷移温
度はMn+Cr量が2.20%以下のMn+Cr量の鋼中
においてP含有量が増加するに従つて上昇し、更
に焼戻温度が550℃を越えると焼戻し脆化により
遷移温度が著しく上昇する。又、延性破面率もP
含有量が増加するにつれて低下するが、Moを含
有する従来鋼に比べBを含有する本発明鋼の方が
低下が小さい。 上記のような知見を総合してなされた本発明
は、下記の継目無鋼管の製造方法を要旨とする。
なお、本明細書において、成分含有量についての
%は全て重量%を意味する。 〓C:0.15〜0.35%、Si:0.05〜0.50%、P:
0.025%以下、S:0.025%以下、Mn:1.00〜1.60
%、Cr:0.40〜1.00%、B:0.0008〜0.0025%と、
更にSol.Al:0.02〜0.10%、Ti:0.005〜0.025%
の1種又は2種を含有し、残部Fe及び不可避的
不純物からなり、且つMnとCrの含有量の合計が
2.20%以下である鋼を連続鋳造して鋼片とし、そ
の鋼片を熱間圧延して継目無管としたのち焼入れ
し、次いで480〜550℃の温度で焼戻しすることを
特徴とする高張力継目無鋼管の製造方法〓 以下、本発明方法の素材鋼の組成の限定理由に
ついて述べる。 Cは鋼の強度を高めるために必要な元素であ
り、C量が0.15%未満では焼入れ後の強度が低
く、このため焼戻し後の降伏点が80Kg/mm2以上、
抗張力が90Kg/mm2以上の強度を得ようとすれば焼
戻し温度を480℃よりも低い青熱脆性域としなけ
ればならなくなる。このように余りに低い温度域
での焼戻しでは、伸び値も低くなり好ましくな
い。 一方、C量が0.35%を越えると焼入れ後の強度
は十分に高くなるが、適正な製品強度に調整する
ために焼戻し温度を550℃以上の焼戻し脆化領域
にしなければならなくなり好ましくない。 Siは脱酸剤として添加される元素であるが、Si
量が0.05%未満では脱酸効果が十分得られず、一
方、Si含有量が0.50%を越えるほど添加しても脱
酸効果は飽和して無駄になる。 Mnは焼入性を向上させる元素であるが、Mn
量が1.00%未満では所望の焼入効果が得られず、
一方Mn量が1.60%越えると第1図に示したよう
にタテワレが発生し易くなり好ましくない。 Pは第2図および第3図に示したように、その
含有量が増加すると遷移温度が上昇し、延性破面
率が悪化する。遷移温度vTsを0℃以下とするた
めには、Pの含有量を0.025%以下でできるだけ
少なくするのが望ましい。 S量は0.025%を越えると硫化物系介在物の析
出が多くなり、製品鋼管の品質が悪化するために
好ましくない。 CrはMnと同様焼入性を向上させる元素である
が、Cr量が0.40%未満では所望の焼入効果が得ら
れず、一方、Cr量が1.00%を越えると第1図に示
すようにタテワレが発生し易くなるので好ましく
ない。 なお、このCrと前記のMnとの合計含有量を
2.20%以下にするのも、第1図のタテワレ発生の
ない領域を選ぶ必要があるからである。 Bは焼入性を向上させる元素であり、焼入れ性
向上に有効な固溶B量0.0005〜0.0008%を得るた
めにはBの総含有量は0.0008%以上が必要であ
る。一方、B量が0.0025%を越えると炭化物が析
出し、脆化現象を起こすので好ましくない。 Sol.Alは鋼中のNを固定し、前記固溶B量を得
るために必要であるが、Sol.Al量が0.02%未満で
は焼入性に有効な0.0005%以上の固溶Bを確保す
るのが難しい。一方、0.10%を越えてもNを固定
する効果は飽和し、かえつて加工性を悪くする。 TiはSol.Alと同様鋼中のNを固定し、前記固
溶B量を確保するのに有効である。しかし、その
含有量が0.005%未満では焼入性に有効な0.0005
%以上の固溶Bが得られず、一方、0.025%を越
えてもNを固定する効果は飽和する。 上記のSol.AlとTiは、いずれか一方だけを含
有させてもよく、両方を併用してもよい。 上記の組成をもつ素材鋼を溶製し、連続鋳造し
適当なサイズに切断してビレツトにする。このビ
レツトを加熱して、例えばマンネスマン方式の熱
間圧延によつて継目無管とする。その後は、熱間
圧延終了温度から直接、或いは一旦冷却して焼入
れ温度に再加熱して焼入れを行う。焼入れの条件
は通常のものでよい。 焼戻しは、その温度範囲を480〜550℃とするこ
とが重要である。焼戻し温度が480℃未満では十
分な焼戻し効果が得られず、不完全焼戻組織(ア
ンテンパードマルテンサイト組織)となり、且つ
青熱脆性域となるので好ましくない。 一方、550℃以上では第2図に示したように、
焼戻脆化域となつて靭性が劣化し、強度バラツキ
が大きくなるとともに延性も低下する。 実施例 第1表に示す13種類を溶製し、連続鋳造して
228mmφのビレツトとしたのち、マンネスマンプ
ラグミル方式で肉厚14mm、外径273.1mmの継目無
鋼管を製造した。これを、同じく第1表に示す熱
処理条件で焼入れし、次いで焼戻しを行つた。 得られた鋼管から試験片を採取し、降伏点、抗
張力、伸び、遷移温度、延性破面率及び0℃にお
ける吸収エネルギーを調べた。その結果も第1表
中に併せて示す。
The present invention has a yield point of 80 kg/mm 2 or more and a tensile strength of 90 kg/mm 2 or more.
This invention relates to a method for manufacturing high-tensile seamless steel pipes having a strength of mm 2 or more. Conventionally, the material for high-strength seamless steel pipes as mentioned above has been Mn- containing about 0.05 to 0.10% Mo.
Mo-based or Mn-Cr-Mo based steels are often used, or Mn is 1.20 to 1.70% and Cr is 0.30 to 1.20%.
Mn-Cr steel containing about 1.9% is also used in some cases. A product is produced by hot rolling (inclined rolling method such as the Mannesmann method) into a seamless tube using steel with such composition as a raw material, followed by quenching and then tempering. However, due to the recent rise in the price of Mo, high-strength steel materials containing Mo have become disadvantageous in terms of cost, and conventional Mn-Cr-based high-strength steels have been shown to have inferior toughness compared to high-strength steels containing Mo. There are some difficulties. The purpose of the present invention is to solve the above-mentioned problems with conventional high-tensile seamless steel pipes, and its aim is to use inexpensive compositional steel that does not contain Mo to replace conventional Mo-containing steel pipes. The present invention provides a method for manufacturing a high-tensile seamless steel pipe having strength and toughness equal to or higher than that of steel. As a result of various studies on ingredients to replace Mo, the inventor found that by increasing Cr content from the conventional content, it is possible to obtain the same strength level as conventional Mo-containing steel, but it is difficult to temper. It has been learned that there are problems such as a decrease in toughness due to the embrittlement phenomenon, and in particular, vertical cracks occur in the steel billet after continuous casting, resulting in deterioration of quality. Therefore, the present inventor first investigated the relationship between the Mn content and Cr content in steel regarding the occurrence of vertical cracks in continuously cast slabs.
As a result of detailed investigation of Mn-Cr steel, the results shown in Figure 1 were obtained. In other words, from Figure 1, as the amount of Cr increases with the amount of Mn, vertical cracking is more likely to occur, and
When the amount exceeds 2.20%, vertical cracks will increase rapidly. The cause of vertical cracking is the formation of band-shaped ferrite at the prior austenite grain boundaries and the precipitation of large carbides. It is thought that thermal deformation during the cooling process of the steel slab concentrates on the ferrite portion, which together with a decrease in ductility due to the precipitation of carbides, causes vertical cracking. It is possible to prevent warping by keeping the Mn + Cr content below 2.20%, but if the Mn + Cr content is below 2.20%, the yield point will be 80 Kg/mm 2 or more and the tensile strength will be 90
Strength greater than Kg/mm 2 cannot be obtained. Therefore, the present inventor pursued a composition that could compensate for the lack of strength due to the decrease in Mn and Cr and also prevent the occurrence of vertical cracking.The inventors added B to Mn+Cr steel with an Mn+Cr content of 2.20% or less to strengthen it. It has been found that the presence of molten B improves hardenability, and that by quenching and tempering under appropriate conditions, a seamless steel pipe with high strength and excellent toughness can be obtained. However, when the added B combines with N in the steel to form a B--N compound, the amount of solid solution B decreases, and the hardenability improvement effect of B decreases. In order to prevent the formation of this B-N compound and ensure solid solution B that is effective in improving hardenability,
It is necessary to fix N in the steel by adding one or both of Sol.Al or Ti and to make B a solid solution. Furthermore, the present inventor conducted various studies on improving toughness using steel to which B was added, and found that toughness was improved by lowering the P content and lowering the tempering temperature, and that by adding B, the toughness was improved. As a result, the ductile rupture rate was found to be superior to that of conventional Mo-containing steel. Figure 2 shows that the amount of Mn+Cr with different P content is 2.20.
This figure shows the relationship between the tempering temperature and the transition temperature in Mn-Cr steel with a concentration of less than %. In the figure, curve A has a P content of 0.020%, and curve B has a P content of 0.025%.
%, curve C is for the case where the P content is 0.030%. Figure 3 shows Mo corresponding to the material steel used in the method of the present invention.
This figure shows the relationship between the ductile fracture ratio at 0° C. and the P content when the P content in the steel is changed in steel that does not contain Mo and conventional steel that contains Mo. In the figure, curve 2 is a conventional steel that contains Mo, and curve 5 is a steel that does not contain Mo. As is clear from Figures 2 and 3, the transition temperature increases as the P content increases in steel with an Mn+Cr content of 2.20% or less, and when the tempering temperature exceeds 550℃. The transition temperature increases significantly due to temper embrittlement. In addition, the ductile fracture ratio is also P
It decreases as the content increases, but the decrease is smaller in the steel of the present invention containing B than in the conventional steel containing Mo. The present invention, which has been made by integrating the above knowledge, has the gist of the following method for manufacturing a seamless steel pipe.
In addition, in this specification, all % regarding component content means weight %. 〓C: 0.15-0.35%, Si: 0.05-0.50%, P:
0.025% or less, S: 0.025% or less, Mn: 1.00 to 1.60
%, Cr: 0.40~1.00%, B: 0.0008~0.0025%,
Furthermore Sol.Al: 0.02~0.10%, Ti: 0.005~0.025%
Contains one or two of
High tensile strength steel characterized by continuous casting of steel with 2.20% or less into steel billets, hot rolling of the steel billets into seamless tubes, quenching, and then tempering at a temperature of 480 to 550°C. Method for manufacturing seamless steel pipes The reasons for limiting the composition of the steel material used in the method of the present invention will be described below. C is an element necessary to increase the strength of steel, and if the C content is less than 0.15%, the strength after quenching will be low, so the yield point after tempering will be 80 kg/mm 2 or more,
In order to obtain a tensile strength of 90 Kg/mm 2 or more, the tempering temperature must be lower than 480°C and in the blue brittle region. Tempering in such a low temperature range is not preferable because the elongation value also becomes low. On the other hand, if the C content exceeds 0.35%, the strength after quenching will be sufficiently high, but in order to adjust the strength of the product to an appropriate level, the tempering temperature must be set in the tempering embrittlement region of 550° C. or higher, which is not preferable. Si is an element added as a deoxidizing agent, but Si
If the amount is less than 0.05%, a sufficient deoxidizing effect cannot be obtained, and on the other hand, even if the amount of Si added exceeds 0.50%, the deoxidizing effect becomes saturated and becomes useless. Mn is an element that improves hardenability, but Mn
If the amount is less than 1.00%, the desired hardening effect cannot be obtained;
On the other hand, if the Mn content exceeds 1.60%, vertical cracking tends to occur as shown in FIG. 1, which is undesirable. As shown in FIGS. 2 and 3, when the content of P increases, the transition temperature increases and the ductile fracture ratio deteriorates. In order to keep the transition temperature vTs at 0° C. or below, it is desirable to reduce the P content to 0.025% or below as much as possible. If the amount of S exceeds 0.025%, the precipitation of sulfide inclusions will increase, which will deteriorate the quality of the product steel pipe, which is not preferable. Cr, like Mn, is an element that improves hardenability, but if the Cr content is less than 0.40%, the desired hardening effect cannot be obtained, while if the Cr content exceeds 1.00%, as shown in Figure 1. This is not preferable because vertical cracks are likely to occur. In addition, the total content of this Cr and the above-mentioned Mn is
The reason why it is set to 2.20% or less is because it is necessary to select an area where vertical cracks do not occur as shown in Figure 1. B is an element that improves hardenability, and in order to obtain a solid solution B amount of 0.0005 to 0.0008%, which is effective for improving hardenability, the total B content must be 0.0008% or more. On the other hand, if the amount of B exceeds 0.0025%, carbides will precipitate and cause embrittlement, which is not preferable. Sol.Al is necessary to fix N in the steel and obtain the above-mentioned amount of solid solution B, but if the amount of Sol.Al is less than 0.02%, it will ensure 0.0005% or more of solid solution B, which is effective for hardenability. difficult to do. On the other hand, if it exceeds 0.10%, the effect of fixing N will be saturated, and workability will worsen. Like Sol.Al, Ti fixes N in the steel and is effective in securing the amount of solid solution B. However, if the content is less than 0.005%, 0.0005% is effective for hardenability.
% or more of solid solution B cannot be obtained, and on the other hand, even if it exceeds 0.025%, the effect of fixing N is saturated. The above-mentioned Sol.Al and Ti may be contained alone or both may be used in combination. Material steel having the above composition is melted, continuously cast, and cut into appropriate sizes to form billets. This billet is heated and made into a seamless tube by, for example, Mannesmann hot rolling. Thereafter, quenching is performed either directly from the hot rolling end temperature or by cooling and reheating to the quenching temperature. The quenching conditions may be normal. It is important that the tempering temperature range is 480 to 550°C. If the tempering temperature is lower than 480°C, a sufficient tempering effect cannot be obtained, resulting in an incompletely tempered structure (untempered martensitic structure) and a blue brittle region, which is not preferable. On the other hand, at temperatures above 550℃, as shown in Figure 2,
It becomes a temper embrittlement region, the toughness deteriorates, the strength variation increases, and the ductility also decreases. Example 13 types shown in Table 1 were melted and continuously cast.
After making a billet of 228 mmφ, a seamless steel pipe with a wall thickness of 14 mm and an outer diameter of 273.1 mm was manufactured using the Mannesmann plug mill method. This was quenched under the same heat treatment conditions shown in Table 1, and then tempered. A test piece was taken from the obtained steel pipe, and the yield point, tensile strength, elongation, transition temperature, ductile fracture ratio, and absorbed energy at 0°C were examined. The results are also shown in Table 1.

【表】 第1表から明らかなように、Moを含有しない
成分系であつても、その組成を前記のように適切
に選び、且つ製管後の熱処理を適正に行うことに
よつて、Moを含む従来の鋼を素材とする鋼管と
同等、或いは一層優れた機械的性質を有する高張
力継目無鋼管が得られている。なお、連続鋳造ビ
レツトにもタテワレの発生は見られなかつた。本
発明方法によれば、Moを含有しない鋼を素材と
して使用できるから、鋼管製造のコストも大幅に
低減できる。
[Table] As is clear from Table 1, even if the component system does not contain Mo, by appropriately selecting the composition as described above and properly performing heat treatment after pipe manufacturing, Mo High tensile strength seamless steel pipes have been obtained that have mechanical properties that are equivalent to or even superior to steel pipes made from conventional steels. Incidentally, no vertical cracks were observed in the continuously cast billet. According to the method of the present invention, since steel that does not contain Mo can be used as a material, the cost of manufacturing steel pipes can be significantly reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、Mn−Cr系の鋼におけるMnおよび
Cr量と、連続鋳造鋼片のタテワレ発生状況との
関係を示した図である。第2図は、P含有量が異
なりMn+Cr量が2.20%以下のMn−Cr系の鋼の
焼戻し温度と遷移温度との関係を示す図である。
曲線イ……P含有量:0.020%、曲線ロ……P含
有量:0.025%、曲線ハ……P含有量:0.030%。 第3図は、Moを含有する鋼と、本発明方法の
素材鋼に相当する鋼のP含有量と0℃における延
性破面率との関係を示す図である。曲線ニ……
Mo含有鋼、曲線ホ……本発明方法の素材鋼。
Figure 1 shows the Mn and
FIG. 3 is a diagram showing the relationship between the amount of Cr and the occurrence of vertical cracks in a continuously cast steel billet. FIG. 2 is a diagram showing the relationship between the tempering temperature and the transition temperature of Mn-Cr steels with different P contents and an Mn+Cr content of 2.20% or less.
Curve A...P content: 0.020%, Curve B...P content: 0.025%, Curve C...P content: 0.030%. FIG. 3 is a diagram showing the relationship between the P content and the ductile fracture ratio at 0° C. of a steel containing Mo and a steel corresponding to the material steel of the method of the present invention. Curve...
Mo-containing steel, curved line ho...Material steel for the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 C:0.15〜0.35%、Si:0.05〜0.50%、P:
0.025%以下、S:0.025%以下、Mn:1.00〜1.60
%、Cr:0.40〜1.00%、B:0.0008〜0.0025%と、
更にSol.Al:0.02〜0.10%、Ti:0.005〜0.025%
の1種又は2種を含有し、残部Fe及び不可避的
不純物からなり、且つMnとCrの含有量の合計が
2.20%以下である鋼を連続鋳造して鋼片とし、そ
の鋼片を熱間圧延して継目無管としたのち焼入れ
し、次いで480〜550℃の温度で焼戻しすることを
特徴とする高張力継目無鋼管の製造方法。
1 C: 0.15-0.35%, Si: 0.05-0.50%, P:
0.025% or less, S: 0.025% or less, Mn: 1.00 to 1.60
%, Cr: 0.40~1.00%, B: 0.0008~0.0025%,
Furthermore Sol.Al: 0.02~0.10%, Ti: 0.005~0.025%
Contains one or two of
High tensile strength steel characterized by continuous casting of steel with 2.20% or less into steel billets, hot rolling of the steel billets into seamless tubes, quenching, and then tempering at a temperature of 480 to 550°C. A method for manufacturing seamless steel pipes.
JP4483682A 1982-03-19 1982-03-19 Production of high-tensile steel material Granted JPS58161721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4483682A JPS58161721A (en) 1982-03-19 1982-03-19 Production of high-tensile steel material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4483682A JPS58161721A (en) 1982-03-19 1982-03-19 Production of high-tensile steel material

Publications (2)

Publication Number Publication Date
JPS58161721A JPS58161721A (en) 1983-09-26
JPH0132288B2 true JPH0132288B2 (en) 1989-06-30

Family

ID=12702550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4483682A Granted JPS58161721A (en) 1982-03-19 1982-03-19 Production of high-tensile steel material

Country Status (1)

Country Link
JP (1) JPS58161721A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104831187B (en) * 2015-03-27 2017-07-18 武汉钢铁(集团)公司 A kind of road engineering machinery steel and its manufacture method
CN106048150A (en) * 2016-07-20 2016-10-26 柳州科尔特锻造机械有限公司 Tempering deformation technology for low-carbon micro-alloy steel containing trace of vanadium element

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576020A (en) * 1978-11-30 1980-06-07 Sumitomo Metal Ind Ltd Production of steel plate stable in strength and toughness by direct hardening and tempering
JPS55131126A (en) * 1979-03-30 1980-10-11 Sumitomo Metal Ind Ltd Production of modified by low alloy containing boron high tensile steel plate
JPS5861219A (en) * 1981-09-28 1983-04-12 Nippon Steel Corp High tensile tough steel with superior delayed rupture resistance
JPS58120720A (en) * 1982-01-11 1983-07-18 Kawasaki Steel Corp Production of tempered steel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5576020A (en) * 1978-11-30 1980-06-07 Sumitomo Metal Ind Ltd Production of steel plate stable in strength and toughness by direct hardening and tempering
JPS55131126A (en) * 1979-03-30 1980-10-11 Sumitomo Metal Ind Ltd Production of modified by low alloy containing boron high tensile steel plate
JPS5861219A (en) * 1981-09-28 1983-04-12 Nippon Steel Corp High tensile tough steel with superior delayed rupture resistance
JPS58120720A (en) * 1982-01-11 1983-07-18 Kawasaki Steel Corp Production of tempered steel

Also Published As

Publication number Publication date
JPS58161721A (en) 1983-09-26

Similar Documents

Publication Publication Date Title
US10876182B2 (en) High-strength seamless steel pipe for oil country tubular goods and method of producing the same
JP5930140B1 (en) High strength seamless steel pipe for oil well and method for producing the same
RU2215813C2 (en) Low-alloyed practically boron-free steel
JP3898814B2 (en) Continuous cast slab for high strength steel with excellent low temperature toughness and its manufacturing method, and high strength steel with excellent low temperature toughness
JP2008208454A (en) High-strength steel excellent in delayed fracture resistance and its production method
JP2007231312A (en) High-tensile-strength steel and manufacturing method therefor
JP6886519B2 (en) Sour-resistant thick plate steel with excellent low-temperature toughness and post-heat treatment characteristics and its manufacturing method
JP2004292857A (en) Non-heat treated seamless steel tube
JP3812168B2 (en) Manufacturing method of seamless steel pipe for line pipe with excellent strength uniformity and toughness
NO334883B1 (en) High-strength, high-toughness seamless steel pipe, for conveyor lines, and method of manufacture thereof
JP2647302B2 (en) Method for producing high-strength steel sheet with excellent resistance to hydrogen-induced cracking
JPS5891123A (en) Production of seamless steel pipe for 80kg/mm2 class structure having excellent toughness of weld zone
JP2672441B2 (en) Manufacturing method of high strength and high toughness seamless steel pipe with excellent SSC resistance
JP2010180424A (en) Steel material superior in toughness at heat-affected zone in high-heat-input weld, and manufacturing method therefor
JP3711959B2 (en) Heat resistant low alloy steel pipe and method for producing the same
JP2000178697A (en) Martensitic stainless steel excellent in corrosion resistance and weldability
JP3274013B2 (en) Method for producing sour resistant high strength steel sheet having excellent low temperature toughness
JPS607697B2 (en) Steel material for oil country tubular goods with tensile strength of 60Kg/mm↑2 or more with excellent sulfide stress corrosion cracking resistance
JPH0132288B2 (en)
JP3598771B2 (en) Martensitic stainless steel excellent in hot workability and sulfide stress cracking resistance, method of bulk rolling thereof, seamless steel pipe using these, and method of manufacturing the same
JP3243987B2 (en) Manufacturing method of high strength and high corrosion resistance martensitic stainless steel
JP2527512B2 (en) Manufacturing method of low hardness and high toughness seamless steel pipe with excellent SSC resistance
US7662246B2 (en) Steel for components of chemical installations
JP3009568B2 (en) Manufacturing method of high strength steel sheet with excellent hydrogen induced cracking resistance and low temperature toughness
JPH07292414A (en) Production of thin high strength steel plate having superior toughness at low temperature and sour resistance