JPH0132276B2 - - Google Patents

Info

Publication number
JPH0132276B2
JPH0132276B2 JP8781381A JP8781381A JPH0132276B2 JP H0132276 B2 JPH0132276 B2 JP H0132276B2 JP 8781381 A JP8781381 A JP 8781381A JP 8781381 A JP8781381 A JP 8781381A JP H0132276 B2 JPH0132276 B2 JP H0132276B2
Authority
JP
Japan
Prior art keywords
reaction
coal
hydrogen
temperature
fuel oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8781381A
Other languages
Japanese (ja)
Other versions
JPS57202378A (en
Inventor
Kunihiko Yamashita
Muneaki Kimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP8781381A priority Critical patent/JPS57202378A/en
Priority to GB8210023A priority patent/GB2100280B/en
Priority to AU82383/82A priority patent/AU546668B2/en
Priority to DE19823212744 priority patent/DE3212744A1/en
Priority to US06/366,125 priority patent/US4412908A/en
Priority to CA000400670A priority patent/CA1173390A/en
Publication of JPS57202378A publication Critical patent/JPS57202378A/en
Publication of JPH0132276B2 publication Critical patent/JPH0132276B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、石炭の水添熱分解方法に関し、特に
高次水添分解によるメタンの生成を抑制し、高収
率でガソリン留分を得る石炭の効果的水添熱分解
方法に関するものである。 近年、将来の石油資源の枯渇化に対処する手段
の一つとして、化石燃料資源の中で最も豊富に存
在し、しかも世界各地に広く分布する石炭が石油
に代わるエネルギー源として再評価されるように
なつてきた。しかし、石炭は極めて複雑な高分子
化合物であり、主要構成要素である炭素、水素の
ほか、かなりの量の酸素、窒素、硫黄などのヘテ
ロ原子、それに灰分を含むため、そのまま燃焼さ
せると多量の大気汚染物質を発生する上に、石油
に比べて発熱量も低く、輸送や貯蔵にも問題があ
るなど、多くの解決すべき事項が残されている。 このような石炭の有する本質的諸問題を解決す
る手段として、石炭を液化し、ヘテロ原子や灰分
を除去するとともにクリーンな燃料油や燃料ガ
ス、その他附加価値の高い化学原料を取得する多
くの方法が提案された。これらの方法の中で代表
的なものとしては、例えば、石炭を溶媒で抽出す
る方法(例えば米国特許第4022680号明細書)、水
素又は水素供与体の存在下で石炭を液化する方法
(例えば米国特許第4191629号明細書)、水素存在
下で石炭を液化、ガス化する方法(例えば特開昭
51―502号公報)、不活性ガス中で石炭を液化、ガ
ス化する方法(例えば米国特許第3736233号明細
書)などを挙げることができる。そのほか、石炭
を加熱して軽質油やガスを直接取得する方法とし
て、微粉砕した石炭を高温、高圧の水素気流中に
噴出することによつて、数十ミリ秒ないし数分間
程度の短時間で、石炭を高速水添・熱分解する方
法(例えば特開昭52―142703号公報)も知られて
いる。この方法は、例えば粉砕した石炭を、圧力
50〜250Kg/cm2(ゲージ圧)、温度600〜1200℃の
水素気流中に噴出することにより、石炭を103
℃/秒以上の速度で急熱し、水添熱分解すること
により行われ、反応生成物としてメタン、エタ
ン、二酸化炭素、一酸化炭素、硫化水素、アンモ
ニア、炭素数3〜5の炭化水素、水、ガソリン留
分、燃料油(炭素数10以上の芳香族化合物及び高
沸点タール)及びチヤーと称する灰分を含む固体
生成物などが得られる。 従来、このような石炭の高速水添熱分解法にお
いて、メタンの生成を抑制し、附加価値の高いガ
ソリン留分などの軽質油への転化率を高める研究
が多くなされてきたが、まだ満足すべき方法は知
られていない。 本発明者らは、附加価値の高い軽質油への高転
化率石炭処理方法について研究し、微粉砕した石
炭を加熱水素気流中に噴出して、急速加熱し750
〜1100℃の温度で、瞬間的に反応させたのち、温
度を低くして、かつ500〜850℃の温度範囲に1〜
60秒間保つてさらに反応させることが改善された
結果を与えることを見出し、先に提案した(特開
昭57―165487号公報)。この方法は、従来の方法
に比べて石炭からガソリン留分への転化率はかな
り改善されるが、生成したガソリン留分の高次水
添分解の抑制の点でまだ十分満足しうるものでは
なかつた。 そこで、本発明者らは、生成した炭素数2〜5
の炭化水素、特にエタンの高次水添分解によるメ
タンガスの発生を抑制し、ガソリン留分への転化
率をいつそう向上させる方法について鋭意研究を
重ねた極めて効果的石炭の水添熱分解法を見出
し、本発明をなすに至つた。 すなわち、本発明の目的は、石炭からガソリン
留分を高収率が生成させるとともに、その際副次
的に生成する炭素数2〜5の炭化水素、特に量的
に多いエタンの高次水添熱分解によるメタンガス
の発生を効果的に抑制し、水添用水素の消費量を
大幅に節約しうる工業的に有利な石炭の水添熱分
解法を提供するにある。 本発明の方法によれば、石炭を水素ガス雰囲気
下で熱処理して液化及びガス化するに当り、 (イ) 石炭微粉末を圧力35〜250Kg/cm2(1ゲージ
圧)の加熱水素気流中に噴出して750〜1100℃
の温度に急速に加熱し瞬間的に反応させる工
程、 (ロ) 前記工程の温度より低く、かつ500〜850℃の
範囲の温度で、さらに0.1〜30秒間反応させる
工程、 (ハ) 前記反応によつて得られた反応生成物からチ
ヤーを分離する工程、 (ニ) 前記チヤーを分離した反応生成物を冷却して
燃料油を分離する工程、 (ホ) 前記の分離された燃料油の少なくとも一部を
(イ)工程の反応終了時に循環供給する工程 から成る工程を連続的に行なうことを特徴とする
石炭の水添熱分解方法が提供される。 本発明の方法に用いられる石炭は、可及的に微
粉状化することが好ましく、実用的には100メツ
シユ通過、好ましくは200メツシユ通過以下の粒
度に調整される。 また、(イ)工程に用いられる水素気流は、実質的
に水素ガスから成る雰囲気で形成されることがよ
いが、例えば約30容量%までの不活性ガス、その
他水蒸気、炭酸ガス、一酸化炭素、メタンなどの
ガスで希釈されていてもよい。しかし水添分解反
応を阻外する、例えば酸素のような酸化性ガス成
分を含むものは不都合である。(イ)工程において
は、このような水素気流が反応容器内に加熱状態
で35〜250Kg/cm2のゲージ圧に圧入され、この反
応容器内に微粉末石炭が噴射されて750〜1100℃
の温度に急速に加熱され瞬間的に反応が行われ
る。石炭の加熱速度は、液状生成物を増大するた
め速ければ速いほど良く、104℃/秒以上が好ま
しく、5〜104℃/秒がさらに望ましい。また、
(イ)工程において、反応温度が1100℃より高いとメ
タンの生成量が多く、液体生成物が少なくなり、
また反応温度が750℃未満では石炭の熱分解速度
が遅く十分な熱分解が得られないので、反応温度
は750℃以上1100℃以下の範囲で行う必要があり、
800℃以上1050℃以下が望ましい。 (イ)工程では微分炭を上記反応温度範囲に瞬間的
に加熱し分解反応させることが必要であるが、反
応時間が短いと石炭が上記反応温度に達しない
し、逆に反応時間が長すぎるとメタンの生成量が
多くなり、液体生成物が減少するため、通常は20
ミリ秒以上800ミリ秒以下が好ましく、50ミリ秒
以上500ミリ秒以下がさらに望ましい。このよう
な石炭微粉末の急速な加熱水添分解反応は、水素
の十分量の存在下に行うことが必要で、連続的に
導かれる次の(ロ)工程における反応をも効果的に行
わせるには、ゲージ圧で35〜250Kg/cm2が有利に
採用される。 工程(イ)で処理されたものは、(ロ)工程に導かれて
連続的に処理される。(ロ)工程においては、(イ)工程
の処理物は前記(イ)工程の熱分解温度よりも低い温
度で、かつ500〜850℃の温度条件下に、さらに
0.1〜30秒間反応処理される。(ロ)工程において、
反応温度が850℃より高いと、ガソリン留分の分
解速度が速く、ガソリン留分への選択性が低下
し、反応温度が500℃未満では、(イ)工程で生成し
た燃料油の分解速度が遅く、ガソリン留分への転
化率が低下するため、反応温度は500℃以上850℃
以下にする必要があり、550℃以上800℃以下が望
ましい。また、このような温度条件での反応時間
が0.1秒未満ではガソリン留分への転化率の改善
効果はあまり期待できないし、反応時間が30秒を
超えるガソリン留分の分解が進みすぎ、メタンの
形成量が増大するので好ましくない、従つて(ロ)工
程の反応時間は、0.1秒以上30秒以下にする必要
があり、0.2秒以上20秒以下が望ましい。各反応
域における反応温度は必ずしも一定である必要は
なく、経時的に変化させてもよい。 (ロ)工程の反応によつて得られた反応生成物中に
は灰分であるチヤーが混在するので、これは分離
除去しなければならない。この(ハ)工程において、
反応生成物からチヤーを容易に分離するために
は、液体生成物が凝縮しない温度に保つことが望
ましく、通常350℃以上が好ましい。この(ハ)工程
は(ロ)工程に組み込んで行うこともできる。チヤー
を分離した反応生成物は、冷却されて燃料油が分
離されるが、この(ニ)工程において反応生成物中の
燃料油のみを分離する場合、通常、蒸留塔が用い
られ、塔底より燃料油が、また塔頂よりガソリン
留分以上の軽い反応生成物がそれぞれ分離されて
取出される。分離温度は、圧力及び反応生成物の
組成により容易に決定することができる。 本発明において、(ニ)工程で得られた燃料油の少
なくとも一部を(イ)工程の反応終了時、すなわち(イ)
工程から(ロ)工程への移行時に循環供給される。こ
の(ホ)工程は(ホ)工程での燃料油の循環滞留時間に対
して、ガソリン留分やエタンの滞留時間を相対的
に短かくするため、燃料油の循環量は多ければ多
いほど良いが、一方、(イ)工程より(ロ)工程へ移行す
る場合、反応温度を急速に下げるのに必要な冷却
媒体としての機能も有するため、その熱収支よ
り、燃料油の循環量はおのずと制限される。 石炭の熱分解反応が主反応である(イ)工程での水
素気流圧力は石炭からの液体生成物への転化率に
あまり影響されないが、(イ)工程で生成した液体生
成物の水添分解反応が主反応である(ロ)工程の圧力
は高くすれば、ガソリン留分への転化率が増加す
る。しかし、ある程度以上の高圧にすると、その
効果は小さくなり、また、高圧操業の場合、設備
が巨大になり経済的に不利になる。このような(ロ)
工程の反応圧力は適度に高めることが望ましい
が、両反応の間に圧縮過程を設けるにはいつたん
冷却を必要とし、反応の面からも熱エネルギー的
にも不利となるため、(ロ)工程の所望圧力に着目し
て(イ)工程の圧力が決定され、(イ)工程の圧力は(ロ)工
程の圧力に反応管の圧力損失分(通常無視しう
る)を加えた圧力とするのが望ましい。両工程の
反応圧力は、35Kg/cm2G以上250Kg/cm2G以下が
好ましく、さらに50Kg/cm2G以上200Kg/cm2G以
下が望ましい。また(ハ):(ニ)工程の圧力は、通常(ロ)
工程の圧力と同程度で実施した方が望ましい。な
ぜならば、(ニ)工程を高圧で実施した場合、蒸留塔
の塔底温度を高くすることができるので、燃料油
の取扱い粘度が低くなり、操作性が非常に容易に
なるからである。 供給する微粉状石炭(無水無灰基準)に対する
反応用水素の重量比は、石炭の種類や所要の反応
生成物の組成によつて異なり、一般に、供給石炭
(無水無灰基準)に対する水素の重量比は0.03〜
0.08あれば良いが、石炭からの液体生成物の拡散
や水素の石炭細孔への拡散を良くし、石炭からガ
ソリン留分への転化率を高め、コーキングを防止
するためにも、過剰の水素を供給することが望ま
しい。しかし、過剰の水素は、石炭からの生成物
と分離して反応装置に戻して、循環使用するため
過剰の水素量が多くなると、分離・循環及び加熱
に要するエネルギーや設備も大きくなり経済的に
不利になる。従つて、供給石炭に対する供給水素
重量比は0.1以上1.5以下(1:10ないし3:2)
が好ましく、さらに望ましくは0.12以上1.0以下
である。 本発明は、(イ)〜(ホ)の各工程を組合わせて連続的
に操業することにより、極めて効果的に目的を達
成することができ、改善された効果が得られるも
のである。 本発明の方法で処理される石炭は前記したよう
に、極めて複雑な種々の高分子物質、有機化合物
類から成るので、その処理過程においても極めて
多種多様な現象や挙動がみられ、従つてその処理
経過を明確に把握することは困難であるが、本発
明者らの多くの研究実験により、ガソリン留分
は、石炭から直接生成する以外に、中間生成物で
ある燃料油がさらに水添分解し、軽質化されて生
成すること、及び全体的には後者の方が支配的で
あること、そして、生成したガソリン留分は、さ
らに高次水添分解されて最終的にメタンを生成す
るので、このメタンの生成の抑制が重要課題であ
ることが見出された。 ところで本発明における石炭から、ガソリン留
分へ転化する反応は、主として2つの過程が考え
られ、その一つは、石炭の単なる熱分解により結
合解離エネルギーの小さい共有結合が開裂し、生
成フリーラジカルによつて水素引き抜き、脱水
素、再結合、環化などの反応が進行して、液状分
解生成分に安定される第1段反応過程であり、他
の一つは、第1段反応過程で生成した熱分解液体
生成物が第2段の反応過程で水添分解されて、さ
らに低分子化するものと推定される。 第1段反応過程は比較的短時間で了するものと
考えられ、その反応温度も高ければ高いほど、結
合解離エネルギーの小さい共有結合の開裂が激し
く起るようである。 一方、第2段反応過程は、第1段反応過程で生
成した燃料油の水添分解反応よりガソリン留分を
多く生成するが、目的生成物であるガソリン留分
又は副次的に生成するエタンのメタンへの高次水
添分解反応を抑制するために比較的低温で、反応
を行わせ、しかも生成したガソリン留分及びエタ
ンをすみやかに反応系外に取出すことが必要であ
る。 本発明の方法によれば、(イ)工程において液体生
成物が多量に生成し、かつこの生成物に(ニ)工程で
分離された燃料油を導入する((ホ)工程)ことによ
り、その蒸発潜熱と顕熱によつて外部からの冷却
(例えば水素や水などの直接供給冷却や間接的熱
交換による冷却)を実質的に必要とすることな
く、(ロ)工程における温度条件が得られるので極め
て好都合であり、さらにこのような燃料油の循環
によつて燃料油の水添分解速度をガソリンの水添
分解速度より速め、分解生成したガソリン留分の
実質的分解反応時間を短縮することができるの
で、顕著に改善された結果が得られ、本発明は工
業的にも優れた方法ということができる。なお、
本発明において石炭とは、無煙炭、歴青炭、亜歴
青炭、かつ炭、亜炭、汚炭、草炭などをいう。 また、石炭からの各反応生成物への転化率は、
次式によつて定義される。 各反応生成物の転化率=
各反応生成物中の炭素量/供給石炭中の炭素量×100% 以下に実施例を挙げて本発明をさらに詳細に説
明するが、本発明はこれらの実施例に限定される
ものではない。 実施例 1 イリノイNo.6石炭をジヨークラツシヤー、ブラ
ウン・コールミル及びボールミルで順次粉砕し、
200メツシユのふるいで粗粒を除去した後、真空
乾燥機で−720mmHg、100℃の条件で10時間乾燥
し、石炭100重量部に対し、水分量を3重量部以
下に調整した。該石炭の元素分析値は無水炭基準
で第1表の通りであつた。
The present invention relates to a method for hydropyrolyzing coal, and particularly to an effective method for hydropyrolyzing coal to suppress the production of methane due to higher-order hydrogenolysis and obtain a gasoline fraction in high yield. In recent years, coal, which is the most abundant of all fossil fuel resources and is widely distributed around the world, has been reevaluated as an energy source that can replace oil as a means of dealing with the future depletion of oil resources. I'm getting used to it. However, coal is an extremely complex polymer compound, and in addition to its main constituents carbon and hydrogen, it also contains considerable amounts of heteroatoms such as oxygen, nitrogen, and sulfur, as well as ash. In addition to emitting air pollutants, it also has a lower calorific value than petroleum, and there are problems with transportation and storage, and many other issues remain to be resolved. As a means of solving these essential problems with coal, there are many methods to liquefy coal, remove heteroatoms and ash, and obtain clean fuel oil, fuel gas, and other high value-added chemical raw materials. was proposed. Typical of these methods include, for example, a method of extracting coal with a solvent (e.g., U.S. Pat. No. 4,022,680), a method of liquefying coal in the presence of hydrogen or a hydrogen donor (e.g., U.S. Pat. Patent No. 4191629), a method for liquefying and gasifying coal in the presence of hydrogen (for example,
51-502), and a method of liquefying and gasifying coal in an inert gas (for example, US Pat. No. 3,736,233). In addition, as a method to directly obtain light oil and gas by heating coal, finely pulverized coal is jetted into a high-temperature, high-pressure hydrogen stream in a short period of time ranging from tens of milliseconds to several minutes. A method of high-speed hydrogenation and thermal decomposition of coal (for example, Japanese Patent Application Laid-Open No. 142703/1983) is also known. This method uses, for example, crushed coal under pressure
Coal is 10 3
It is carried out by rapid heating at a rate of ℃/second or more and hydrogenation pyrolysis, and the reaction products are methane, ethane, carbon dioxide, carbon monoxide, hydrogen sulfide, ammonia, hydrocarbons with 3 to 5 carbon atoms, and water. , gasoline fraction, fuel oil (aromatic compounds with 10 or more carbon atoms and high-boiling point tar), and a solid product containing ash called char are obtained. In the past, many studies have been conducted to suppress the production of methane and increase the conversion rate of high-value-added gasoline fractions to light oils in such high-speed hydropyrolysis methods of coal, but the results remain unsatisfactory. There is no known way to do this. The present inventors have researched a method for processing coal with a high conversion rate into light oil with high added value. Finely pulverized coal is ejected into a heated hydrogen stream to rapidly heat it.
After instantaneous reaction at a temperature of ~1100℃, the temperature is lowered and the temperature range is 500~850℃.
It was found that holding the reaction for 60 seconds and further reacting gave improved results, and this was proposed earlier (Japanese Patent Laid-Open No. 165487/1983). Although this method considerably improves the conversion rate from coal to gasoline fraction compared to conventional methods, it is still not fully satisfactory in terms of suppressing higher-order hydrogenolysis of the gasoline fraction produced. Ta. Therefore, the present inventors discovered that the number of carbon atoms produced was 2 to 5.
We have developed an extremely effective method of hydropyrolysis of coal, which has been extensively researched to suppress the generation of methane gas due to the higher-order hydrogenolysis of hydrocarbons, especially ethane, and improve the conversion rate to gasoline fraction. This finding led to the present invention. That is, the purpose of the present invention is to produce a gasoline fraction from coal in a high yield, and at the same time, to produce hydrocarbons having 2 to 5 carbon atoms as a by-product, particularly by high-order hydrogenation of ethane, which is abundant in quantity. It is an object of the present invention to provide an industrially advantageous method for hydrogenation and pyrolysis of coal, which can effectively suppress the generation of methane gas due to pyrolysis and greatly reduce the consumption of hydrogen for hydrogenation. According to the method of the present invention, when coal is liquefied and gasified by heat treatment in a hydrogen gas atmosphere, (a) fine coal powder is heated in a hydrogen stream at a pressure of 35 to 250 kg/cm 2 (1 gauge pressure); erupts to 750-1100℃
(b) A step of further reacting for 0.1 to 30 seconds at a temperature lower than the temperature of the above step and in the range of 500 to 850°C, (c) A step of causing the reaction to occur by rapidly heating to a temperature of a step of separating the char from the reaction product thus obtained; (d) a step of cooling the reaction product from which the char has been separated to separate fuel oil; and (e) a step of separating at least one of the separated fuel oils. Department
There is provided a method for hydropyrolysis of coal, which is characterized in that the step consisting of the step of circulating and supplying at the end of the reaction in step (a) is continuously performed. The coal used in the method of the present invention is preferably pulverized as much as possible, and practically the particle size is adjusted to a particle size of 100 meshes or less, preferably 200 meshes or less. In addition, the hydrogen gas flow used in step (a) is preferably formed in an atmosphere consisting essentially of hydrogen gas, but for example, up to about 30% by volume of inert gas, other water vapor, carbon dioxide gas, carbon monoxide, etc. , may be diluted with a gas such as methane. However, those containing oxidizing gas components such as oxygen, which inhibit the hydrogenolysis reaction, are disadvantageous. In the step (a), such a hydrogen stream is injected into the reaction vessel under pressure at a gauge pressure of 35 to 250 kg/cm 2 in a heated state, and pulverized coal is injected into the reaction vessel to a temperature of 750 to 1100°C.
It is rapidly heated to a temperature of , and the reaction occurs instantaneously. The heating rate of the coal is preferably as fast as possible in order to increase the amount of liquid product, preferably 10 4 C/sec or more, and more preferably 5 to 10 4 C/sec. Also,
In step (a), if the reaction temperature is higher than 1100℃, the amount of methane produced will be large and the liquid product will be small;
In addition, if the reaction temperature is less than 750°C, the rate of thermal decomposition of coal will be slow and sufficient thermal decomposition will not be obtained, so the reaction temperature must be in the range of 750°C or more and 1100°C or less.
Desirably 800℃ or higher and 1050℃ or lower. In step (a), it is necessary to instantaneously heat the differential coal to the above reaction temperature range and cause it to undergo a decomposition reaction, but if the reaction time is short, the coal will not reach the above reaction temperature, and conversely, if the reaction time is too long, the coal will not reach the above reaction temperature. Typically 20
The time period is preferably at least 800 milliseconds, more preferably at least 50 milliseconds and at most 500 milliseconds. Such a rapid heating hydrogenolysis reaction of fine coal powder needs to be carried out in the presence of a sufficient amount of hydrogen, so that the reaction in the next continuous step (b) can also be carried out effectively. A gauge pressure of 35 to 250 Kg/cm 2 is advantageously employed. The material treated in step (a) is led to step (b) and is continuously processed. In step (b), the treated product in step (a) is further heated under a temperature condition of 500 to 850°C and lower than the thermal decomposition temperature in step (a)
The reaction is processed for 0.1 to 30 seconds. (b) In the process,
If the reaction temperature is higher than 850℃, the rate of decomposition of the gasoline fraction will be high and the selectivity to the gasoline fraction will be reduced, and if the reaction temperature is lower than 500℃, the rate of decomposition of the fuel oil produced in step (a) will be low. The reaction temperature is higher than 500℃ and 850℃ because it is slow and the conversion rate to gasoline fraction decreases.
The temperature must be below, preferably between 550°C and 800°C. Furthermore, if the reaction time is less than 0.1 seconds under such temperature conditions, we cannot expect much improvement in the conversion rate to gasoline fractions, and if the reaction time exceeds 30 seconds, the decomposition of gasoline fractions will progress too much, resulting in the production of methane. The reaction time in step (b), which is not preferable because it increases the amount of formation, must be 0.1 seconds or more and 30 seconds or less, preferably 0.2 seconds or more and 20 seconds or less. The reaction temperature in each reaction zone does not necessarily need to be constant and may be changed over time. Since the reaction product obtained by the reaction in step (b) contains char, which is ash, it must be separated and removed. In this (c) step,
In order to easily separate the char from the reaction product, it is desirable to maintain the temperature at which the liquid product does not condense, and usually 350°C or higher is preferred. This step (c) can also be carried out by incorporating it into the step (b). The reaction product from which the char has been separated is cooled to separate the fuel oil, but when only the fuel oil in the reaction product is separated in this (2) step, a distillation column is usually used, and the fuel oil is separated from the bottom of the column. Fuel oil and reaction products lighter than gasoline fraction are separated and taken out from the top of the column. The separation temperature can be easily determined by the pressure and the composition of the reaction product. In the present invention, at least a part of the fuel oil obtained in step (d) is transferred at the end of the reaction in step (a), that is, in
It is circulated and supplied during the transition from process to process. In this (e) process, the residence time of gasoline fraction and ethane is relatively short compared to the circulation residence time of fuel oil in step (e), so the larger the amount of fuel oil circulated, the better. However, when moving from step (a) to step (b), the amount of fuel oil circulated is naturally limited due to its heat balance, as it also functions as a cooling medium necessary to rapidly lower the reaction temperature. be done. The hydrogen gas pressure in step (a), in which the main reaction is the pyrolysis reaction of coal, is not affected much by the conversion rate from coal to liquid products; If the pressure in step (b), where the reaction is the main reaction, is increased, the conversion rate to gasoline fraction will increase. However, if the pressure is increased to a certain level or higher, the effect becomes smaller, and in the case of high-pressure operation, the equipment becomes large and becomes economically disadvantageous. Like this (b)
It is desirable to appropriately increase the reaction pressure in the process, but providing a compression process between both reactions requires cooling, which is disadvantageous both from the reaction standpoint and from the thermal energy perspective. The pressure of step (a) is determined by focusing on the desired pressure of step (a), and the pressure of step (a) is the pressure of step (b) plus the pressure loss in the reaction tube (which can usually be ignored). is desirable. The reaction pressure in both steps is preferably 35 Kg/cm 2 G or more and 250 Kg/cm 2 G or less, and more preferably 50 Kg/cm 2 G or more and 200 Kg/cm 2 G or less. Also, (c): (d) The pressure in the process is usually (b)
It is preferable to carry out the process at a pressure similar to that of the process. This is because when step (2) is carried out under high pressure, the temperature at the bottom of the distillation column can be raised, so the handling viscosity of the fuel oil becomes low and the operability becomes very easy. The weight ratio of hydrogen for reaction to the supplied pulverized coal (dry and ash-free basis) varies depending on the type of coal and the composition of the required reaction product, and is generally the weight ratio of hydrogen to the supplied coal (dry and ash-free basis). The ratio is 0.03 ~
0.08 is fine, but excess hydrogen is necessary to improve the diffusion of liquid products from coal and the diffusion of hydrogen into coal pores, increase the conversion rate from coal to gasoline fraction, and prevent coking. It is desirable to supply However, excess hydrogen is separated from the products from the coal, returned to the reactor, and recycled, so when the amount of excess hydrogen increases, the energy and equipment required for separation, circulation, and heating become large, making it uneconomical. be at a disadvantage. Therefore, the weight ratio of supplied hydrogen to supplied coal is 0.1 or more and 1.5 or less (1:10 to 3:2).
is preferable, and more preferably 0.12 or more and 1.0 or less. The present invention can achieve the object extremely effectively and obtain improved effects by continuously operating the steps (a) to (e) in combination. As mentioned above, the coal treated by the method of the present invention is composed of a variety of extremely complex polymeric substances and organic compounds, and therefore an extremely wide variety of phenomena and behaviors are observed during the treatment process. Although it is difficult to clearly understand the process, many research experiments conducted by the present inventors have revealed that gasoline fractions are produced not only directly from coal but also by further hydrogenolysis of fuel oil, an intermediate product. However, the latter is more dominant overall, and the resulting gasoline fraction is further subjected to higher hydrogen cracking to ultimately produce methane. It was discovered that suppressing the production of methane is an important issue. By the way, the reaction of converting coal to gasoline fraction in the present invention can be thought of mainly through two processes. One is that covalent bonds with low bond dissociation energy are cleaved by simple thermal decomposition of coal, and free radicals are generated. Therefore, this is the first stage reaction process in which reactions such as hydrogen abstraction, dehydrogenation, recombination, and cyclization proceed and are stabilized as liquid decomposition products. It is presumed that the resulting thermal decomposition liquid product is hydrogenolyzed in the second stage reaction process to further reduce the molecular weight. It is thought that the first stage reaction process is completed in a relatively short time, and the higher the reaction temperature, the more intense the cleavage of covalent bonds with lower bond dissociation energy appears to occur. On the other hand, the second stage reaction process produces more gasoline fraction than the hydrogen cracking reaction of the fuel oil produced in the first stage reaction process, but the target product is the gasoline fraction or the ethane produced as a by-product. In order to suppress the higher-order hydrogenolysis reaction of methane into methane, it is necessary to carry out the reaction at a relatively low temperature, and to quickly remove the generated gasoline fraction and ethane from the reaction system. According to the method of the present invention, a large amount of liquid product is produced in step (a), and the fuel oil separated in step (d) is introduced into this product (step (e)). By using the latent heat of vaporization and sensible heat, the temperature conditions in the (b) process can be obtained without substantially requiring external cooling (for example, cooling by direct supply of hydrogen or water, or cooling by indirect heat exchange). This is extremely convenient, and furthermore, by circulating the fuel oil in this manner, the hydrogenolysis rate of the fuel oil is made faster than the hydrogenolysis rate of gasoline, and the actual decomposition reaction time of the gasoline fraction produced by cracking is shortened. As a result, significantly improved results can be obtained, and the present invention can be said to be an industrially superior method. In addition,
In the present invention, coal refers to anthracite coal, bituminous coal, subbituminous coal, charcoal, lignite, dirty coal, grass coal, and the like. In addition, the conversion rate from coal to each reaction product is
It is defined by the following equation. Conversion rate of each reaction product =
Amount of carbon in each reaction product/amount of carbon in supplied coal x 100% The present invention will be described in more detail with reference to Examples below, but the present invention is not limited to these Examples. Example 1 Illinois No. 6 coal was sequentially crushed using a geocrusher, a brown coal mill, and a ball mill.
After removing coarse particles using a 200-mesh sieve, it was dried in a vacuum dryer at -720 mmHg and 100°C for 10 hours to adjust the moisture content to 3 parts by weight or less based on 100 parts by weight of coal. The elemental analysis values of the coal were as shown in Table 1 based on anhydrous coal.

【表】【table】

【表】 圧力100Kg/cm2Gの常温の水素1.0Kg/Hを内径
5mmφの外部加熱式ハステロイX製水素予熱管に
て900℃に予熱し、さらに該水素予熱管に連結さ
れた内径5mmφの外部加熱式セラミツク製水素過
熱管にて1150℃に過熱した。一方、2.5Kg/Hの
常温該微粉砕乾燥石炭は圧力100Kg/cm2G下のテ
ーブル型石炭供給機を用い、連続的に送り出すと
ともに、0.1Kg/H、圧力100Kg/cm2Gの常温水素
を用いて該石炭を搬送し、該過熱水素気流中に噴
出混合して、石炭を常温から930℃まで急速に昇
温させた。このときの石炭の加熱昇温速度は約2
×105℃/秒である。さらに、内径6mmφの外部
加熱式セラミツク製反応管に、該石炭と水素の混
合物を流通させ、反応温度930℃、反応時間120ミ
リ秒で(イ)工程の反応を行わせた。しかるのち、後
述する燃料油3.4Kg/Hを、水素で噴霧して(イ)工
程の反応生成物に混合し、反応生成物の温度を
700℃まで急冷するとともに、セラミツク製反応
管に連結した内径2mmφの外部加熱式ステンレス
製反応管に流通せしめ、反応温度700℃、反応時
間2秒で(ロ)工程の反応を行つた。(ロ)工程の反応管
からの反応生成物に常温水素を混合して反応生成
物を450℃に急冷し、サイクロン式チヤートラツ
プでチヤーを分離した。さらに、ラシヒリングを
充填した内径50mmφ、高さ3000mmの蒸留塔に反応
生成物を導入し、燃料油を塔底より、ガソリン留
分以上の軽質生成物を塔頂よりそれぞれ分離し
た。なお、塔頂温度は95℃に、塔底温度は150℃
にそれぞれ保つて運転した。塔底の燃料油は(イ)工
程終了時の反応生成物を急冷するため循環すると
ともに、余剰分約0.1Kg/Hを循環系より抜き出
した。一方、塔頂から出たガソリン留分以上の軽
質生成物は、間接水冷却で常温に冷却して水とガ
ソリン留分を凝縮させ、デカンターで水とガソリ
ン留分を分離したのち、ガソリン留分の一部は蒸
留塔の還流として用い、残りは系より抜き出し
た。未凝縮ガスについては、ガスクロマトグラフ
を用いてその中のメタン、エタン、エチレン、
CO+CO2、炭素数3〜5の炭化水素ガソリン留
分をそれぞれ分析し、また、系より抜き出した燃
料油やガソリン留分や水についてもそれぞれ同様
に分析した。 なお、(イ)と(ロ)工程の反応温度を一定にするため
電気ヒーターを反応管の周囲に設置し、さらに水
素過熱管、(イ)と(ロ)工程反応管と該電気ヒーター
を、内径500mmφのステンレス製耐圧容器に納め
ることによつて、反応管の耐圧を不要とした。 又、(イ)工程から(ニ)工程までの圧力は100Kg/cm2
Gであり、(イ)工程反応の供給石炭に対する水素供
給量は、無水無灰基準で、0.5(重量比)であり、
(ロ)工程反応の供給石炭に対する水素供給量は0.54
(重量比)であつた。供給石炭に対する燃料油循
環量は、無水無灰基準で、1.5(重量比)であつ
た。 反応生物の分析結果、炭素基準における石炭か
らの反応生成物の転化率は第2表の通りであつ
た。
[Table] 1.0Kg/H of hydrogen at room temperature under a pressure of 100Kg/cm 2 G is preheated to 900℃ using an externally heated Hastelloy It was heated to 1150℃ using an externally heated ceramic hydrogen heating tube. On the other hand, the finely pulverized dry coal at room temperature of 2.5Kg/H is continuously fed using a table-type coal feeder under a pressure of 100Kg/cm 2 G, and hydrogen at room temperature of 0.1Kg/H and a pressure of 100Kg/cm 2 G is used. The coal was conveyed using a hydrogen gas stream, and the coal was jet-mixed into the superheated hydrogen stream to rapidly raise the temperature of the coal from room temperature to 930°C. The heating rate of coal at this time is approximately 2
×10 5 °C/sec. Further, the mixture of coal and hydrogen was passed through an externally heated ceramic reaction tube having an inner diameter of 6 mmφ, and the reaction in step (a) was carried out at a reaction temperature of 930° C. and a reaction time of 120 milliseconds. After that, 3.4 kg/H of fuel oil, which will be described later, is sprayed with hydrogen and mixed with the reaction product of step (a), and the temperature of the reaction product is adjusted.
The mixture was rapidly cooled to 700°C and passed through an externally heated stainless steel reaction tube with an inner diameter of 2 mmφ connected to a ceramic reaction tube to carry out the reaction in step (b) at a reaction temperature of 700°C and a reaction time of 2 seconds. The reaction product from the reaction tube in step (b) was mixed with hydrogen at room temperature, the reaction product was rapidly cooled to 450°C, and the charge was separated using a cyclone-type charge trap. Furthermore, the reaction product was introduced into a distillation column with an inner diameter of 50 mmφ and a height of 3000 mm packed with a Raschig ring, and fuel oil was separated from the bottom of the column, and light products higher than gasoline fraction were separated from the top of the column. The top temperature is 95℃, and the bottom temperature is 150℃.
I kept each one and drove it. The fuel oil at the bottom of the column (a) was circulated to rapidly cool the reaction product at the end of the process, and a surplus of approximately 0.1 kg/h was extracted from the circulation system. On the other hand, the light products discharged from the top of the tower are cooled to room temperature by indirect water cooling to condense the water and gasoline fraction, and after separating the water and gasoline fraction in a decanter, the gasoline fraction is A part of it was used as reflux in the distillation column, and the rest was extracted from the system. For uncondensed gases, methane, ethane, ethylene,
CO+CO 2 and a hydrocarbon gasoline fraction having 3 to 5 carbon atoms were analyzed, and the fuel oil, gasoline fraction, and water extracted from the system were also analyzed in the same manner. In addition, in order to keep the reaction temperature constant in steps (a) and (b), an electric heater was installed around the reaction tube, and a hydrogen heating tube, the reaction tube and the electric heater in steps (a) and (b) were By storing the reaction tube in a stainless steel pressure-resistant container with an inner diameter of 500 mm, there was no need for a pressure-resistant reaction tube. Also, the pressure from step (a) to step (d) is 100Kg/cm 2
(a) The amount of hydrogen supplied to the coal supplied in the process reaction is 0.5 (weight ratio) on an anhydrous and ash-free basis,
(b) The amount of hydrogen supplied to the coal supplied for the process reaction is 0.54
(weight ratio). The amount of fuel oil circulated relative to the supplied coal was 1.5 (weight ratio) on an anhydrous and ash-free basis. As a result of analysis of the reactant, the conversion rate of the reaction product from coal based on carbon standards was as shown in Table 2.

【表】 トから102重量パーセントであつたが、物質収支
の合わない量は、燃料油とした。 実施例 2〜5 実施例1で用いた乾燥微粉炭(イリノイNo.6)
と同一試料を実施例1に記載した装置を使用して
反応実験を行つた。各実施例の反応条件として、
(イ)、(ロ)工程の反応域の温度、時間、供給石炭に対
する反応用水素供給量、及び供給石炭に対する燃
料油循環量を種々に変えて実施した結果を第3表
に示す。 なお、(イ)、(ロ)工程の反応時間を変えるため反応
管の長さと径をそれぞれ適当に取替えて実施し
た。
[Table] The amount was 102% by weight, but the amount for which the material balance did not match was taken as fuel oil. Examples 2 to 5 Dry pulverized coal (Illinois No. 6) used in Example 1
A reaction experiment was conducted on the same sample using the apparatus described in Example 1. As reaction conditions for each example,
Table 3 shows the results obtained by varying the reaction zone temperature, time, reaction hydrogen supply amount relative to the supplied coal, and fuel oil circulation amount relative to the supplied coal in steps (a) and (b). In addition, in order to change the reaction time in steps (a) and (b), the length and diameter of the reaction tubes were appropriately changed.

【表】 比較例 1〜3 実施例1に記載した装置で(イ)工程の反応終了部
への燃料油供給をやめ、常温水素のみを供給し
て、反応生成物を混合し、(ロ)工程の反応を行わせ
た。実施例1と同一試料の微粉炭を用いて、該石
炭供給量2.5Kg/Hで実施例1と同様な反応実験
を実施した。その実験結果を第4表に示す。
[Table] Comparative Examples 1 to 3 Using the apparatus described in Example 1, the fuel oil supply to the reaction end section of step (a) was stopped, only room temperature hydrogen was supplied, and the reaction products were mixed, and (b) The step reaction was carried out. Using the same sample of pulverized coal as in Example 1, a reaction experiment similar to that in Example 1 was carried out at a coal supply rate of 2.5 kg/h. The experimental results are shown in Table 4.

【表】【table】

【表】 従来技術に比較して、本発明の代表的改善効果
を以下に列記する。 (1) 石炭からガソリン留分への転化率が約7%増
大する。 (2) 石炭からエタンへの転化率が約13%増大す
る。 (3) 石炭からの総転化率が従来技術と同等の約60
%と高くなるも、メタンへの転化率は5%低く
なるため、反応用水素消費量が少なく、水素製
造費用が低減できる。 (4) (イ)工程から(ロ)工程で反応生成物温度を下げる
場合、外部からの冷却媒体を直接供給する必要
がないため、その回収費用がかからない。
[Table] Typical improvement effects of the present invention compared to the prior art are listed below. (1) The conversion rate from coal to gasoline fraction increases by approximately 7%. (2) The conversion rate from coal to ethane increases by approximately 13%. (3) The total conversion rate from coal is approximately 60%, which is equivalent to conventional technology.
%, but the conversion rate to methane is 5% lower, so the amount of hydrogen consumed for reaction is small, and the hydrogen production cost can be reduced. (4) When lowering the temperature of the reaction product from step (a) to step (b), there is no need to directly supply a cooling medium from the outside, so there is no cost for recovering it.

Claims (1)

【特許請求の範囲】 1 石炭を水素ガス雰囲気中で熱処理して、液化
及びガス化するに当り、 (イ) 石炭微粉末を圧力35〜250Kg/cm2(ゲージ圧)
の加熱水素気流中に噴出して750〜1100℃の温
度に急速に加熱し瞬間的に反応させる工程、 (ロ) 前記工程の温度より低く、かつ500〜850℃の
範囲の温度で、さらに0.1〜30秒間反応させる
工程、 (ハ) 前記反応によつて得られた反応生成物からチ
ヤーを分離する工程、 (ニ) 前記チヤーを分離した反応生成物を冷却して
燃料油を分離する工程、 (ホ) 前記の分離された燃料油の少なくとも一部を
(イ)工程の反応終了時に循環供給する工程 から成る工程を連続的に行なうことを特徴とする
石炭の水添熱分解方法。 2 (イ)工程における石炭微粉末の加熱速度が、
10000℃/秒以上である特許請求の範囲第1項記
載の方法。 3 (イ)工程における石炭微粉末の供給量(無水、
無灰基準)と反応用水素供給量との重量割合が
10:1ないし2:3である特許請求の範囲第1項
記載の方法。 4 (ホ)工程の燃料油供給を水蒸気又は水素を用い
て噴霧することによつて行う特許請求の範囲第1
項記載の方法。
[Claims] 1. When coal is heat-treated in a hydrogen gas atmosphere to liquefy and gasify it, (a) fine coal powder is heated to a pressure of 35 to 250 Kg/cm 2 (gauge pressure);
(b) At a temperature lower than the temperature of the previous step and in the range of 500 to 850°C, further 0.1 a step of reacting for ~30 seconds; (c) a step of separating the char from the reaction product obtained by the reaction; (d) a step of cooling the reaction product from which the char has been separated to separate fuel oil; (e) At least a portion of the separated fuel oil
(a) A method for hydropyrolysis of coal, characterized in that a step consisting of a step of circulating and supplying at the end of the reaction of the step is carried out continuously. 2. The heating rate of fine coal powder in step (a) is
The method according to claim 1, wherein the temperature is 10,000° C./second or more. 3 (a) Supply amount of fine coal powder in process (anhydrous,
The weight ratio of the ash-free standard) and the amount of hydrogen supplied for reaction is
10. A method according to claim 1, wherein the ratio is between 10:1 and 2:3. 4 (e) Claim 1 in which the fuel oil supply in the step is carried out by spraying using steam or hydrogen
The method described in section.
JP8781381A 1981-04-07 1981-06-08 Hydrogenating and thermally decomposition method of coal Granted JPS57202378A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP8781381A JPS57202378A (en) 1981-06-08 1981-06-08 Hydrogenating and thermally decomposition method of coal
GB8210023A GB2100280B (en) 1981-04-07 1982-04-05 Process for thermal hydrocracking of coal
AU82383/82A AU546668B2 (en) 1981-04-07 1982-04-06 Thermal hydrocracking of coal
DE19823212744 DE3212744A1 (en) 1981-04-07 1982-04-06 METHOD FOR THE THERMAL HYDROCRACKING OF COAL
US06/366,125 US4412908A (en) 1981-04-07 1982-04-07 Process for thermal hydrocracking of coal
CA000400670A CA1173390A (en) 1981-04-07 1982-04-07 Process for thermal hydrocracking of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8781381A JPS57202378A (en) 1981-06-08 1981-06-08 Hydrogenating and thermally decomposition method of coal

Publications (2)

Publication Number Publication Date
JPS57202378A JPS57202378A (en) 1982-12-11
JPH0132276B2 true JPH0132276B2 (en) 1989-06-30

Family

ID=13925409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8781381A Granted JPS57202378A (en) 1981-04-07 1981-06-08 Hydrogenating and thermally decomposition method of coal

Country Status (1)

Country Link
JP (1) JPS57202378A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59124990A (en) * 1983-01-04 1984-07-19 Asahi Chem Ind Co Ltd Hydro-thermal cracking of coal
JPS60186586A (en) * 1984-03-06 1985-09-24 Asahi Chem Ind Co Ltd Pyrolysis of carbonaceous substance
KR100686922B1 (en) 2005-07-04 2007-02-26 한국에너지기술연구원 Hydrogen Gasify Reacting apparatus of Coal for Synthetic Natural Gas Production

Also Published As

Publication number Publication date
JPS57202378A (en) 1982-12-11

Similar Documents

Publication Publication Date Title
US8114176B2 (en) Catalytic steam gasification of petroleum coke to methane
EP0067580B1 (en) An integrated catalytic coal devolatilisation and steam gasification process
KR900000873B1 (en) Two-stage coal gasification
US4322222A (en) Process for the gasification of carbonaceous materials
CA1083061A (en) Process for the production of hydrocarbons from coal
US4364745A (en) Plant hydrocarbon recovery process
US4229185A (en) Process for the gasification of carbonaceous materials
NL2019552B1 (en) Process to prepare a char product and a syngas mixture
US4578175A (en) Combined process for coal pyrolysis and char gasification
US4358344A (en) Process for the production and recovery of fuel values from coal
US3988237A (en) Integrated coal hydrocarbonization and gasification of char
US4338182A (en) Multiple-stage hydrogen-donor coal liquefaction
US4118201A (en) Production of low sulfur fuels from coal
US4158948A (en) Conversion of solid fuels into fluid fuels
EP0012468B1 (en) Process for the production of light hydrocarbons and synthesis gas
JPH08269459A (en) Coal liquefaction method
US4242102A (en) Production of gasified products from ash containing bitumen produced in coal liquefaction
US4412908A (en) Process for thermal hydrocracking of coal
JPH0132276B2 (en)
CA1108544A (en) Coal liquefaction
US4252633A (en) Coal liquefaction process
US4099932A (en) Conversion of solid fuels to fluid fuels
US4551223A (en) Thermal flashing of carbonaceous materials
US4226698A (en) Ash removal and synthesis gas generation from heavy oils produced by coal hydrogenation
US4097360A (en) Quenching pyrolysis reactor effluent streams