JPS59124990A - Hydro-thermal cracking of coal - Google Patents

Hydro-thermal cracking of coal

Info

Publication number
JPS59124990A
JPS59124990A JP15083A JP15083A JPS59124990A JP S59124990 A JPS59124990 A JP S59124990A JP 15083 A JP15083 A JP 15083A JP 15083 A JP15083 A JP 15083A JP S59124990 A JPS59124990 A JP S59124990A
Authority
JP
Japan
Prior art keywords
reaction
coal
hydrogen
hydrogen gas
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15083A
Other languages
Japanese (ja)
Inventor
Kunihiko Yamashita
邦彦 山下
Sada Kai
甲斐 貞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP15083A priority Critical patent/JPS59124990A/en
Publication of JPS59124990A publication Critical patent/JPS59124990A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To obtain gasoline fraction and fuel oil with high yields, by separating a reaction product of coal and hydrogen into vapor and solid phases, bringing the solid phase into contact with hydrogen and hydrogenating the vapor phase. CONSTITUTION:Hydrogen gas heated to 550-900 deg.C is forced into a reaction vessel under the pressure of 25-250kg/cm<2>. Pulverized coal having a particle size of 100 mesh or smaller is fed continuously in the coal/hydrogen gas ratio of 10:1-2:3 by weight and the reaction product is separated into vapor and solid phases. The solid phase is brought into contact with hot hydrogen gas to form a gaseous product. The vapor phase and the gaseous product are made to undergo hydrogenation reaction and the reaction product is cooled rapidly. EFFECT:Ratio of hydrogen for hydrogenation to hydrocarbon produced by the reaction is reduced to a great extent, for formation of methane gas is controlled and the yield of fuel oil is increased.

Description

【発明の詳細な説明】 本発明は石炭の水添熱分解法に関し、さらに詳しくいえ
ば、水素の存在下で石炭を急速熱分解し、高収率でガソ
リン留分や燃料油を得るための新規近年、将来の石油資
源の枯渇化に対処する手段の一つとして、化石燃料資源
の中で最も豊富に存在1〜、しかも世界各地に広く分布
する石炭が石油に代わる工不ルキー源として再評価され
るようになってきた。しかし、石炭は極めて複雑な篩分
子化合物であり、主要構成要素である炭素、水素のほか
、かなりの量の酸素、窒素、硫黄などのへテロ原イ、そ
れに灰分を含むため、そのま捷燃焼させると多量の大気
力染物質を発生する上に、石油に比べて発熱量も低く、
輸送や貯蔵にも問題があるなど、多くの解決すべき事項
が残されている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for hydrogenation and pyrolysis of coal, and more specifically, a method for rapidly pyrolyzing coal in the presence of hydrogen to obtain gasoline fractions and fuel oil in high yield. In recent years, coal, which is the most abundant of all fossil fuel resources and is widely distributed throughout the world, has been reintroduced as an industrial energy source to replace oil, as one of the means to cope with the future depletion of oil resources. It's starting to be appreciated. However, coal is an extremely complex sieve molecular compound, and in addition to its main components carbon and hydrogen, it also contains considerable amounts of heterogeneous atoms such as oxygen, nitrogen, and sulfur, as well as ash, so it cannot be burned as is. Not only does it generate a large amount of atmospheric dye, but it also has a lower calorific value than petroleum.
Many issues remain to be resolved, including problems with transportation and storage.

このような石炭の有する本質的諸問題を解決する手段と
して、石炭を液化し、ペテロ原子や灰分を除去するとと
もにクリーンな燃料油や燃料カス、その他附加価値の高
い化学原料を取得する多くの方法が提案された。これら
の方法の甲で代表的なものとしては、例えば、石炭を溶
媒で抽出する方法、水素又は水素供力体の存在下で石炭
を液化する方法、水素存在下で石炭を液化、ガス化する
方法、不活性ガス中で石炭を液化、ガス化する方法など
を挙げることができる。そのほか、石炭を加熱して軽質
油やガスを直接取得する方法として、微粉砕した石炭を
高温、高圧の水素気流中に噴出することによって、数十
ミリ秒ないし数分間程度の短時間で、石炭を高速水添熱
分解する方法も知られている。この方法は、例えば粉砕
した石炭を、圧力50 = 250 f / cA (
ゲージ圧)、温度600〜1200℃の水素気流中に噴
出することにより、石炭を103℃/秒以上の速度で急
熱し、水添熱分解することにより行われ、反応生成物と
してメタン・エタン、二酸化炭素、−酸化炭素、硫化水
素、アンモニア、炭素数3〜5の炭化水素、水、ガソリ
ン留分、燃料油(炭素数10以上の芳香族化合物及び高
沸点タール)及びチャーと称する灰分を含む固体生成物
などが得られる。
As a means of solving these essential problems with coal, there are many methods to liquefy coal, remove petroatoms and ash, and obtain clean fuel oil, fuel scum, and other high value-added chemical raw materials. was proposed. Typical examples of these methods include, for example, extracting coal with a solvent, liquefying coal in the presence of hydrogen or a hydrogen donor, and liquefying or gasifying coal in the presence of hydrogen. Examples include a method in which coal is liquefied or gasified in an inert gas. In addition, as a method to directly obtain light oil and gas by heating coal, by jetting finely pulverized coal into a high-temperature, high-pressure hydrogen stream, it is possible to directly obtain light oil or gas. A method of high-speed hydrogenation pyrolysis is also known. This method uses, for example, crushed coal at a pressure of 50 = 250 f/cA (
(gauge pressure) and into a hydrogen stream at a temperature of 600 to 1200°C, the coal is rapidly heated at a rate of 103°C/second or more, and the hydrogen pyrolysis is performed, and the reaction products are methane, ethane, Contains carbon dioxide, carbon oxide, hydrogen sulfide, ammonia, hydrocarbons with 3 to 5 carbon atoms, water, gasoline fraction, fuel oil (aromatic compounds with 10 or more carbon atoms and high-boiling point tar), and ash called char. Solid products etc. are obtained.

従来、このような石炭の高速水添熱分解法において、メ
タンの生成を抑制し、附加価値の高いガソリン留分など
の軽質油への転化率を高める研究が多くなされてきたが
、まだ満足すべき実用的な、方法は知られていない。
In the past, many studies have been conducted to suppress the production of methane and increase the conversion rate of high-value-added gasoline fractions to light oils in such high-speed hydropyrolysis methods of coal, but the results remain unsatisfactory. Should be practical, the method is unknown.

本発明者らは、このような事情に鑑み、従来の高速水添
熱分解法におけるカッリン留分への転化率を向上させる
ために鋭意研究を重ねた結果、ガソリン留分は、石炭か
ら直接生成する以外に、中間生成物である液体生成物が
さらに水添分解し、軽質化されて生成すること、及び全
体的には後者の力が支配的であること、したがってカッ
1ノン留分への転化率を向上させるには、該液体生成物
の絶対量を増大させることが必要であることを見出し、
この知見に基づいて本発明をなすに至った。
In view of these circumstances, the inventors of the present invention have conducted intensive research to improve the conversion rate to a coal fraction in the conventional high-speed hydrogenation pyrolysis method, and have found that gasoline fraction can be directly produced from coal. In addition to this, the intermediate liquid product is further hydrogenolyzed and lightened, and the latter force is dominant overall, so that the It has been found that increasing the conversion rate requires increasing the absolute amount of the liquid product,
The present invention was made based on this knowledge.

すなわち、本発明は、石炭を水素の存在下に熱処理して
液化及びカス化するに当り、(イ)石炭微粉末を力ロ熱
水素カス気流中に噴出して急速に加熱し反応させる工程
、(ロ)前記反応によって得られた反Kl’、−を生成
物を気相と固相とに分離する工程、(ハ)(ロ)工程で
分離した固相を加熱水素ガスと接触反応させる工程、に
)(ロ)工程で分離した気相及び09工程で得られたガ
ス状生成物をさらに水素添加反応はせる上程5.及び(
旬 に)工程で得らiた反応生成物を急冷する工程を、
連続して行うことを特徴とする石炭の水深熱分解法を提
供するものである。
That is, the present invention involves heat-treating coal in the presence of hydrogen to liquefy and turn it into scum, including (a) a step of ejecting fine coal powder into a stream of hot hydrogen scum to rapidly heat it and cause it to react; (b) A step of separating the anti-Kl',- product obtained by the above reaction into a gas phase and a solid phase, (c) A step of causing the solid phase separated in the step (b) to undergo a contact reaction with heated hydrogen gas. Step 5.) The gaseous phase separated in step (b) and the gaseous product obtained in step 09 are further subjected to a hydrogenation reaction. as well as(
The step of rapidly cooling the reaction product obtained in step 1) is
The present invention provides a method for aqueous deep pyrolysis of coal, which is characterized in that it is carried out continuously.

本発明方法に従えば、石炭からカッリン留分が高収率で
得られるとともに、副次的に生成するエタンなどの低級
炭化水素の高次分解によるメタンガスの発生が抑制され
、かつ燃料油の生成量が増大し、それにともない反応生
成炭化水素量に対する水添用水素量を太幅に節約するこ
とができる。
According to the method of the present invention, a kalin fraction can be obtained from coal in high yield, the generation of methane gas due to the higher decomposition of lower hydrocarbons such as ethane produced as a by-product is suppressed, and fuel oil can be produced. As the amount increases, the amount of hydrogen for hydrogenation relative to the amount of hydrocarbons produced by the reaction can be greatly reduced.

ところで、本発明において石炭からカッリン留分へ転化
する反応としては、主として2種の反応が考えられる。
By the way, in the present invention, there are mainly two types of reactions that can be considered as reactions for converting coal into a coal fraction.

その一つは、石炭の単なる熱分解により結合解離工坏ル
ギーの小さい共有結合が開裂し、生成したフリーラジカ
ルによって水素引抜さ、脱水素、丙結合、環化などの分
解と重縮合の競合反応か進行して、熱分解液体炭化水素
生成物(以下\液体生成物という。)知安定化され、ガ
ス状態で気相に拡散する固相反応であり、他の一つは、
同相反応で生成した液体生成物を水添分解して、さらに
低分子化する気相反応である。
One is that simple thermal decomposition of coal cleaves small covalent bonds in the bond dissociation process, and the generated free radicals cause hydrogen abstraction, dehydrogenation, C bonding, cyclization, and other competitive reactions of decomposition and polycondensation. This is a solid phase reaction in which the pyrolysis liquid hydrocarbon product (hereinafter referred to as liquid product) is stabilized and diffused into the gas phase in a gaseous state.
This is a gas phase reaction in which the liquid product produced in the same phase reaction is hydrogenolyzed and further reduced in molecular weight.

前者の同相反応における熱分解速度は比較的速いものと
考えられるが、固体生成物がさらに水添熱分解される反
応速度はかなQ遅いし、また、ガス及び液体生成物が固
相から気相に拡散する速度は熱分解速度より遅く、その
上固体生成物内に吸着されて液体生成物も存在するため
、反応域における固体生成物の滞留時間は長ければ長い
ほと、液体生成物の量が増力りする。
The thermal decomposition rate in the former in-phase reaction is considered to be relatively fast, but the reaction rate at which the solid product is further hydrogenated and thermally decomposed is quite slow, and the gas and liquid products change from the solid phase to the gas phase. The rate of diffusion into the reaction zone is slower than the rate of thermal decomposition, and since there is also a liquid product adsorbed within the solid product, the longer the residence time of the solid product in the reaction zone, the greater the amount of liquid product. increases in power.

一方、気相反応は、固相反応より生成、拡散してきた液
体生成物の水添分解反応によりガソリン留分を生成する
反応であって、目的生成物であるガソリン留分や副次的
に生成するエタンなどの低級炭化水素のメタンへの高次
水添分解反応を一抑制するために、脱アルキル反応温度
と同程度の温度で、かつ固相反応よシも短い滞留時間で
行う必要がある。
On the other hand, gas phase reaction is a reaction in which a gasoline fraction is produced by the hydrogenolysis reaction of the liquid product produced and diffused from the solid phase reaction. In order to suppress the higher-order hydrogenolysis reaction of lower hydrocarbons such as ethane to methane, it is necessary to carry out the reaction at a temperature similar to that of the dealkylation reaction and with a shorter residence time than the solid phase reaction. .

したがって、石炭からガソリン留分への転化率を上ける
ためには、捷ず、固相反応においてガソリン留分になり
うる液体生成物が多量に生成するような反応条件と、気
相反応において液体生成物の水添分解速度がカッリン留
分の水添分解速度より速くなるような反応条件を選ぶこ
とによって、理想的な反応過程が実現できることになる
Therefore, in order to increase the conversion rate from coal to gasoline fraction, the reaction conditions must be such that a large amount of liquid product that can become gasoline fraction is produced in solid phase reaction without breaking, and that liquid product in gas phase reaction is By selecting reaction conditions such that the rate of hydrogenolysis of the product is faster than the rate of hydrogenolysis of the Kallin fraction, an ideal reaction process can be realized.

本発明方法において用いる石炭は、できるだけ微粉状化
することが好ましく、実用的には100メツシュ通過、
好ましくは200メツシュ通過以下の粒度に調製される
ことが望ましい。
The coal used in the method of the present invention is preferably pulverized as much as possible;
Preferably, the particle size is adjusted to be 200 mesh or less.

また、(イ)工程における水素ガス気流は、実質的−に
水素ガスから成る雰囲気で形成されることが好ましいが
、例えば約30容量%−iでの不活性ガス、その細氷蒸
気、炭酸ガス、−V化炭素、メタンなどのカスで希釈さ
れていてもよい。(イ)工程においては、このような水
素ガス気流を反応容器内に加熱状態で通常25〜250
Kq/crAのゲージ圧に圧入したのち、この反応容器
内に微粉末石炭を噴射して550〜900°Cの温度1
で急速に加熱することによって反応が行われる。この際
の石炭のカn熱速度は、液体生成物を増大するため速け
れば速いほどよいので、通常1000℃/秒以上、好ま
しくは5000℃/秒以上の加熱速度が用いられる。
Further, the hydrogen gas flow in step (a) is preferably formed in an atmosphere consisting essentially of hydrogen gas, but for example, inert gas at about 30% by volume, fine ice vapor thereof, carbon dioxide gas, etc. , -V carbon, methane, etc. may be diluted. In the step (a), such a hydrogen gas stream is heated into the reaction vessel and is usually heated to a temperature of 25 to 250 ml.
After being press-fitted to a gauge pressure of Kq/crA, pulverized coal was injected into the reaction vessel to a temperature of 550 to 900°C.
The reaction is carried out by rapid heating at . Since the heating rate of the coal at this time is higher, it is better to increase the liquid product, so a heating rate of usually 1000° C./second or more, preferably 5000° C./second or more is used.

また、本発明方法においてll−i(イ)〜に)工程の
反応温度は550〜900℃の範囲に選ぶのが好ましい
In addition, in the method of the present invention, the reaction temperature in step ll-i is preferably selected in the range of 550 to 900°C.

この反応温度が900℃を超えると、気相反応において
、固相反応で生成した液体生成物の水添分解反応により
得られたガソリン留分や炭素数2〜5の炭化水素の高次
水添分解反応によりメタンガスの生成量が増加するため
、ガソリン留分への選択率が低下し、その上水素ガスの
消費量が多くなる。
When this reaction temperature exceeds 900°C, higher hydrogenation of gasoline fractions and hydrocarbons having 2 to 5 carbon atoms obtained by hydrogenolysis of liquid products produced in solid phase reactions occurs in gas phase reactions. Since the amount of methane gas produced increases due to the decomposition reaction, the selectivity to gasoline fraction decreases, and moreover, the amount of hydrogen gas consumed increases.

一方550℃未満では、固相反応における石炭の熱分解
速度が遅く、かつ熱分解が十分でないはかシでなく、気
相反応における液体生成物の水添分解速度が遅く、しか
も水添分解が十分でない。特に好ましい反応温度は57
0〜870℃の範囲である。
On the other hand, below 550°C, the rate of thermal decomposition of coal in the solid phase reaction is slow and the thermal decomposition is not sufficient, and the rate of hydrogenation of the liquid product in the gas phase reaction is slow, and the rate of hydrogen decomposition is slow. not enough. A particularly preferred reaction temperature is 57
It is in the range of 0 to 870°C.

なお、(イ)〜に)の各工程における反応温度は必ずし
も同一である必要はなく、また各工程内において温度勾
配を設けて行うこともできる。
Note that the reaction temperatures in each step (a) to (b) do not necessarily have to be the same, and a temperature gradient may be provided within each step.

次に、(イ)〜に)工程における反応時間について説明
すると、前記の反応温度範囲内では反応生成物中の液体
生成物はガス状態となっていて、(イ)〜に)工程では
実質的に気、固相状態で反応が進行しておシ、(イ)、
(ロ)、(ハ)の順序で進行する同相の全滞留時間が3
0秒間よシ短いと、固相反応域よシ気相反応域への拡散
及びチャーの水添熱分解反応が十分で彦いため、気相反
応への液体生成物の増大が不十分となる。また固相の全
滞留時間が1時間よ)長くなると、その効果は小さくな
る上に固相の保持量が多くなって、反応器の寸法を太キ
クシなければならず不経済となるため、(イ)、(ロ)
、(ハ)工程の固相の全滞留時間は30秒〜1時間の範
囲が望ましい。
Next, to explain the reaction time in step (a) to), within the reaction temperature range mentioned above, the liquid product in the reaction product is in a gaseous state, and in step (b) to) When the reaction progresses in the solid state, (a)
The total residence time of the same phase progressing in the order of (b) and (c) is 3
If it is shorter than 0 seconds, the diffusion from the solid phase reaction zone to the gas phase reaction zone and the hydrogenation thermal decomposition reaction of the char will be insufficient, resulting in insufficient increase of the liquid product to the gas phase reaction. In addition, as the total residence time of the solid phase becomes longer (1 hour), the effect becomes smaller and the amount of solid phase retained increases, requiring the reactor to be larger in size, which becomes uneconomical. b), (b)
The total residence time of the solid phase in step (c) is preferably in the range of 30 seconds to 1 hour.

一方、(イ)、(ロ)、に)の順序で進行する気相又は
(ハ)、に)の順序で進行する副気相の全滞留時間が短
いと、ガソリン留分への転化率の改善効果はあ″!、シ
期待できなくなるし、また逆に滞留時間が長いとガソリ
ン留分の分解が進みすぎるため、両気相の滞留時間は固
相の全滞留時間より短く、1−120秒の範囲で選ぶの
が望ましい。しかしながら、各工程における固相、気相
の滞留時間は、石炭の種類によって装置の形状が異なる
ため、一義的に決まるものではない。
On the other hand, if the total residence time of the gas phase that progresses in the order of (a), (b), and (b) or the subgas phase that progresses in the order of (c), and (b) is short, the conversion rate to gasoline fraction will decrease. The improvement effect cannot be expected, and conversely, if the residence time is too long, the decomposition of the gasoline fraction will proceed too much, so the residence time of both gas phases is shorter than the total residence time of the solid phase, and 1-120 It is preferable to select a time within seconds. However, the residence time of the solid phase and gas phase in each step is not uniquely determined because the shape of the equipment differs depending on the type of coal.

本発明方法においては、(イ)〜(ホ)工程における圧
力は水添分解反応である関係上、高くするとガソリン留
分への転化率が増加するが、ある程度以上高圧にすると
、その効果は小ζくな9、また設備面において経済的に
不利になるため、25〜250Kg/ cni −Gが
々子ましく、さらに35〜200 Kり/ cA−Gの
範囲が好適である・ 本発明の(イ))工程においては、に)工程の反応を停
止するために、反応生成物を急冷する必要がる勺、この
場合450℃JJ、下の温度に急冷することが好ましい
In the method of the present invention, since the pressure in steps (a) to (e) is a hydrogen cracking reaction, increasing the pressure will increase the conversion rate to gasoline fraction, but if the pressure is increased beyond a certain point, the effect will be small. In addition, since it is economically disadvantageous in terms of equipment, a range of 25 to 250 Kg/cni-G is preferable, and a range of 35 to 200 Kg/cni-G is preferable. In step (a)), in order to stop the reaction in step (b), the reaction product is preferably rapidly cooled to a temperature below 450° C. in this case.

本発明方法においては、微粉状石炭供給量(無水、無灰
基準)と反応水素ガス供給量との割合は、石炭の種類や
所要の反応生成物の組成によって異なる。一般に、供給
石炭(無水、無灰基準)に対する水素の重量比は0.0
3〜0.08あればよいが、石炭からの液体生成物の拡
散や水素の石炭細孔への拡散を良くし、石炭からガソリ
ン留分への転化率を高め、コーキングを防止するために
も、過剰の水素を供給することが望ましい。しかしなが
ら、この過剰の水素は、石炭からの生成物と分離して反
応装置に戻し循環使用するため、過剰の水素が多くなる
と、分離・循環及び加熱に要するエネルギーや設備も犬
きくなって経済的に不利になる。
In the method of the present invention, the ratio between the amount of pulverized coal supplied (anhydrous, ashless basis) and the amount of reactive hydrogen gas supplied varies depending on the type of coal and the composition of the required reaction product. Generally, the weight ratio of hydrogen to feed coal (anhydrous, ashless basis) is 0.0
3 to 0.08 is sufficient, but it also improves the diffusion of liquid products from coal and the diffusion of hydrogen into coal pores, increases the conversion rate from coal to gasoline fraction, and prevents coking. , it is desirable to supply excess hydrogen. However, this excess hydrogen is separated from the products from the coal and recycled back to the reactor, so as the amount of excess hydrogen increases, the energy and equipment required for separation, circulation, and heating become uneconomical. becomes disadvantageous.

したがって、(イ)工程における石炭供給量(無水、無
灰基準)と(イ)工程及び(ハ)工程における合計反応
水素ガス供給量との割合が、重量比で10:1ないし2
.3の範囲にあるのが適轟であや、特に10 : 1.
2ないし1.1の範囲が好ましい。
Therefore, the ratio of the amount of coal supplied in step (a) (anhydrous, ashless basis) to the total amount of reacted hydrogen gas supplied in step (i) and step (c) is 10:1 to 2 by weight.
.. Sokudo is in the 3 range, especially 10:1.
A range of 2 to 1.1 is preferred.

甘だ、本発明方法においては、(イ)工程における反応
水素カス供給量とCつ工程における反応水素ガス供給量
との割合は、(イ)工程と(−→工程におけろ水添に要
する水素ガス量とコーキングを防止するだめの過剰の水
素ガス量及び(ハ)工程における固相反応からの反応生
成物をストリッピングするのに必要な水素カス量より決
定されるが、好ましいのはモル比で2゛1ない1,20
:1の範囲である。
In the method of the present invention, the ratio between the amount of reactant hydrogen gas supplied in step (a) and the amount of reactant hydrogen gas fed in step C is the same as that required for hydrogenation in step (b) and (−→ step). It is determined by the amount of hydrogen gas, the amount of excess hydrogen gas in the tank to prevent coking, and the amount of hydrogen residue required to strip the reaction product from the solid phase reaction in step (c), but it is preferable to 2゛1 not 1,20 in ratio
: The range is 1.

本発明の石炭の水添熱分解法によると、附加価値の高い
ガソリン留分が高収率で得られる上に、メタンガスの発
生が抑制され、かつ燃量前の生成が増大することによっ
て、反応生成炭化水素量に対する水添用水素量を大幅に
減少することができる。
According to the coal hydrogenation pyrolysis method of the present invention, a high value-added gasoline fraction can be obtained at a high yield, and the generation of methane gas is suppressed and the production before combustion is increased, so that the reaction The amount of hydrogen for hydrogenation relative to the amount of hydrocarbons produced can be significantly reduced.

なお・本発明方法において石炭とは、無煙炭、歴青炭・
亜歴青炭、かつ炭、亜炭、泥炭、草炭などをいう。
In addition, in the method of the present invention, coal refers to anthracite, bituminous coal,
Refers to subbituminous coal, charcoal, lignite, peat, grass charcoal, etc.

寸だ、石炭からの各反応生成物への転化率は、次式によ
って定義される。
In short, the conversion rate from coal to each reaction product is defined by the following equation.

以下に実施例を挙げて本発明をさらに詳細に説明するが
、本発明はこれらの実施例に限定されるものではない。
EXAMPLES The present invention will be explained in more detail with reference to Examples below, but the present invention is not limited to these Examples.

実施例I 豪州褐炭を自由粉砕機で微粉砕し、150メツシユ以下
を83qb以上としたのち、真空乾燥機で一720咽H
g、1.00℃の条件で24時間乾燥し、石炭100重
量部に対し、水分量を3.3重量部程度に調整した。該
石炭の元素分析値は無水基準で第1表のとおりであった
Example I Australian lignite was finely pulverized using a free crusher to reduce 150 mesh or less to 83 qb or more, and then pulverized to 1,720 ph in a vacuum dryer.
g, dried at 1.00° C. for 24 hours, and the moisture content was adjusted to about 3.3 parts by weight based on 100 parts by weight of coal. The elemental analysis values of the coal were as shown in Table 1 on an anhydrous basis.

第1表 圧カフ0Ktq/cnl(lの常温水素ガス(水素純度
99%以上) 80 N m” / Hを外部加熱式水
素ガス予熱管にて750℃に予熱する。また圧カフ2に
9/CaGの常温酸素ガス1.9Nm/Hを該予熱水素
ガスと混合して、反応当量の予熱水素ガスの一部を燃焼
して、1100℃の加熱水素ガスとする。一方、23.
3Kg/Hの常温該微粉砕乾燥石炭を圧カフ1に9 /
 ctl G下で、3 、2 N tn”/ Hの常温
水素ガスを用いて、石炭ホッパーよシ配管で搬送し、該
加熱水素ガス気流中に噴出混合して、該石炭を常温から
750℃まで急速に昇温する。このときの石炭の加熱速
度は約5 X 104℃/秒と推定される。さらに内径
20mmφの反応管に、該石炭と水素ガス混合物を75
0℃で流通させ、(イ)工程の反応を行わせる。
Preheat the first surface pressure cuff 0 Ktq/cnl (l of room temperature hydrogen gas (hydrogen purity 99% or higher) 80 N m”/H to 750°C with an externally heated hydrogen gas preheating tube. 1.9 Nm/H of room temperature oxygen gas of CaG is mixed with the preheated hydrogen gas, and a part of the reaction equivalent of the preheated hydrogen gas is combusted to produce heated hydrogen gas at 1100°C.Meanwhile, 23.
3Kg/H of the finely pulverized dry coal at room temperature is placed in pressure cuff 1 at 9/
Under ctl G, using room temperature hydrogen gas of 3,2 N tn"/H, the coal is conveyed through a coal hopper pipe and jetted and mixed into the heated hydrogen gas stream to heat the coal from room temperature to 750°C. The temperature rises rapidly. The heating rate of the coal at this time is estimated to be approximately 5 x 104 °C/sec. Furthermore, the coal and hydrogen gas mixture is placed in a reaction tube with an inner diameter of 20 mmφ at 75 °C.
Flow at 0°C to carry out the reaction in step (a).

しかるのち、サイクロン分離器にて気相と固相の分離を
行い、固相は流動層反応器に供給する。次に、圧カフ5
Kg/ciGの常温水素ガス12 N yn’/Hを外
部加熱式水素ガス予熱管にて800℃に刃口熱し、該流
動層反応器に供給して、(ハ)工程の反応を750℃で
行わせる。該流動層反応器より固体粒子(チャー)を適
ぎ抜き出し、該流動層反応器でのチャーの蓄積を抑制し
た。該流動層反応器で生成した反応ガスは該サイクロン
分離器で分離した(イ)工程の生成反応ガスと混合して
、内径60職φ反応管に流通せしめ、温度750℃にて
、に)工程の気相水添反応を行わせる。該に)工程の反
応管からの反応生成物は二重管式急冷器で380℃に急
冷し、チャートラップで飛まつ同伴してきたチャーを分
離したのち、間接水冷却器で液体生成物を凝縮させガス
と分離し、それぞれ分析した。
Thereafter, a gas phase and a solid phase are separated in a cyclone separator, and the solid phase is supplied to a fluidized bed reactor. Next, pressure cuff 5
Kg/ciG of room-temperature hydrogen gas 12 N yn'/H was heated to 800°C using an externally heated hydrogen gas preheating tube and supplied to the fluidized bed reactor, and the reaction in step (c) was carried out at 750°C. Let it happen. Solid particles (char) were removed from the fluidized bed reactor to suppress the accumulation of char in the fluidized bed reactor. The reaction gas produced in the fluidized bed reactor is mixed with the reaction gas produced in step (a) separated by the cyclone separator, and passed through a reaction tube with an inner diameter of 60 mm at a temperature of 750°C. A gas phase hydrogenation reaction is carried out. The reaction product from the reaction tube in the above process is rapidly cooled to 380°C in a double-tube quencher, and after separating the entrained char with a char trap, the liquid product is condensed in an indirect water cooler. It was separated from the gas and analyzed separately.

各反応域の反応温度を一定にするため、電気ヒーターを
反応器の周囲に設置し、さらに、水素燃焼室・(イ)、
(ロ)、H,に)の各工程の要素と該電気ヒーターを、
内径500闘φの耐圧容器に納めることによって、反応
器などの耐圧を不要とした。
In order to keep the reaction temperature constant in each reaction zone, an electric heater was installed around the reactor, and a hydrogen combustion chamber (a)
(b), H, ni) and the electric heater,
By storing it in a pressure-resistant container with an inner diameter of 500mm, there was no need for a pressure-resistant reactor or the like.

また、反応圧力はに)工程反応管出口で70に9/cA
Gであや、反応に供する全水素量の無水、無灰基準での
供給石炭量に対する重量比は0.41である。(イ)工
程と(ハ)工程の反応水素ガス供給量割合はモル比で6
.8:1である。さらに、(イ)工程の微粉砕炭と加熱
水素の混合点から、(ロ)工程を経て、に)工程反応管
出口までの主気相滞留時間は6秒であυ、該混合点から
(O)工程を経て、r)工程の流動層反応器より固体抜
き出しまでの同相平均滞留時間は6分であり、該流動層
反応器への加熱水素ガスの供給点から、(ロ)工程を経
てに)工程反応管出口までの副気相滞留時間は25秒で
あった。
In addition, the reaction pressure is 70 to 9/cA at the outlet of the process reaction tube.
In G, the weight ratio of the total amount of hydrogen used for the reaction to the amount of coal supplied on an anhydrous and ashless basis is 0.41. The reaction hydrogen gas supply ratio in step (a) and step (c) is 6 in molar ratio.
.. The ratio is 8:1. Furthermore, the residence time of the main gas phase from the mixing point of the pulverized coal and heated hydrogen in step (a) through step (b) to the outlet of the reaction tube in step (ii) is 6 seconds, and from the mixing point to ( The average residence time in the same phase from the point of supply of heated hydrogen gas to the fluidized bed reactor to the solid extraction from the fluidized bed reactor in step r) after passing through step O) is 6 minutes. B) Process The residence time of the sub-gas phase up to the outlet of the reaction tube was 25 seconds.

反応生成物の分析結果、炭素基準における石炭からの反
応生成物の転化率は第2表のとおシであつた。
As a result of analysis of the reaction product, the conversion rate of the reaction product from coal on a carbon basis was as shown in Table 2.

第2表 注記 ×1) エチレンは、エタンの約5係で必見エタンとエ
チレンの合計値をエタンと称する。
Notes on Table 2 x 1) Ethylene is about 5 times as much as ethane.The total value of ethane and ethylene is called ethane.

×2) 分析結果の物質収支は96i!量係から102
重量係であったが、物質収支の合わない量は、ガソリン
留分を除く液体炭化水素生成物とした。
×2) The material balance of the analysis result is 96i! 102 from the quantity section
Although it was based on weight, the amount for which there was no material balance was taken as liquid hydrocarbon products excluding gasoline fraction.

実施例2〜4 実施例1で用いた乾燥微粉炭(豪州褐炭)と同一試料を
実施例1に記載した装置を使用して反応実験を行った。
Examples 2 to 4 Reaction experiments were conducted using the same sample of dry pulverized coal (Australian lignite) used in Example 1 using the apparatus described in Example 1.

各実施例の反応条件として、反応域での温度、気相の滞
留時間、固相の滞留時間などを変えて実施した結果を第
3表に示す。
Table 3 shows the results obtained by changing the reaction conditions for each example, such as the temperature in the reaction zone, the residence time of the gas phase, and the residence time of the solid phase.

なお、反応時間を変えるため、石炭の供給量や加熱水素
ガスの供給量及び反応管径を適当に変え実施例 第    3    表 注記 Σ、3) (イ)工程及び(ハ)工程の反応に供
する加熱水素と無水・無灰基準の供給石炭との重量割合 ==4)(イ)工程の反応水素ガス供給量と09工程の
反応水素ガス供給量とのモル比 比較例1 実施例1の力0熱水素ガスの生成力法と同様にして、圧
カフ 2 x9/C=o 、温度750℃の予熱水素ガ
ス80 N m3/ Hと常温酸素ガス1. 、9 N
 m3/ Hを燃焼室において混合し、予熱水素ガスの
一部を燃焼して、1100℃の加熱水素ガスを生成する
。一方、実施例1と同一の微粉砕炭(豪州褐炭)24I
Q/Hを加圧水素カス3.2 Nm3/ Hを用いて、
ホッパーより配管て搬送し、該加熱水素ガス気流中に噴
出混合し、石炭を常温から750℃壕で急速に昇温する
。このときの石炭の加熱速度は実施例1と同程度と推定
さ几る。さらに内径60聴φの反応管に、該水素ガスと
石炭の混合物を750℃で流通反応を行わせる。該反応
管からの反応生成物は二重管式急冷器で380℃に急冷
し、チャートランプでチャーを分離したのち、実施例1
と同様の分析を行った。
In addition, in order to change the reaction time, the amount of coal supplied, the amount of heated hydrogen gas supplied, and the diameter of the reaction tube were changed appropriately, and the reaction was carried out in Example No. 3 Notes Σ, 3) (a) and (c) steps. Weight ratio of heated hydrogen and supplied coal on an anhydrous and ashless basis ==4) Molar ratio comparison between the amount of reacted hydrogen gas supplied in step (a) and the amount of reacted hydrogen gas supplied in step 09 Comparative Example 1 Strength of Example 1 In the same manner as the zero-thermal hydrogen gas production method, a pressure cuff 2 x9/C=o, 80 N m3/H of preheated hydrogen gas at a temperature of 750°C, and 1. , 9N
m3/H are mixed in the combustion chamber and a portion of the preheated hydrogen gas is combusted to produce heated hydrogen gas at 1100°C. On the other hand, the same pulverized coal (Australian lignite) 24I as in Example 1
Q/H using pressurized hydrogen gas 3.2 Nm3/H,
The coal is conveyed via piping from a hopper, mixed in the heated hydrogen gas stream, and the temperature of the coal is rapidly raised from room temperature to 750°C in a trench. The heating rate of the coal at this time is estimated to be about the same as in Example 1. Further, the mixture of hydrogen gas and coal is passed through a reaction tube having an inner diameter of 60 mm to carry out a reaction at 750°C. The reaction product from the reaction tube was rapidly cooled to 380°C using a double tube type quencher, and the char was separated using a chart lamp.
A similar analysis was performed.

反応域での温度の保持のだめの電気ヒーターの設備べ〕
反応管などの耐圧を不要にするだめの耐圧容器をイ」加
する点は実施例1と同様である。
Equipped with an electric heater to maintain the temperature in the reaction zone.
This is the same as in Example 1 in that a pressure-resistant container such as a reaction tube is added to obviate the need for a pressure-resistant container.

ま/ヒ、反応圧力は該反応管出口部で70 Kq/cr
ux Gであり、反応に供する全水素量と無水、無灰基
準の石炭供給量の比率は帆34重量比である。石炭と加
熱水素ガスとの混合点から該反応管出口までの気相滞留
時間は6秒であり、同反応域での固相滞留1晴間は約3
秒であった。
The reaction pressure is 70 Kq/cr at the outlet of the reaction tube.
ux G, and the ratio of the total amount of hydrogen used for the reaction to the amount of coal supplied on an anhydrous and ashless basis is a weight ratio of 34. The gas phase residence time from the mixing point of coal and heated hydrogen gas to the outlet of the reaction tube is 6 seconds, and the solid phase residence time in the same reaction zone is approximately 3 seconds.
It was seconds.

反応生成物の分析結果によると炭素基準における石炭か
らの反応生成物の転化率は第4表の比較例jのとおりで
あった。
According to the analysis results of the reaction product, the conversion rate of the reaction product from coal based on carbon was as shown in Comparative Example j in Table 4.

比較例2,3 比較例1と同様にして、反応温度、気相と固相の滞留時
間を変えて実験した結果を第4表に示す。
Comparative Examples 2 and 3 Table 4 shows the results of an experiment conducted in the same manner as in Comparative Example 1 by changing the reaction temperature and the residence time of the gas phase and solid phase.

第    4    表 − 曙 ノ 注記 ※3) 前記と同じ意味である。Table 4 − dawn of Note *3) Same meaning as above.

以上の結果から、従来技術に比較して本発明の有利な点
を要約すると次のとおっである。
From the above results, the advantages of the present invention compared to the prior art can be summarized as follows.

(1)石炭からガンリン留分への転1ヒ率が約30係増
大する。
(1) The conversion rate from coal to Ganlin fraction increases by about 30 times.

(2)石炭からエタンへの転化率が約15%増大する。(2) The conversion rate of coal to ethane increases by about 15%.

(3)石炭からの総転化率が従来技術よシ約20%増大
するが、と、11.は燃料油、ガソリン留分の増大が主
で、メタンへの転化率がさほど増加しないため、生成炭
化水素化合物に対する反応用水素消費量が少なく、水素
製造費用が低減できる。
(3) The total conversion rate from coal is increased by about 20% compared to the conventional technology; 11. Since the increase in fuel oil and gasoline fractions is the main cause and the conversion rate to methane does not increase significantly, the amount of hydrogen consumed for reaction with the generated hydrocarbon compounds is small, and the hydrogen production cost can be reduced.

特許出願人 旭化成工業株式会社 代理人 阿 形  明Patent applicant: Asahi Kasei Industries, Ltd. Agent Akira Agata

Claims (1)

【特許請求の範囲】 1 石炭を水素の存在下に熱処理して液化及びガス化す
るに当シ、(イ)石炭微粉末を加熱水素ガス気流中に噴
出して急速に加熱し反応させる工程、(ロ)前記反応に
よって得られた反応生成物を気相と固相とに分離する工
程、C→ (1コ)工程で分離した固相を刃口熱水素ガ
スと接触反応させる工程、に)(ロ)工程で分離した気
相及びe−>工程で得られたガス状生成物をざらに水素
添加反応させる工程、及び(ホ)に)工程で得られた反
応生成物を急冷する工程を、連続して行うことを特徴と
する石炭の水添熱分解法。 2 (イ)、(ロ)、(ハ)及びに)工程における反応
温度を550〜900℃とする特許請求の範囲第1項記
載の方法。 K9 / ca (ゲージ圧)とする特許請求の範囲第
1項記載の方法。 4 (イ)工程における石炭の加熱速度が1000℃/
秒以上である特許請求の範囲第1項記載の方法0 5 (イ)工程における石炭供給量(無水、無灰基準)
と(イ)工程及び(ハ)工程における合計反応水素ガス
供給量との割合が、重量比で10:1ないし2:3の範
囲である特許請求の範囲第1項記載の方法。 6 (イ)工程における反応水素ガス供給量とeつ工程
における反応水素ガス供給量との割合が、モル比で21
ないし20゛1の範囲でるる特許請求の範囲第1項記載
の方法。
[Claims] 1. A step in which coal is liquefied and gasified by heat treatment in the presence of hydrogen, (a) fine coal powder is jetted into a heated hydrogen gas stream to rapidly heat and react; (B) A step of separating the reaction product obtained by the above reaction into a gas phase and a solid phase, C→ A step of causing the solid phase separated in step (1) to undergo a contact reaction with hot hydrogen gas at the edge of the blade) (b) A step of roughly hydrogenating the gaseous phase separated in step e-> and the gaseous product obtained in step e->, and (e) a step of rapidly cooling the reaction product obtained in step). , a coal hydrogenation pyrolysis method characterized by being carried out continuously. 2. The method according to claim 1, wherein the reaction temperature in steps (a), (b), (c), and (i) is 550 to 900°C. The method according to claim 1, wherein the pressure is K9/ca (gauge pressure). 4 (a) The heating rate of coal in the process is 1000℃/
The method according to claim 1, which is at least 1 second
2. The method according to claim 1, wherein the ratio of the total reaction hydrogen gas supply amount in steps (a) and (c) is in the range of 10:1 to 2:3 by weight. 6 The ratio of the amount of reactive hydrogen gas supplied in step (a) to the amount of reactive hydrogen gas supplied in step e is 21 in terms of molar ratio.
A method as claimed in claim 1 in the range from 20.1 to 20.1.
JP15083A 1983-01-04 1983-01-04 Hydro-thermal cracking of coal Pending JPS59124990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15083A JPS59124990A (en) 1983-01-04 1983-01-04 Hydro-thermal cracking of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15083A JPS59124990A (en) 1983-01-04 1983-01-04 Hydro-thermal cracking of coal

Publications (1)

Publication Number Publication Date
JPS59124990A true JPS59124990A (en) 1984-07-19

Family

ID=11466005

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15083A Pending JPS59124990A (en) 1983-01-04 1983-01-04 Hydro-thermal cracking of coal

Country Status (1)

Country Link
JP (1) JPS59124990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159490A (en) * 1984-12-29 1986-07-19 Mitsui Eng & Shipbuild Co Ltd Method for liquefying coal by hydrogenation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075202A (en) * 1973-11-01 1975-06-20
JPS5479235A (en) * 1977-11-08 1979-06-25 Coal Industry Patents Ltd Coal treating method
JPS54139601A (en) * 1978-04-10 1979-10-30 Fmc Corp Conversion of gaseous and liquid fuel from coal
JPS57202378A (en) * 1981-06-08 1982-12-11 Asahi Chem Ind Co Ltd Hydrogenating and thermally decomposition method of coal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5075202A (en) * 1973-11-01 1975-06-20
JPS5479235A (en) * 1977-11-08 1979-06-25 Coal Industry Patents Ltd Coal treating method
JPS54139601A (en) * 1978-04-10 1979-10-30 Fmc Corp Conversion of gaseous and liquid fuel from coal
JPS57202378A (en) * 1981-06-08 1982-12-11 Asahi Chem Ind Co Ltd Hydrogenating and thermally decomposition method of coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61159490A (en) * 1984-12-29 1986-07-19 Mitsui Eng & Shipbuild Co Ltd Method for liquefying coal by hydrogenation

Similar Documents

Publication Publication Date Title
US6709573B2 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
US8114176B2 (en) Catalytic steam gasification of petroleum coke to methane
US4322222A (en) Process for the gasification of carbonaceous materials
US3488279A (en) Two-stage conversion of coal to liquid hydrocarbons
US4661237A (en) Process for thermal cracking of carbonaceous substances which increases gasoline fraction and light oil conversions
US4229185A (en) Process for the gasification of carbonaceous materials
US3817723A (en) Two-stage gasification of pretreated coal
US3850738A (en) Bituminous coal liquefaction process
US20060076275A1 (en) Process for the recovery of hydrocarbon fractions from hydrocarbonaceous solids
JPH05501537A (en) Method for converting carbonaceous raw materials into granular carbon and methanol
US4158948A (en) Conversion of solid fuels into fluid fuels
US4338182A (en) Multiple-stage hydrogen-donor coal liquefaction
US3891403A (en) Oil shale hydrogasification process
JPH08269459A (en) Coal liquefaction method
JPS6261079B2 (en)
US4260472A (en) Process of producing hydrocarbons from coal
US4412908A (en) Process for thermal hydrocracking of coal
JPS5981385A (en) Hydrogenation pyrolysis
US3712800A (en) Method for converting residual oils into fuel gas
US3347647A (en) Conversion of solid fossil fuels to high-b. t. u. pipeline gas
JPS59124990A (en) Hydro-thermal cracking of coal
Yabe et al. Development of coal partial hydropyrolysis process
CN102021045B (en) Method for separating mixed gas containing tar
US4097360A (en) Quenching pyrolysis reactor effluent streams
JPH0132276B2 (en)