JPH0132212B2 - - Google Patents

Info

Publication number
JPH0132212B2
JPH0132212B2 JP57192586A JP19258682A JPH0132212B2 JP H0132212 B2 JPH0132212 B2 JP H0132212B2 JP 57192586 A JP57192586 A JP 57192586A JP 19258682 A JP19258682 A JP 19258682A JP H0132212 B2 JPH0132212 B2 JP H0132212B2
Authority
JP
Japan
Prior art keywords
acid
reaction
propylene
aqueous solution
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57192586A
Other languages
Japanese (ja)
Other versions
JPS5982326A (en
Inventor
Sumio Akyama
Hirohisa Kajama
Masato Todo
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuyama Corp
Original Assignee
Tokuyama Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuyama Corp filed Critical Tokuyama Corp
Priority to JP57192586A priority Critical patent/JPS5982326A/en
Publication of JPS5982326A publication Critical patent/JPS5982326A/en
Publication of JPH0132212B2 publication Critical patent/JPH0132212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は特定したヘテロポリ酸の水溶液中でプ
ロピレンを直接水和して相当するイソプロピルア
ルコールを製造する方法に関する。詳しくは、リ
ンモリブドタングステン酸、リンバナドタングス
テン酸、リンマンガンタングステン酸またはこれ
らの可溶性塩を溶解した水溶液中で高温高圧下に
プロピレンを水和することによつて、特に装置材
料の腐食を抑制して、イソプロピルアルコールを
製造する方法に関する。 従来、オレフインの直接水和法においては触媒
として金属酸化物などの固体触媒、ケイタングス
テンあるいはリン酸を不活性担体に担持させた触
媒、硫酸など鉱酸の液状触媒、イオン交換体触媒
などが知られている。しかしながら、これらの触
媒はそれぞれ特に工業的に水和活性、機械的強
度、装置材料の腐食などの点で問題があつた。 従つて、本出願人は、特公昭50―35051,35052
公報に記載のように、リンモリブテン酸などの溶
液触媒を希薄濃度でかつ水素イオン濃度を比較的
小さい範囲で用いて、高温高圧の条件下にオレフ
インの水和反応を行うことにより、沈澱物の生
成、装置の腐食及び副反応を抑制して、安定した
オレフインの水和方法を提案し、既に工業的に実
施化している。他方、特公昭51―13711公報には、
種々のヘテロポリ酸が挙げられ、10〜70重量%の
高濃度水溶液でかつ100〜170℃の低い温度におい
ても実用的に充分な反応速度でオレフインが水和
され、高い選択率でアルコールを得る方法が開示
され、触媒寿命も長く、しかも装置材料の腐食も
殆んど問題にならないことが記載されている。 しかして、実際の工業的な製造装置において、
装置材料の腐食は一般に可及的に抑制することが
必要である。従つて、上記の如きヘテロポリ酸の
溶液触媒を用いてオレフインの水和をして、工業
的にアルコールを製造する場合には、やはり該ヘ
テロポリ酸の低濃度水溶液で高温・高圧の条件下
に実施することが好適である。さらに、かかるヘ
テロポリ酸の低濃度水溶液で高圧下の条件下にプ
ロピレンを水和してイソプロピルアルコールを製
造する方法においても、なお一層の装置材料の腐
食を抑制することは望まれる。 本発明者らは、上記した課題に鑑み、さらに
種々のヘテロポリ酸の低濃度水溶液を用いて、高
温・高圧下にプロピレンの水和反応の研究を進め
た。その結果、各種のヘテロポリ酸のうち特定さ
れたヘテロポリ酸を用いた場合には、装置材料の
腐食が著しく抑制される効果を知見して、本発明
を提供するに至つたものである。すなわち、本発
明はリンモリブドタングステン酸、リンバナドタ
ングステン酸、リンマンガンタングステン酸また
はこれらの可溶性塩の少なくとも1種を0.1〜10
g/溶解した水溶液に、プロピレンを180〜350
℃の温度下に接触させることを特徴とするイソプ
ロピルアルコールの製造方法である。 本発明によれば、特公昭50―35051,50―35052
公報に記載のケイタングステン酸などの溶液触媒
を用いる方法と同様にプロピレンを水和して収率
よくイソプロピルアルコールを得ることが出来
る。また、後記する実施例及び比較例における各
種ヘテロポリ酸の触媒水溶液を用いたステンレス
鋼に対する腐食速度の経時変化テストから、本発
明のリンモリブドタングステン酸、リンバナドタ
ングステン酸及びリンマンガンタングステン酸を
用いる場合には、特公昭50―35051,50―35052公
報に記載のケイタングステン酸、リンタングステ
ン酸などと比較して特に初期段階の腐食速度を著
しく小さく出来ることが認められる。従つて、本
発明の方法においては、装置材料として通常のス
テンレス鋼の使用も可能であり、従来法より腐食
が防止されると共に、腐食に伴う触媒活性の低下
も回避が期待できる。 本発明において、触媒成分として用いるリンモ
リブドタングステン酸、リンバナドタングステン
酸、マンガンタングステン酸またはそれらの可溶
性塩は、一般式 H3+x〔PW12−xMexO40〕・nH2O (Me:Mo,V,Mn) などが挙げられる。そして、本発明の方法により
工業的に装置の腐食防止を勘案して、アルコール
を収率よく製造するためには、上記した触媒成分
が水溶液中で濃度を0.1〜10好ましくは0.5〜5
g/に維持することが必須である。すなわち、
0.1g/以下の濃度ではプロピレンの水和反応
が十分に達成されず、イソプロピルアルコールを
収率よく製造できず、一方、10g/以上の濃度
では水和活性にほとんど差異がなく、逆に装置材
料を腐食する傾向が大きくなるので実用的でな
い。 また、本発明においては、上記の触媒成分と共
水溶液中の水素イオン濃度(PH)を2.0〜4.5、好
ましくは2.5〜4.0に維持することも重要である。
すなわち、水素イオン濃度は大きいほどプロピレ
ンの水和活性を大きく出来るが、触媒成分の分解
速度が増大するため長期の触媒活性が維持でき
ず、さらに副反応や装置の腐食を促進する欠点が
ある。かかる触媒水溶液の水素イオン濃度(PH)
の調節は、上記した触媒成分を溶解した水溶液に
可溶性の塩基性物質、例えばNaOH,KOH,Ca
(OH)2,MgOなどの金属酸化物、金属酸化物、
または水酸化アンモニウムあるいは有機塩基など
触媒成分を分解せず不溶性物質を生成しないもの
を添加することが有効である。 さらに、本発明の方法においては、プロピレン
の水和条件として反応温度を180〜350℃好ましく
は200〜300℃に維持することが極めて重要であ
る。反応圧力は上記の反応温度において飽和蒸気
圧より高い圧力、すなわち液状を保ち得る圧力以
上であればよく、高圧ほどアルコールを有利に生
成できるが、一般に100〜500Kg/cm2が適当であ
る。 本発明において使用する装置は、例えば回分式
または連続式の液相直接水和用である公知の反応
装置が何ら制限なく採用できる。特に連続式を採
用する場合には、一般に反応装置として吸収塔を
用いて触媒水溶液とプロピレンとを逆流または向
流で効率よく接触せしめ、反応塔から排出する反
応液からイソプロピルアルコールを蒸留分離した
のち、残液を反応塔を循環する方法が好適であ
る。 以下、本発明の効果を実施例によつて示す。 実施例 1 ヘテロポリ酸の所定量をイオン交換水に溶解
し、表―1に示す添加アルカリでPH値を調整した
水溶液150mlを内容積300mlの銀内張製オートクレ
ーブに入れ、加熱しながらプロピレンを注入し、
所定の温度に達したらプロピレンの注入を止め、
所定時間反応させた。各種条件下の反応結果を表
―1に示した。 比較のため、PH2.9に調製したリンタングステ
ン酸水溶液150mlを用いて、実施例1のNo.2と同
じ条件下でプロピレンと反応させたところ、得ら
れたイソプロピルアルコール(IPA)の濃度は
10.9wt%で、選択率は98%であつた。
The present invention relates to a method for producing the corresponding isopropyl alcohol by directly hydrating propylene in an aqueous solution of a specified heteropolyacid. Specifically, by hydrating propylene under high temperature and pressure in an aqueous solution containing phosphomolybdotungstic acid, phosphovanadotungstic acid, phosphomanganese tungstic acid, or their soluble salts, corrosion of equipment materials is particularly inhibited. The present invention relates to a method for producing isopropyl alcohol. Conventionally, in the direct hydration method of olefins, solid catalysts such as metal oxides, catalysts with silicotungsten or phosphoric acid supported on inert carriers, liquid catalysts with mineral acids such as sulfuric acid, and ion exchange catalysts have been used. It is being However, each of these catalysts has had problems, particularly in terms of industrial hydration activity, mechanical strength, and corrosion of equipment materials. Therefore, the present applicant is
As described in the publication, the hydration reaction of olefins is carried out under conditions of high temperature and high pressure using a solution catalyst such as phosphomolybtenic acid at a dilute concentration and a hydrogen ion concentration in a relatively small range, thereby removing the precipitate. We have proposed a stable olefin hydration method that suppresses formation, equipment corrosion, and side reactions, and have already put it into industrial use. On the other hand, in the Special Publication No. 51-13711,
A method in which various heteropolyacids are mentioned, and olefins are hydrated at a practically sufficient reaction rate even at a high concentration aqueous solution of 10 to 70% by weight and at a low temperature of 100 to 170°C, and alcohol can be obtained with high selectivity. is disclosed, and it is stated that the catalyst life is long and corrosion of equipment materials hardly becomes a problem. However, in actual industrial manufacturing equipment,
Corrosion of equipment materials generally needs to be suppressed as much as possible. Therefore, when industrially producing alcohol by hydrating olefin using a heteropolyacid solution catalyst as described above, the process must be carried out using a low concentration aqueous solution of the heteropolyacid under high temperature and high pressure conditions. It is preferable to do so. Further, in the method of producing isopropyl alcohol by hydrating propylene with a low concentration aqueous solution of a heteropolyacid under high pressure conditions, it is desired to further suppress corrosion of equipment materials. In view of the above problems, the present inventors further conducted research on the hydration reaction of propylene under high temperature and high pressure using low concentration aqueous solutions of various heteropolyacids. As a result, it was discovered that when a specified heteropolyacid among various types of heteropolyacids is used, corrosion of device materials is significantly suppressed, and the present invention has been provided. That is, the present invention provides at least one of phosphomolybdotungstic acid, phosphovanadotungstic acid, phosphomanganese tungstic acid, or a soluble salt thereof in an amount of 0.1 to 10
g/propylene in the dissolved aqueous solution from 180 to 350
This is a method for producing isopropyl alcohol, which is characterized in that it is brought into contact at a temperature of .degree. According to the present invention, Japanese Patent Publication No. 50-35051, 50-35052
Isopropyl alcohol can be obtained in good yield by hydrating propylene in the same manner as the method using a solution catalyst such as tungstic silicoic acid described in the publication. In addition, from tests of corrosion rate over time on stainless steel using catalyst aqueous solutions of various heteropolyacids in Examples and Comparative Examples described later, it was found that phosphomolybdotungstic acid, phosphovanadotungstic acid, and phosphomanganese tungstic acid of the present invention were used. In some cases, it is recognized that the corrosion rate, especially at the initial stage, can be significantly reduced compared to silicotungstic acid, phosphotungstic acid, etc. described in Japanese Patent Publications No. 50-35051 and 1983-35052. Therefore, in the method of the present invention, it is possible to use ordinary stainless steel as the equipment material, and it is expected that corrosion will be prevented more than in the conventional method, and a decrease in catalytic activity due to corrosion can be avoided. In the present invention, phosphomolybdotungstic acid, phosphovanadotungstic acid, manganese tungstic acid, or a soluble salt thereof used as a catalyst component has the general formula H 3 +x[PW 12 −xMexO 40 ]·nH 2 O (Me:Mo, V, Mn), etc. In order to industrially produce alcohol in good yield by the method of the present invention, taking into consideration corrosion prevention of equipment, the concentration of the above-mentioned catalyst component in an aqueous solution must be 0.1-10, preferably 0.5-5.
g/ is essential. That is,
At a concentration of 0.1g/or less, the hydration reaction of propylene is not sufficiently achieved and isopropyl alcohol cannot be produced in good yield, while at a concentration of 10g/or more, there is almost no difference in hydration activity, and conversely, the equipment material impractical as it has a greater tendency to corrode. Further, in the present invention, it is also important to maintain the hydrogen ion concentration (PH) in the co-aqueous solution with the above catalyst components at 2.0 to 4.5, preferably 2.5 to 4.0.
That is, as the hydrogen ion concentration increases, the hydration activity of propylene can be increased, but the decomposition rate of the catalyst components increases, making it impossible to maintain long-term catalyst activity, and furthermore, there is a drawback that side reactions and equipment corrosion are promoted. Hydrogen ion concentration (PH) of such catalyst aqueous solution
The adjustment is carried out by adding soluble basic substances such as NaOH, KOH, Ca
(OH) 2 , metal oxides such as MgO, metal oxides,
Alternatively, it is effective to add something that does not decompose the catalyst component or generate insoluble substances, such as ammonium hydroxide or an organic base. Furthermore, in the method of the present invention, it is extremely important to maintain the reaction temperature at 180 to 350°C, preferably 200 to 300°C, as a propylene hydration condition. The reaction pressure may be higher than the saturated vapor pressure at the above-mentioned reaction temperature, that is, higher than the pressure at which the liquid state can be maintained.The higher the pressure, the more advantageously alcohol can be produced, but in general, 100 to 500 kg/cm 2 is suitable. As the apparatus used in the present invention, any known reaction apparatus for liquid phase direct hydration, for example, batchwise or continuous, can be employed without any restriction. In particular, when a continuous system is adopted, an absorption tower is generally used as the reaction device to efficiently bring the aqueous catalyst solution and propylene into contact with each other in reverse or countercurrent flow, and isopropyl alcohol is distilled and separated from the reaction liquid discharged from the reaction tower. , a method in which the residual liquid is circulated through the reaction tower is suitable. Hereinafter, the effects of the present invention will be illustrated by examples. Example 1 150 ml of an aqueous solution in which a predetermined amount of heteropolyacid was dissolved in ion-exchanged water and the pH value was adjusted with the added alkali shown in Table 1 was placed in a silver-lined autoclave with an internal volume of 300 ml, and propylene was injected while heating. death,
When the specified temperature is reached, stop the injection of propylene,
The reaction was allowed to take place for a predetermined period of time. Table 1 shows the reaction results under various conditions. For comparison, 150 ml of phosphotungstic acid aqueous solution prepared to pH 2.9 was reacted with propylene under the same conditions as No. 2 of Example 1, and the concentration of the obtained isopropyl alcohol (IPA) was
It was 10.9wt%, and the selectivity was 98%.

【表】 実施例 2 直径40mm、高さ1200mm、内容積1.2の銀内張
り製高圧反応器に表―2に示す2種類のステンレ
ス鋼(15mm(巾)×70mm(長さ)×2mm(厚さ)の
形状を有する試験片)をテフロンひもでぶら下
げ、上部より反応容積1当り3Kg/Hrの割合
で表―3に示すヘテロポリ酸を含む触媒水溶液を
供給し同じく底部よりプロピレンを0.2Kg/Hrの
割合で吹き込みながら、300℃,200Kg/cm2Gの反
応条件で連続水和反応を行い、表―3に示す時間
経過後の腐食減量を求め、これより腐食率を算出
した。結果を一括して表―3に示した。
[Table] Example 2 Two types of stainless steel shown in Table 2 (15 mm (width) x 70 mm (length) x 2 mm (thickness) ) was suspended from a Teflon string, and an aqueous catalyst solution containing the heteropolyacid shown in Table 3 was supplied from the top at a rate of 3 Kg/Hr per reaction volume, and propylene was also supplied from the bottom at a rate of 0.2 Kg/Hr. A continuous hydration reaction was carried out under the reaction conditions of 300° C. and 200 Kg/cm 2 G while blowing at the same rate, and the corrosion loss after the time shown in Table 3 was determined, and the corrosion rate was calculated from this. The results are summarized in Table 3.

【表】【table】

【表】 実施例 3 表―2に示す材料B(形状:15mm(巾)×50mm
(長さ)×2mm(厚さ))を銀内張製オートクレー
ブに入れ、反応時間を24時間とした以外は、実施
例1のNo.2と全く同様の方法によりプロピレンの
水和反応を実施した。反応終了後の水溶液のPHを
測定した結果を一活して表―4に示した。
[Table] Example 3 Material B shown in Table-2 (shape: 15 mm (width) x 50 mm
(length) x 2 mm (thickness)) was placed in a silver-lined autoclave, and the hydration reaction of propylene was carried out in the same manner as No. 2 of Example 1, except that the reaction time was 24 hours. did. Table 4 shows the results of measuring the pH of the aqueous solution after the reaction was completed.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 リンモリブドタングステン酸、リンバナドタ
ングステン酸、リンマンガンタングステン酸、ま
たはこれらの可溶性塩の少くとも1種を0.1〜10
g/溶解した水溶液とプロピレンを180〜350℃
の温度下に接触させることを特徴とするイソプロ
ピルアルコールの製造方法。 2 水溶液のPHが2.0〜4.5である特許請求の範囲
第1項記載の製造方法。
[Claims] 1. At least one of phosphomolybdotungstic acid, phosphovanadotungstic acid, phosphomanganese tungstic acid, or a soluble salt thereof in an amount of 0.1 to 10
g/dissolved aqueous solution and propylene at 180-350℃
A method for producing isopropyl alcohol, the method comprising contacting the isopropyl alcohol at a temperature of . 2. The manufacturing method according to claim 1, wherein the pH of the aqueous solution is 2.0 to 4.5.
JP57192586A 1982-11-04 1982-11-04 Preparation of alcohol Granted JPS5982326A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57192586A JPS5982326A (en) 1982-11-04 1982-11-04 Preparation of alcohol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57192586A JPS5982326A (en) 1982-11-04 1982-11-04 Preparation of alcohol

Publications (2)

Publication Number Publication Date
JPS5982326A JPS5982326A (en) 1984-05-12
JPH0132212B2 true JPH0132212B2 (en) 1989-06-29

Family

ID=16293741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57192586A Granted JPS5982326A (en) 1982-11-04 1982-11-04 Preparation of alcohol

Country Status (1)

Country Link
JP (1) JPS5982326A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017217279A1 (en) * 2016-06-17 2017-12-21 株式会社トクヤマ Method for producing isopropyl alcohol and isopropyl alcohol having reduced impurity content

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562031A (en) * 1978-10-31 1980-05-10 Asahi Chem Ind Co Ltd Preparation of tertiary butanol from mixed butylene

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5562031A (en) * 1978-10-31 1980-05-10 Asahi Chem Ind Co Ltd Preparation of tertiary butanol from mixed butylene

Also Published As

Publication number Publication date
JPS5982326A (en) 1984-05-12

Similar Documents

Publication Publication Date Title
KR100752442B1 (en) Method of Producing Saturated C3-C20 Alcohols
US6147265A (en) Process for producing alkylene glycol
US5739390A (en) Process to prepare amino carboxylic acid salts
EP0181790A1 (en) Method for the synthesis of iodobenzene
US4052452A (en) Process for preparing glycolic acid and its polymers
US4014945A (en) Process for the preparation of ethylene glycol
US4298531A (en) Oxidation of butadiene to furan
JPH0132212B2 (en)
JPH0129776B2 (en)
US5534655A (en) Process for preparing acrylamide
JPH0113701B2 (en)
US4861923A (en) Hydration of propylene to isopropyl alcohol over solid superacidic perfluorinated sulfonic acid catalysts
EP0013578B1 (en) Process for producing methacrylic acid
KR830002620B1 (en) Process for preparation of lower alcohols
US4014952A (en) Process for the preparation of isoprene
JPS59205373A (en) Reactivation of vanadium phosphide catalyst and manufacture of maleic acid anhydride catalyst treated with ortho-phosphoric acid alkyl ester under presence of water
Deuβer et al. Effects of Cs and V on heteropolyacid catalysts in methacrolein oxidation
US3471567A (en) Preparation of glyoxal
US4365090A (en) Process for production of acrylamide
JP3270589B2 (en) Recovery method for polyoxyalkylene polyol polymerization catalyst
KR100676570B1 (en) Process for preparing betaines
RU2541790C1 (en) Method of obtaining glycolic acid
US4014928A (en) Process for purifying α-amino acids
JPS6118531B2 (en)
JPH0351693B2 (en)