JPH01321891A - Controller of wound-rotor induction motor - Google Patents

Controller of wound-rotor induction motor

Info

Publication number
JPH01321891A
JPH01321891A JP63156228A JP15622888A JPH01321891A JP H01321891 A JPH01321891 A JP H01321891A JP 63156228 A JP63156228 A JP 63156228A JP 15622888 A JP15622888 A JP 15622888A JP H01321891 A JPH01321891 A JP H01321891A
Authority
JP
Japan
Prior art keywords
current
circuit
motor
induction motor
wound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63156228A
Other languages
Japanese (ja)
Inventor
Hiroki Hasegawa
宏樹 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63156228A priority Critical patent/JPH01321891A/en
Publication of JPH01321891A publication Critical patent/JPH01321891A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Ac Motors In General (AREA)

Abstract

PURPOSE:To suppress amplitude of beat current as soon as possible providing a secondary winding current is a dominant wave by connecting a bridge circuit provided with a self-arc-extinguishing type element to a secondary circuit of a wound-rotor induction motor in parallel. CONSTITUTION:A bridge circuit 27 provided with a self-arc-extinguishing type element is connected to a secondary circuit of a motor 1 through a transformer 20 in parallel with a three full-wave rectifying circuit 3. A dominant wave secondary current operation circuit 22 performs operations of the dominant wave secondary current of the motor 1. A harmonic current operation circuit 23 performs operations of a harmonic current reference signal according to a square wave current signal of slip frequency detected by a current detector 21 and a dominant wave secondary current signal. A current controlling circuit 25 turns the self-arc-extinguishing type element of the bridge circuit 27 ON/OFF through a gate circuit 26 to control the current supplied to a DC reactor 28 so that variation between a detection signal of a current detector 24 and a harmonic current reference signal is reduced to 'zero'.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は巻線形誘導電動機の速度制御を静止セルビウス
方式によって行う巻線形誘導電動機の制御装置に関する
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Field of Application) The present invention relates to a control device for a wound induction motor that controls the speed of the wound induction motor using a static Servius method.

(従来の技術) 静止セルビウス方式を用いた従来の巻線形陽導電動機(
以下、電動機ともいう)の制御装置を第4図に示す。第
4図において、電動機1の二次巻線に三相全波整流器3
が接続されている。この三相全波整流器3の直流出力側
にはこの直流出力を電源周波数の交流に変換するサイリ
スクインバータ5が直流リアクトル4を介して接続され
ている。
(Prior art) A conventional wound type positive conduction motor using the stationary Servius method (
FIG. 4 shows a control device for a motor (hereinafter also referred to as an electric motor). In Fig. 4, a three-phase full-wave rectifier 3 is connected to the secondary winding of the motor 1.
is connected. A silice inverter 5 for converting the DC output into AC at the power frequency is connected to the DC output side of the three-phase full-wave rectifier 3 via a DC reactor 4.

サイリスクインバータ5の出力である交流は変圧器6を
介してwi源に変換される。三相全波整流器3、直流リ
アクトル4、およびサイリスクインバータ5からなるセ
ルビウス回路を流れる電流は電流検出器7によって検出
される。
The alternating current that is the output of the silice inverter 5 is converted into a wi source via a transformer 6. A current flowing through a Servius circuit consisting of a three-phase full-wave rectifier 3, a DC reactor 4, and a thyrisk inverter 5 is detected by a current detector 7.

速度基準設定器8は電動機1の回転速度(以下、単に速
度ともいう)の基準値を設定するのに用いられる。
The speed reference setter 8 is used to set a reference value for the rotational speed (hereinafter also simply referred to as speed) of the electric motor 1.

速度制御回路9は速度基準設定器8からの設定信号と速
度検出器2からの検出信号との偏差を演算し、この偏差
が零となる電流基準信号を出力する。電流制御回路10
は速度制御回路9の出力である電流基準信号と電流検出
器7からの検出信号との偏差を演算し、この偏差が零と
なる位相制御信号を出力する。この位相制御信号に基づ
いて位相制御器11はサイリスクインバータ5に点弧パ
ルスを与える。以上のように構成された制御装置におい
ては、電動機二次巻線の各相(U、V、W)に第5図に
示すような120@通電の方形波電流が流れる。
The speed control circuit 9 calculates the deviation between the setting signal from the speed reference setter 8 and the detection signal from the speed detector 2, and outputs a current reference signal that makes this deviation zero. Current control circuit 10
calculates the deviation between the current reference signal that is the output of the speed control circuit 9 and the detection signal from the current detector 7, and outputs a phase control signal that makes this deviation zero. Based on this phase control signal, the phase controller 11 gives a firing pulse to the thyrisk inverter 5. In the control device configured as described above, a square wave current of 120 @ energization as shown in FIG. 5 flows through each phase (U, V, W) of the motor secondary winding.

(発明が解決しようとする課8) しかし、このような方形波電流には(6n±1)sf(
但しnml、2.・・・)の高調波電流が含まれている
。中でも特にn=1の第5調波成分の含有率が一番大き
く、この成分は、電動機の電源側に(1−6s)f(但
しSはすべり、fは電源周波数)として表われる。
(Question 8 to be solved by the invention) However, for such a square wave current, (6n±1)sf(
However, nml, 2. ) contains harmonic currents. Among them, the content of the fifth harmonic component with n=1 is the largest, and this component appears on the power supply side of the motor as (1-6s)f (where S is slip and f is the power supply frequency).

この(1−6s)fの高調波成分は、電源周波数fとの
間で干渉し、特にf−−f又は0に等しくで電動機−次
層流が低周波のビート電流となる。
This harmonic component of (1-6s)f interferes with the power supply frequency f, and in particular, when f--f or equal to 0, the motor-order laminar flow becomes a low-frequency beat current.

そして電源の短絡インピーダンスが大きい(電源の容量
が小さい)システムでは、そのリアクタンス電圧降下に
よりビート電流の振幅が大きくなり、同一系統に接続さ
れている照明器具に干渉してフリッカを発生するなどの
問題があった。
In systems where the short-circuit impedance of the power supply is large (power supply capacity is small), the amplitude of the beat current increases due to the reactance voltage drop, causing problems such as interference with lighting equipment connected to the same system and generation of flicker. was there.

そこで、本発明は、上記問題点を鑑みてなされたもので
あって、電動機の特定速度に関係なくビート電流の振幅
を可及的に抑制することのできる巻線形陽導電動機の制
御装置を提供することを目的とする。
The present invention has been made in view of the above problems, and provides a control device for a wound type positive conduction motor that can suppress the amplitude of the beat current as much as possible regardless of the specific speed of the motor. The purpose is to

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本発明は巻線形陽導電動機の二次電力を整流する整流器
と、この整流器の出力である直流を電源周波数の交流に
変換するインバータと、巻線形陽導電動機の回転速度の
検出値と基準値との偏差が零となるインバータの入力電
流の電流基準を出力する速度制御手段と、インバータの
入力電流の検出値と電流基準との偏差が零となるように
インバータの点弧周波数を調整する第1の電流制御手段
とを有している巻線形陽導電動機の制御装置において、
巻線形陽導電動機の二次回路に並列に接続される自己消
弧型素子を有するブリッジ回路と、巻線形陽導電動機の
二次電圧の検出値および回転速度の検出値ならびに電流
基準に基づいて巻線形陽導電動機の各相の基本波二次電
流を演算する基本波二次電流演算手段と、整流器の入力
電流を検出する第1の電流検出器と、この第1の電流検
出器の出力および基本波二次電流演算回路の出力に基づ
いて高調波電流基準を演算する高調波電流演算手段と、
ブリッジ回路の入力電流を検出する第2の電流検出器と
、この第2の電流検出器の検出値と高調波電流基準との
偏差が零となるようにブリッジ回路の自己消弧型素子の
ゲートを制御する第2の電流制御手段とを設けたことを
特徴とする。
(Means for Solving the Problems) The present invention provides a rectifier that rectifies the secondary power of a wound positive conduction motor, an inverter that converts direct current that is the output of the rectifier into alternating current at the power frequency, and a wound positive conduction motor. speed control means for outputting a current reference for an input current of an inverter such that the deviation between the detected value of the rotational speed of the inverter and the reference value is zero; and a first current control means for adjusting the firing frequency of the inverter.
Based on a bridge circuit having a self-arc-extinguishing element connected in parallel to the secondary circuit of a winding positive conduction motor, a detected value of the secondary voltage and a detected value of rotational speed of the winding positive conduction motor, and a current reference. A fundamental wave secondary current calculation means for calculating the fundamental wave secondary current of each phase of the wound positive conduction motor, a first current detector for detecting the input current of the rectifier, and an output of the first current detector. and harmonic current calculation means for calculating a harmonic current reference based on the output of the fundamental wave secondary current calculation circuit;
a second current detector that detects the input current of the bridge circuit; The present invention is characterized by further comprising a second current control means for controlling the current.

(作 用) このように構成された本発明による巻線形陽導電動機の
制御装置によればブリッジ回路から高調波補償電流が流
れ、整流器とインバータとからなるセルビウス回路に流
れる方形波電流と、前述の高調波補償電流とが合成され
ることにより電動機の二次巻線に基本波電流が流れるこ
とになる。
(Function) According to the control device for a wound type positive conduction motor according to the present invention configured as described above, a harmonic compensation current flows from the bridge circuit, a square wave current flows to the Servius circuit consisting of a rectifier and an inverter, and the aforementioned By combining the harmonic compensation current and the harmonic compensation current, a fundamental wave current flows through the secondary winding of the motor.

以上により本発明によれば電動機の特定速度に関係なく
ビート電流の振幅を可及的に抑制することができる。
As described above, according to the present invention, the amplitude of the beat current can be suppressed as much as possible regardless of the specific speed of the motor.

(実施例) 以下、本発明の一実施例を図面を用いて説明する。なお
、第5図に示した従来の速度制御装置と同一の構成要素
については、同一符号を付し、その説明は省略する。第
1図に示すように本実施例の巻線形誘導電動機の制御装
置は、電動機1の二次回路に三相全波整流回路3と並列
に変圧器20を介して自己消弧型素子を有するブリッジ
回路27が接続されている。三相全波整流器3の入力電
流は電流検出器21によって検出され、ブリッジ回路2
7の入力電流は電流検出器24によって検出される。基
本波二次電流演算回路22は、速度制御回路9の出力信
号および速度検出器2の検出信号ならびに電動機1の二
次電圧に基づいて電動機1の基本波二次電流を演算する
。この基本波二次電流演算回路22の一例を第3図に示
す。この第3図に示す基本波二次電流演算回路22は変
圧器221を介して電動機2次巻線各相に接続して得た
二次電圧信号を除算器224に入力する。
(Example) An example of the present invention will be described below with reference to the drawings. Components that are the same as those of the conventional speed control device shown in FIG. 5 are designated by the same reference numerals, and the explanation thereof will be omitted. As shown in FIG. 1, the control device for the wound induction motor of this embodiment has a self-extinguishing element connected to the secondary circuit of the motor 1 in parallel with a three-phase full-wave rectifier circuit 3 via a transformer 20. A bridge circuit 27 is connected. The input current of the three-phase full-wave rectifier 3 is detected by the current detector 21, and the input current of the three-phase full-wave rectifier 3 is detected by the current detector 21.
The input current of 7 is detected by the current detector 24. The fundamental wave secondary current calculation circuit 22 calculates the fundamental wave secondary current of the electric motor 1 based on the output signal of the speed control circuit 9, the detection signal of the speed detector 2, and the secondary voltage of the electric motor 1. An example of this fundamental wave secondary current calculation circuit 22 is shown in FIG. The fundamental wave secondary current calculation circuit 22 shown in FIG. 3 inputs a secondary voltage signal obtained by connecting each phase of the motor secondary winding via a transformer 221 to a divider 224.

電動機1の速度検出器2の検出信号と同期速度設定器2
22の設定信号をすべり検出器223に入力して得たす
べり信号で除算するとモータ速度に無関係な各相一定の
基本波二次電流周波数信号を得ることができる。この基
本波二次電流周波数信号を掛算器225において第1図
に示す速度制御回路9の出力信号(電流基準信号)で掛
算して基本波二次電流信号を得ることができる。第3図
は電動機二次U相巻線の1実施例を示したもので、その
他V相、W相についても同様にして得ることができる。
Detection signal of speed detector 2 of electric motor 1 and synchronous speed setter 2
By dividing the setting signal of 22 by the slip signal obtained by inputting it to the slip detector 223, it is possible to obtain a constant fundamental wave secondary current frequency signal for each phase, which is independent of the motor speed. A fundamental wave secondary current signal can be obtained by multiplying this fundamental wave secondary current frequency signal by the output signal (current reference signal) of the speed control circuit 9 shown in FIG. 1 in a multiplier 225. FIG. 3 shows one embodiment of the motor secondary U-phase winding, and other V-phase and W-phase windings can be obtained in the same manner.

再び第1図において、高調波電流演算回路23は電流検
出器21によって検出されたすべり周波数の方形波電流
信号(第2図(a)の符号A参照)と、基本波二次電流
演算回路22の出力である基本波二次電流信号とに基づ
いて、高調波電流基準信号(第2図(b)の符号C参照
)を演算する。
Referring again to FIG. 1, the harmonic current calculation circuit 23 receives the square wave current signal of the slip frequency detected by the current detector 21 (see symbol A in FIG. 2(a)) and the fundamental wave secondary current calculation circuit 22. A harmonic current reference signal (see symbol C in FIG. 2(b)) is calculated based on the fundamental wave secondary current signal which is the output of.

電流制御回路25は、電流検出器24の検出信号と高調
波電流基準信号との偏差が零となるようにゲート回路2
6を介してブリッジ回路27の自己消弧型素子をオンオ
フして直流リアクトル28に流れる電流を制御する。
The current control circuit 25 controls the gate circuit 2 so that the deviation between the detection signal of the current detector 24 and the harmonic current reference signal becomes zero.
6, the self-extinguishing element of the bridge circuit 27 is turned on and off to control the current flowing to the DC reactor 28.

このように構成された巻線形誘導電動機の制御装置にお
いては、ブリッジ回路27へ第2図(b)に示す高調波
電流Cが流れる。したがって電動機1の二次巻線電流は
、第2図(a)に示す三相全波整流器3に流れる電流A
とブリッジ回路27へ流れる高調波電流Cとが合成され
た第2図(a)に示す点線の波形、すなわち基本波電流
となる。
In the control device for the wound induction motor configured in this manner, a harmonic current C shown in FIG. 2(b) flows to the bridge circuit 27. Therefore, the secondary winding current of the motor 1 is the current A flowing through the three-phase full-wave rectifier 3 shown in FIG. 2(a).
and the harmonic current C flowing to the bridge circuit 27 are combined to form the waveform shown by the dotted line in FIG. 2(a), that is, the fundamental wave current.

以上述べたように、本実施例によれば電動機二次巻線回
路に高調波補償電流を流すことによって電動機二次巻線
電流を基本波電流とすることができ高調波電流の抑制を
行うことができる。
As described above, according to this embodiment, the motor secondary winding current can be made into the fundamental wave current by flowing the harmonic compensation current in the motor secondary winding circuit, and the harmonic current can be suppressed. I can do it.

更に特定速度(例えばすべり周波数のl/3やl/6)
の近傍において電動機を駆動しても、電動機の一次電流
の(1−6s)fの高調波成分が発生ぜず、電源周波数
との干渉がないので、電源系統に接続されている電気器
具(例えば照明器具)のフリッカを防止することができ
る。
Furthermore, a specific speed (for example, l/3 or l/6 of the slip frequency)
Even if the motor is driven in the vicinity of Flickering of lighting equipment can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明によれば電動機二次巻線回路に高調波補償電流を
流すことにより電動機二次巻線電流を基本波電流とする
ことができ、電動機の特定速度に関係なくビート電流の
振幅を可及的に抑制することができる。
According to the present invention, by flowing a harmonic compensation current through the motor secondary winding circuit, the motor secondary winding current can be made into a fundamental wave current, and the amplitude of the beat current can be adjusted regardless of the specific speed of the motor. can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による巻線形誘導電動機の制御装置の一
実施例を示すブロック図、第2図はセルビウス回路の入
力電流および高調波電流基準ならびに電動機二次巻線電
流を示すグラフ、第3図は本発明にかかる基本波二次電
流演算回路を示すブロック図、第4図は従来の巻線形誘
導電動機の制御装置を示すブロック図、第5図は従来の
電動機二次巻線の各相に流れる方形波電流を示すグラフ
である。 1・・・電動機、2・・・速度検出器、3・・・三相全
波整流器、4・・・直流リアクトル、5・・・サイリス
クインバータ、6・・・変圧器、7・・・電流検出器、
8・・・速度設定器、9・・・速度制御回路、10・・
・電流制御回路、11・・・位相制御回路、20・・・
変圧器、22・・・基本波二次電流演算回路、23・・
・高調波電流演算回路、24・・・電流検出器、25・
・・電流制御回路、26・・・ゲート回路、27・・・
ブリッジ回路、28・・・直流リアクトル。 出願人代理人  佐  藤  −雄 第1図 第2図 第3図
FIG. 1 is a block diagram showing an embodiment of a control device for a wound induction motor according to the present invention, FIG. 2 is a graph showing the input current and harmonic current reference of the Servian circuit, and the motor secondary winding current, and FIG. The figure is a block diagram showing a fundamental wave secondary current calculation circuit according to the present invention, FIG. 4 is a block diagram showing a conventional wound induction motor control device, and FIG. 5 is a block diagram showing each phase of a conventional motor secondary winding. 3 is a graph showing a square wave current flowing through the circuit. DESCRIPTION OF SYMBOLS 1... Electric motor, 2... Speed detector, 3... Three-phase full-wave rectifier, 4... DC reactor, 5... Sirisk inverter, 6... Transformer, 7... current detector,
8...Speed setter, 9...Speed control circuit, 10...
-Current control circuit, 11... Phase control circuit, 20...
Transformer, 22... Fundamental wave secondary current calculation circuit, 23...
・Harmonic current calculation circuit, 24...Current detector, 25・
...Current control circuit, 26...Gate circuit, 27...
Bridge circuit, 28...DC reactor. Applicant's agent Mr. Sato Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 巻線形誘導電動機の二次電力を整流する整流器と、この
整流器の出力である直流を電源周波数の交流に変換する
インバータと、前記巻線形誘導電動機の回転速度の検出
値と基準値との偏差が零となる前記インバータの入力電
流の電流基準を出力する速度制御手段と、前記インバー
タの入力電流の検出値と電流基準との偏差が零となるよ
うに前記インバータの点弧周波数を調整する第1の電流
制御手段とを有している巻線形誘導電動機の制御装置に
おいて、 前記巻線形誘導電動機の二次回路に並列に接続される自
己消弧型素子を有するブリッジ回路と、前記巻線形誘導
電動機の二次電圧の検出値および回転速度の検出値なら
びに前記電流基準に基づいて前記巻線形誘導電動機の各
相の基本波二次電流を演算する基本波二次電流演算手段
と、前記整流器の入力電流を検出する第1の電流検出器
と、この第1の電流検出器の出力および前記基本波二次
電流演算回路の出力に基づいて高調波電流基準を演算す
る高調波電流演算手段と、前記ブリッジ回路の入力電流
を検出する第2の電流検出器と、この第2の電流検出器
の検出値と前記高調波電流基準との偏差が零となるよう
に前記ブリッジ回路の自己消弧型素子のゲートを制御す
る第2の電流制御手段とを設けたことを特徴とする巻線
形誘導電動機の制御装置。
[Scope of Claims] A rectifier that rectifies the secondary power of the wound induction motor, an inverter that converts the direct current that is the output of the rectifier into alternating current at the power supply frequency, and a detected value of the rotational speed of the wound induction motor. speed control means for outputting a current reference of the input current of the inverter such that the deviation from the reference value is zero; and ignition of the inverter so that the deviation between the detected value of the input current of the inverter and the current reference becomes zero. a first current control means for adjusting the frequency; a bridge circuit having a self-extinguishing element connected in parallel to a secondary circuit of the wound induction motor; , a fundamental wave secondary current calculation means for calculating a fundamental wave secondary current of each phase of the wound type induction motor based on a detected value of the secondary voltage and a detected value of the rotational speed of the wound type induction motor, and the current reference; a first current detector that detects the input current of the rectifier; and a harmonic that calculates a harmonic current reference based on the output of the first current detector and the output of the fundamental secondary current calculation circuit. current calculation means; a second current detector for detecting the input current of the bridge circuit; 1. A control device for a wound induction motor, comprising: second current control means for controlling a gate of a self-extinguishing element.
JP63156228A 1988-06-24 1988-06-24 Controller of wound-rotor induction motor Pending JPH01321891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63156228A JPH01321891A (en) 1988-06-24 1988-06-24 Controller of wound-rotor induction motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63156228A JPH01321891A (en) 1988-06-24 1988-06-24 Controller of wound-rotor induction motor

Publications (1)

Publication Number Publication Date
JPH01321891A true JPH01321891A (en) 1989-12-27

Family

ID=15623161

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63156228A Pending JPH01321891A (en) 1988-06-24 1988-06-24 Controller of wound-rotor induction motor

Country Status (1)

Country Link
JP (1) JPH01321891A (en)

Similar Documents

Publication Publication Date Title
US6262555B1 (en) Apparatus and method to generate braking torque in an AC drive
KR900001790B1 (en) Control system for a power converter for driving induction motor
JPH03128691A (en) Voltage type pwm converter-inverter system and control system thereof
JPS6148167B2 (en)
EP0000709A1 (en) Measurement of pulsating torque in a current source inverter motor drive and method
US4321478A (en) Auxiliary power supply with kinetic energy storage
JP3773794B2 (en) Power converter
JP4693214B2 (en) Inverter device
JPS58141699A (en) Motor controller
JPH01321891A (en) Controller of wound-rotor induction motor
JPS6038960B2 (en) Inverter voltage control device
JPH06276688A (en) Power generation system based on induction generator
JPH07110153B2 (en) Inverter controller for drive control of two-phase induction motor
JPH02168895A (en) Method of decreasing peak current value of voltage-type pulse width modulation control inverter
JPH07236294A (en) Inverter apparatus
JPS5819169A (en) Controlling method for pwm control converter
JPH0746887A (en) Speed controller for single phase induction motor
JP3772649B2 (en) Induction machine speed control device
JPH0865810A (en) Electric railcar controller
JPS5838077B2 (en) Control device for commutatorless motor
JP4725694B2 (en) PWM power converter control device
JP2536916B2 (en) Pulse width modulation control method for AC / DC converter
JPH10164845A (en) Pwm rectifier
JP2509890B2 (en) Pulse width modulation control method for AC / DC converter
JPH09218226A (en) Current detector of induction motor