JPH01321606A - Heat sensitive absorbent on/off device - Google Patents
Heat sensitive absorbent on/off deviceInfo
- Publication number
- JPH01321606A JPH01321606A JP15415588A JP15415588A JPH01321606A JP H01321606 A JPH01321606 A JP H01321606A JP 15415588 A JP15415588 A JP 15415588A JP 15415588 A JP15415588 A JP 15415588A JP H01321606 A JPH01321606 A JP H01321606A
- Authority
- JP
- Japan
- Prior art keywords
- permanent magnet
- attraction
- temperature
- tool
- external force
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000002745 absorbent Effects 0.000 title 1
- 239000002250 absorbent Substances 0.000 title 1
- 239000000463 material Substances 0.000 claims abstract description 5
- 230000035699 permeability Effects 0.000 claims abstract description 5
- 229910052796 boron Inorganic materials 0.000 claims abstract description 4
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims abstract description 3
- 229910052723 transition metal Inorganic materials 0.000 claims abstract description 3
- 150000003624 transition metals Chemical class 0.000 claims abstract description 3
- 238000001179 sorption measurement Methods 0.000 claims description 17
- 239000003463 adsorbent Substances 0.000 claims description 7
- 229910052727 yttrium Inorganic materials 0.000 claims description 2
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 claims description 2
- 230000007423 decrease Effects 0.000 abstract description 12
- 230000004907 flux Effects 0.000 abstract description 7
- 150000002910 rare earth metals Chemical class 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract 1
- 230000005347 demagnetization Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 238000005266 casting Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 1
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、永久磁石の磁化の強さの温度依存性を利用し
た吸着具に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an adsorption tool that utilizes the temperature dependence of the magnetization strength of a permanent magnet.
[従来の技術]
永久磁石の磁化力を利用した吸着具は、永久磁石と永久
磁石に吸着される高透磁率材料からなる吸着具からなり
、吸着具は永久磁石の磁化力により吸着され固定される
。必要に応じて吸着具に手で引っ張るなど外力を加える
ことにより固定をはずし使用していた。これらは常温で
使用されており、たとえば鞄などの留め金やメモやポス
ターなど紙製品類の掲示のための留め具等に多く使用さ
れている。そのための永久磁石にはフェライト磁石が多
く使われていた。[Prior art] An adsorption tool that uses the magnetizing force of a permanent magnet is composed of a permanent magnet and an adsorption tool made of a high magnetic permeability material that is attracted to the permanent magnet. Ru. When necessary, the suction device was unfixed and used by applying external force, such as by pulling it by hand. These are used at room temperature, and are often used, for example, in clasps for bags, and clasps for paper products such as memos and posters. Ferrite magnets were often used as permanent magnets for this purpose.
[発明が解決しようとする課題]
しかし、前述のような従来技術では、フェライト磁石で
は、磁化力が弱く吸着具を留める力が小さいため大きな
吸着力を得る場合には、大きな永久磁石が必要である。[Problems to be Solved by the Invention] However, in the prior art as described above, ferrite magnets have a weak magnetizing force and a small force to hold the attracting tool, so if a large attracting force is to be obtained, a large permanent magnet is required. be.
一方、磁化力の大きい希土類永久磁石を使用すれば吸着
力の問題は解決するばかりか、その優れた磁気性能によ
り小型化も可能−になるが高価である。その中で比較的
安価である希土類−遷移金属−ボロン系(以下R−TM
−B系と略す)磁石が知られているがこの磁石は高温に
おいて減磁するという欠点を有していた。On the other hand, if a rare earth permanent magnet with a large magnetizing force is used, not only will the problem of attraction force be solved, but its excellent magnetic performance will also enable miniaturization, but it is expensive. Among them, the rare earth-transition metal-boron system (hereinafter referred to as R-TM) is relatively inexpensive.
-B series) magnets are known, but these magnets have the drawback of demagnetizing at high temperatures.
永久磁石は温度の上昇とともに磁化力が低下し吸着力が
弱くなる性質があるためできるだけ磁化力が低下しない
よう永久磁石のキュリー温度を高くする努力がはられれ
ている。特に、R−TM−B系磁石においては、キュリ
ー温度が低いために永久磁石の用途が限定される。その
ため数々の添加元素を加えるなどしてキュリー温度の改
善を図っているが完全に問題を解決するまでには至って
いないといった問題を有している。Permanent magnets have the property that their magnetizing power decreases and their attraction force weakens as the temperature rises, so efforts are being made to raise the Curie temperature of permanent magnets to prevent the magnetizing power from decreasing as much as possible. In particular, R-TM-B magnets have a low Curie temperature, which limits their use as permanent magnets. Therefore, attempts have been made to improve the Curie temperature by adding various additive elements, but the problem has not yet been completely solved.
そこで本発明は以上のような欠点を解決するものであり
その目的とするところは、低いキュリー温度であるR−
TM−B永久磁石の高温での磁化力の低下という欠点を
逆に利用した永久磁石製品を提供するところにある。Therefore, the present invention is intended to solve the above-mentioned drawbacks, and its purpose is to achieve a low Curie temperature of R-
The purpose of the present invention is to provide a permanent magnet product that takes advantage of the drawback of TM-B permanent magnets, which is a decrease in magnetizing power at high temperatures.
[課題を解決するための手段]
永久磁石と、永久磁石に対向して設けられた高透磁率材
料から成る吸着具を具備し、低温の範囲において吸着具
は永久磁石に吸着し、所定温度以上の高温の範囲におい
て吸着具は永久磁石から離れることを特徴とする。[Means for solving the problem] A permanent magnet and an adsorption tool made of a high magnetic permeability material provided opposite to the permanent magnet are provided, and the adsorption tool attracts the permanent magnet in a low temperature range, and when the temperature exceeds a predetermined temperature, The adsorbent separates from the permanent magnet in the high temperature range of .
また、永久磁石は、希土類元素(但しイツトリウムを含
む)と遷移金属、及びボロンを基本成分としたことを特
徴とする。Further, the permanent magnet is characterized in that its basic components are rare earth elements (including yttrium), transition metals, and boron.
[作用コ
永久磁石は温度の上昇により磁化力が低下する性質があ
り、その割合は永久磁石の基本組成によって決まる。例
えばR−TM−B永久磁石のキュリー温度は約310’
C1永久磁石の磁束量は常温から160℃まで温度を上
げ常温まで温度を戻した場合元に戻らない減磁(不可逆
減磁)が約20%程度、高温から常温にを下げた場合温
度に比例して元に戻る減磁(可逆減磁)が約0. 1%
/℃程度あり磁束量が減少する。永久磁石の吸着方向に
たいして反対方向に吸着力よりやや弱い外力を吸着具に
加えることにより、常温においては永久磁石の吸着力の
方が外力より勝ることから吸着具は永久磁石に吸着され
、一方高温になれば永久磁石の磁束量が減少するために
吸着力が減り外力のほうが吸着力を上回るため吸着具は
永久磁石より離れる。永久磁石の温度に対する磁束量の
減少の割合(減磁率)に対して外力の大きさを調整する
ことにより、所定温度以上に達すれば吸着具を永久磁石
より離すことが可能となる。また、所定以上の温度より
温度を下げてくれば永久磁石の磁束量が増し再び吸着具
を吸着することが可能となる。[Operation] Permanent magnets have the property that their magnetizing power decreases as the temperature increases, and the rate of this decrease is determined by the basic composition of the permanent magnet. For example, the Curie temperature of R-TM-B permanent magnet is approximately 310'
The amount of magnetic flux of a C1 permanent magnet is approximately 20% demagnetized when the temperature is raised from room temperature to 160℃ and returned to room temperature (irreversible demagnetization), and proportional to the temperature when lowered from high temperature to room temperature. The demagnetization that returns to its original state (reversible demagnetization) is approximately 0. 1%
/℃, the amount of magnetic flux decreases. By applying an external force that is slightly weaker than the adsorption force to the adsorption tool in the opposite direction to the adsorption direction of the permanent magnet, the adsorption tool will be attracted to the permanent magnet because the adsorption force of the permanent magnet will be stronger than the external force at room temperature. When the magnetic flux of the permanent magnet decreases, the attraction force decreases, and the external force exceeds the attraction force, so the attraction tool separates from the permanent magnet. By adjusting the magnitude of the external force with respect to the rate of decrease in magnetic flux with respect to the temperature of the permanent magnet (demagnetization rate), it becomes possible to separate the adsorbent from the permanent magnet when the temperature reaches a predetermined temperature or higher. Further, if the temperature is lowered from a predetermined temperature or higher, the amount of magnetic flux of the permanent magnet increases and it becomes possible to attract the suction tool again.
外力は一般的に考えられるように、バネや重力などで与
えられる。External forces are generally thought of as being applied by springs, gravity, etc.
[実施例] 以下、本発明を実施例にもとずき詳細に説明する。[Example] Hereinafter, the present invention will be explained in detail based on examples.
(実施例−1)
第1図は本発明の感熱吸着具の側面図であり、1は永久
磁石、2はバックヨーク3は永久磁石に吸着される高透
磁率材料から成る吸着具、4は永久磁石の吸着力に対し
て反対方向の力を与えるバネである。第1表に本実施例
の永久磁石合金の組成を示す。(Example-1) Fig. 1 is a side view of the heat-sensitive adsorbent of the present invention, in which 1 is a permanent magnet, 2 is an adsorbent in which the back yoke 3 is made of a high magnetic permeability material that is attracted to the permanent magnet, and 4 is a A spring that applies a force in the opposite direction to the attraction force of a permanent magnet. Table 1 shows the composition of the permanent magnet alloy of this example.
NO61、No、2の磁石は、第1表の組成を溶解し鋳
型に鋳込み冷却した後、950°Cにおいて熱間圧延加
工を行ない、その後所定形状に切断し得た。その後10
00°Cで24時間の熱処理を行ない磁気的に硬化させ
た。No3の磁石は、第1表の組成を溶解し、鋳型に鋳
込み冷却した後、機械粉砕により平均粒径5μの粉末と
し、成形助材であるステアリン酸亜鉛を添加混合し、所
定形状にプレス成形を行なった。得られた成形体を、4
00℃で2時間脱ワツクスし、その後1050°Cで3
時間の焼結を行ない得られた。得られた永久磁石の特性
を第2表に示す。Magnets No. 61, No. 2 were obtained by melting the composition shown in Table 1, casting into a mold, cooling, hot rolling at 950° C., and then cutting into a predetermined shape. then 10
It was heat-treated at 00°C for 24 hours and magnetically hardened. Magnet No. 3 is made by melting the composition shown in Table 1, casting it into a mold, cooling it, mechanically grinding it into a powder with an average particle size of 5μ, adding and mixing zinc stearate as a forming aid, and press-molding it into a predetermined shape. I did it. The obtained molded body was
Dewax at 00°C for 2 hours, then at 1050°C for 3 hours.
Obtained by sintering for hours. Table 2 shows the properties of the obtained permanent magnet.
第2表
尚、第2表中の減磁率は常温から150°Cまでの温度
で測定した値である。Table 2 Note that the demagnetization rates in Table 2 are values measured at temperatures from room temperature to 150°C.
第2図は本発明の感熱吸着具を応用した電気接点の側面
図であり、1は永久磁石、2はバックヨーク、3は吸着
具、4はバネ、5a及び5bは電気接点である。常温状
態では吸着具3は永久磁石1に吸引され、電機接点5a
および5bは導通状態にある。高温状態においては永久
磁石1の磁化力が低下するために、吸着具3はバネ4の
力により離されることにより電気接点5aおよび5bは
不導状態になる。第3表は永久磁石の吸引力に対するバ
ネの力の割合と温度の関係である。FIG. 2 is a side view of an electric contact to which the heat-sensitive suction device of the present invention is applied, in which 1 is a permanent magnet, 2 is a back yoke, 3 is an adsorption device, 4 is a spring, and 5a and 5b are electric contacts. At room temperature, the suction tool 3 is attracted to the permanent magnet 1, and the electrical contact 5a
and 5b are in a conductive state. Since the magnetizing force of the permanent magnet 1 decreases in a high temperature state, the attraction tool 3 is separated by the force of the spring 4, and the electrical contacts 5a and 5b become non-conducting. Table 3 shows the relationship between the ratio of the force of the spring to the attractive force of the permanent magnet and the temperature.
力の割合は、永久磁石の常温における吸引力に対するバ
ネの反発力の割合を示す。温度90°Cの時に吸着具を
離す場合には、バネの力を永久磁石の常温における吸引
力に対して90%の割合に、また温度130℃では、同
じく80%の割合に各々設定すれば、各々の温度にて吸
着具が着脱が可能となり、電気接点は開閉できる。The force ratio indicates the ratio of the repulsive force of the spring to the attractive force of the permanent magnet at room temperature. If you want to release the suction tool when the temperature is 90°C, set the spring force to 90% of the permanent magnet's attraction force at room temperature, and at 130°C, set the spring force to 80%. , the suction tool can be attached and detached at each temperature, and the electrical contacts can be opened and closed.
尚第3表は本発明の一実施例を掲げたものであり、力の
割合を調整することにより、所望の温度にて着脱が可能
となるものである。Table 3 lists one embodiment of the present invention, and by adjusting the ratio of force, it is possible to attach and detach at a desired temperature.
(実施例−2)
第3図は、本発明の外力を重力で与えた感熱吸着具の側
面図であり、1は永久磁石、2はバックヨーク3は永久
磁石に吸着される吸着具である。(Example-2) Fig. 3 is a side view of a heat-sensitive adsorbent according to the present invention in which an external force is applied by gravity, in which 1 is a permanent magnet, and 2 is a back yoke 3 which is an adsorbent that is attracted to the permanent magnet. .
永久磁石1の組成、製法及び性能は実施例1と同様であ
る。吸着具3の重量は、永久磁石の吸引力に対して反対
方向に働く外力になっており、その重量を調整すること
により、吸着具3を永久磁石1より離す温度が決められ
る。所定の温度に達すれば、吸着具3は永久磁石1より
離れ下方に落下するが、吸着具3の下方に吸着具を受け
とめるストッパーを用意しておき(図示せず)、落下し
た吸着具を受けとめ、吸着具3と永久磁石1とのギャッ
プを調整することにより、温度が低下したときに再び吸
着具3を永久磁石1に吸着することも可能である。また
、再吸着の必要がなければ、ストッパーを用意せずにそ
のまま落下させてしまうか、もしくは永久磁石1と吸着
具3とのギャップを大きくとればよい。The composition, manufacturing method, and performance of the permanent magnet 1 are the same as in Example 1. The weight of the suction tool 3 is an external force that acts in the opposite direction to the attraction force of the permanent magnet, and by adjusting the weight, the temperature at which the suction tool 3 is separated from the permanent magnet 1 can be determined. When a predetermined temperature is reached, the suction tool 3 separates from the permanent magnet 1 and falls downward. However, a stopper (not shown) is prepared below the suction tool 3 to catch the suction tool when it falls. By adjusting the gap between the suction tool 3 and the permanent magnet 1, it is also possible to attract the suction tool 3 to the permanent magnet 1 again when the temperature drops. Moreover, if there is no need for re-adsorption, it is sufficient to just let the object fall without preparing a stopper, or to increase the gap between the permanent magnet 1 and the adsorption tool 3.
[発明の効果コ
以上述べてきたように本発明によれば、今まで欠点とさ
れていた、キュリー点が低く高温で減磁するという性質
を逆に利用したことにより、外部よりエネルギーを加え
なくとも作動する省エネルギーの感熱センサーができる
。この事により今まで限定されていたR−TM−B磁石
の用途が開ける。また、永久磁石は簡素な製造工程によ
り製造ができることにより、生産性に優れ低価格である
という効果を有する。[Effects of the invention] As described above, according to the present invention, by taking advantage of the characteristic that the Curie point is low and demagnetizes at high temperatures, which has been considered a drawback until now, it is possible to generate magnets without applying external energy. Creates an energy-saving heat-sensitive sensor that works with both. This opens up the uses of R-TM-B magnets that have been limited until now. In addition, permanent magnets can be manufactured through a simple manufacturing process, so they have the advantage of being highly productive and inexpensive.
第1図は、感熱吸着具の側面図、第2図は、電気接点の
側面図、第3図は、外力を重力で与える感熱吸着具の側
面図である。
1・・・永久磁石
2・・・バックヨーク
3・・・吸着具
4・・・バネ
以上
出願人 セイコーエプソン株式会社
代理人 弁理士 鈴木 喜三部 他1名第2図FIG. 1 is a side view of the heat-sensitive suction tool, FIG. 2 is a side view of the electrical contacts, and FIG. 3 is a side view of the heat-sensitive suction tool that applies external force by gravity. 1...Permanent magnet 2...Back yoke 3...Adsorption device 4...Spring or more Applicant: Seiko Epson Co., Ltd. Representative Patent attorney Kizobe Suzuki and 1 other person Figure 2
Claims (2)
磁率材料から成る吸着具を具備し、低温の範囲において
吸着具は永久磁石に吸着し、所定温度以上の高温の範囲
において吸着具は永久磁石から離れることを特徴とする
感熱吸脱着具。(1) Equipped with a permanent magnet and an adsorption device made of a high magnetic permeability material provided opposite to the permanent magnet, the adsorption device adsorbs to the permanent magnet in a low temperature range, and in a high temperature range above a predetermined temperature. A heat-sensitive adsorption/detachment device that is characterized by its ability to separate from a permanent magnet.
を含む)と遷移金属、及びボロンを基本成分とすること
を特徴とする請求項1に記載の感熱吸脱着具。(2) The heat-sensitive adsorbent/desorber according to claim 1, wherein the permanent magnet has a rare earth element (including yttrium), a transition metal, and boron as basic components.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15415588A JPH01321606A (en) | 1988-06-22 | 1988-06-22 | Heat sensitive absorbent on/off device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15415588A JPH01321606A (en) | 1988-06-22 | 1988-06-22 | Heat sensitive absorbent on/off device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01321606A true JPH01321606A (en) | 1989-12-27 |
Family
ID=15578046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15415588A Pending JPH01321606A (en) | 1988-06-22 | 1988-06-22 | Heat sensitive absorbent on/off device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01321606A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2070678A2 (en) * | 1992-07-31 | 1995-06-01 | Univ Madrid Complutense | Method for determining the conductivity of discs on the basis of the measurement of magnetic susceptibility |
FR2754317A1 (en) * | 1996-10-09 | 1998-04-10 | Mach Pneumatiques Rotatives In | VACUUM PUMPS OR PALLET COMPRESSORS FOR GAS TRANSFER AND THEIR USE IN EXPLOSIVE MEDIA |
JP2017125547A (en) * | 2016-01-13 | 2017-07-20 | シーアイ化成株式会社 | Compound type magnetic vibration damping material |
JP2018049891A (en) * | 2016-09-20 | 2018-03-29 | 日本電気株式会社 | Component supply device and component supply method |
-
1988
- 1988-06-22 JP JP15415588A patent/JPH01321606A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ES2070678A2 (en) * | 1992-07-31 | 1995-06-01 | Univ Madrid Complutense | Method for determining the conductivity of discs on the basis of the measurement of magnetic susceptibility |
FR2754317A1 (en) * | 1996-10-09 | 1998-04-10 | Mach Pneumatiques Rotatives In | VACUUM PUMPS OR PALLET COMPRESSORS FOR GAS TRANSFER AND THEIR USE IN EXPLOSIVE MEDIA |
EP0836007A1 (en) * | 1996-10-09 | 1998-04-15 | Machines Pneumatiques Rotatives Industries, MPRI | Vane vacuum pumps or compressors |
JP2017125547A (en) * | 2016-01-13 | 2017-07-20 | シーアイ化成株式会社 | Compound type magnetic vibration damping material |
JP2018049891A (en) * | 2016-09-20 | 2018-03-29 | 日本電気株式会社 | Component supply device and component supply method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6054406A (en) | Permanent magnet having excellent oxidation resistance characteristic | |
Satyanarayana et al. | Magnetic properties of substituted Sm2Co17− xTx compounds (T= V, Ti, Zr, and Hf) | |
Velu et al. | PrCo5-based high-energy-density permanent magnets | |
JPH01321606A (en) | Heat sensitive absorbent on/off device | |
US3701695A (en) | Method of manufacturing a permanent magnet | |
JPS60204862A (en) | Rare earth element-iron type permanent magnet alloy | |
JPH11251125A (en) | Rare-earth-iron-boron sintered magnet and its manufacture | |
JPH0320046B2 (en) | ||
EP0286357A2 (en) | Multiphase permanent magnet of the Fe-B-MM type | |
JPH1092617A (en) | Permanent magnet and its manufacture | |
KR900007004A (en) | Manufacturing method of permanent magnet | |
JPH066775B2 (en) | Rare earth permanent magnet | |
JP2001006911A (en) | Manufacture of rare earth permanent magnet | |
JPH045739B2 (en) | ||
JPS646267B2 (en) | ||
JPH0316763B2 (en) | ||
JPH023201A (en) | Permanent magnet | |
JPH0426525B2 (en) | ||
JPS62101004A (en) | Rare earth-iron group permanent magnet | |
Hu et al. | Structure and magnetic properties of RTi1. 1Fe10. 9 | |
JP3164811B2 (en) | Manufacturing method of isotropic permanent magnet | |
Li et al. | Evaluation of sintered and reground Nd‐Fe‐B alloys with Co, Dy and Al substitutions for use in bonded magnets | |
JPH0536494B2 (en) | ||
JPH03278405A (en) | Permanent magnet | |
JPS6362842A (en) | Permanent magnet material containing rare earth element |