JPH01321049A - Method for casting cast slab for producing thick steel plate - Google Patents
Method for casting cast slab for producing thick steel plateInfo
- Publication number
- JPH01321049A JPH01321049A JP15614988A JP15614988A JPH01321049A JP H01321049 A JPH01321049 A JP H01321049A JP 15614988 A JP15614988 A JP 15614988A JP 15614988 A JP15614988 A JP 15614988A JP H01321049 A JPH01321049 A JP H01321049A
- Authority
- JP
- Japan
- Prior art keywords
- molten steel
- ingot
- mold
- steel
- cast slab
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 97
- 239000010959 steel Substances 0.000 title claims abstract description 97
- 238000000034 method Methods 0.000 title claims abstract description 37
- 238000005266 casting Methods 0.000 title claims description 20
- 238000004519 manufacturing process Methods 0.000 claims abstract description 12
- 238000002347 injection Methods 0.000 claims description 19
- 239000007924 injection Substances 0.000 claims description 19
- 230000007547 defect Effects 0.000 abstract description 14
- 238000005096 rolling process Methods 0.000 abstract description 14
- 238000005098 hot rolling Methods 0.000 abstract description 7
- 238000005242 forging Methods 0.000 abstract description 3
- 238000003892 spreading Methods 0.000 abstract 1
- 230000000052 comparative effect Effects 0.000 description 12
- 238000007711 solidification Methods 0.000 description 12
- 230000008023 solidification Effects 0.000 description 12
- 238000005204 segregation Methods 0.000 description 11
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 239000007789 gas Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000009749 continuous casting Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 238000001816 cooling Methods 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 229910001208 Crucible steel Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D11/00—Continuous casting of metals, i.e. casting in indefinite lengths
- B22D11/06—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars
- B22D11/0631—Continuous casting of metals, i.e. casting in indefinite lengths into moulds with travelling walls, e.g. with rolls, plates, belts, caterpillars formed by a travelling straight surface, e.g. through-like moulds, a belt
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Continuous Casting (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、成分偏析やザク疵等の内部欠陥のない厚肉
鋼板を低コストで製造するための、表面欠陥がなく内部
も均質な鋳塊の鋳造方法に関するものである。Detailed Description of the Invention (Field of Industrial Application) This invention is a casting method that has no surface defects and is internally homogeneous, in order to produce thick steel plates free of internal defects such as component segregation and scratches at low cost. This invention relates to a method for casting ingots.
(従来の技術)
現在、厚肉鋼板は特殊なものを除けば、連続鋳造スラブ
(以下、「CCスラブ」という)を熱間圧延することに
よって製造されている。(Prior Art) Currently, except for special steel plates, thick steel plates are manufactured by hot rolling continuous cast slabs (hereinafter referred to as "CC slabs").
通常CCスラブ肉厚は150〜300IIIl程度であ
る。Normally, the thickness of the CC slab is about 150 to 300III.
しかしながら、例えば、10〇−厚さの厚肉鋼板を製造
しようとする場合、CCスラブの中心に出現する成分偏
析、ザク巣等を完全に圧着し、柱状晶も完全に消失させ
るには、5以上の圧下比(スラブ厚さ/製品厚さ)を取
ることが必要といわれ、したがって、肉厚150〜30
0IIII程度のCCスラブではそのような高圧下比を
実現出来ないという問題があった。However, for example, when trying to manufacture a thick steel plate with a thickness of 100 mm, it takes 500 mm to completely compress the component segregation, crack holes, etc. that appear at the center of the CC slab, and to completely eliminate the columnar crystals. It is said that it is necessary to have a rolling reduction ratio (slab thickness/product thickness) of 150 to 30 mm.
There was a problem in that such a high pressure reduction ratio could not be achieved with a CC slab of about 0III.
そのため従来にあっては、100m5以上の厚肉鋼板を
うるためには、連続鋳造法を採用できず、インゴット法
により鋳塊を作り分塊圧延してから圧延する方法を採用
せざるを得なかった。しかし、インゴット法では凝固速
度が遅くなるのでマクロ偏析、ザク巣等の発生が顕著に
なり、5以上の圧下比の熱間加工を欠くことができず、
コスト上昇はさけられない。また、製品の金属組織を考
えてみてもミクロ的均質なものを得がたく、品質上の問
題もあった。Therefore, in the past, in order to obtain thick-walled steel plates of 100 m5 or more, it was not possible to use the continuous casting method, and it was necessary to use the ingot method to create an ingot, bloom it, and then roll it. Ta. However, in the ingot method, the solidification rate is slow, so the occurrence of macro segregation, pitting, etc. becomes noticeable, and hot working with a reduction ratio of 5 or more is essential.
Cost increases cannot be avoided. Furthermore, even when considering the metal structure of the product, it was difficult to obtain one that was microscopically homogeneous, which caused quality problems.
一方、例えば10+ms厚さ相当の厚肉鋼板を製造する
場合、連続鋳造法による鋳塊を熱間圧延しても圧下比は
十分数れるが、逆に余分な圧下比、圧延が必要となりコ
スト上昇につながっている。現在、10m−程度の厚鋼
板はCCスラブから熱間圧延によって製造しているが、
上述のような理由から連続鋳造法の利点を充分に生かし
た方法とはなっていない。On the other hand, when manufacturing a thick steel plate equivalent to a thickness of 10+ms, for example, the reduction ratio is sufficient even if the ingot is hot rolled using the continuous casting method, but on the other hand, an extra reduction ratio and rolling are required, which increases costs. connected to. Currently, thick steel plates of about 10 m are manufactured from CC slabs by hot rolling.
For the reasons mentioned above, this method does not take full advantage of the advantages of the continuous casting method.
なお、鋳造可能といわれるスラブ厚さの下限は薄スラブ
連続鋳造法での50m5であるが、現時点では、未だ実
用には至っていない。Note that the lower limit of the slab thickness that can be cast is 50 m5 in the continuous thin slab casting method, but this has not yet been put to practical use.
ところで、圧下比の低減対策として鋼塊径に対する高さ
の比を1以下にして、一方向凝固させた鋼塊(以下、r
LH鋼塊」と呼ぶ)があるが、この場合、凝固に長時間
を要するので、多量生産に向かず、しかも、鋼塊頂面で
の偏析をさけることが出来ないので、歩留りも決して良
くない。なお、このLH鋼塊では柱状晶の発達が大きい
ので圧下比も3以上は必要であった。By the way, as a measure to reduce the rolling reduction ratio, the steel ingot (hereinafter referred to as r
In this case, it takes a long time to solidify, so it is not suitable for mass production, and it is not possible to avoid segregation on the top surface of the steel ingot, so the yield is not good at all. . In addition, in this LH steel ingot, the development of columnar crystals was large, so a reduction ratio of 3 or more was required.
(発明が解決しようとする課B)
前述の弊害をなくすことを目的に、最近、半凝固状態で
鋳込む方法が提案されている。具体的には、溶鋼流に不
活性ガスを噴射して粒滴化し落下中に冷却して半凝固状
態でモールド内に注入しようとするもので、小鋼塊の製
造には効果を発揮するが、大型鋼塊になると、鋼塊表面
と中心部では抜熱速度が異なる。すなわち表面では冷却
され過ぎてポーラスになるが、逆に中心部では、注入後
の復熱で半凝固状態の粒滴が再加熱され、通常鋳込の鋼
塊と同様の凝固過程となり、マクロ偏析、ザク巣等が出
現することになる。特開昭58−86969号および同
59−33056号参照。(Problem B to be Solved by the Invention) Recently, a method of casting in a semi-solidified state has been proposed for the purpose of eliminating the above-mentioned disadvantages. Specifically, inert gas is injected into the molten steel stream to form droplets, which are cooled while falling and then injected into the mold in a semi-solidified state, which is effective for manufacturing small steel ingots. When it comes to large steel ingots, the heat removal rate is different between the surface and the center of the steel ingot. In other words, the surface is cooled too much and becomes porous, but in the center, the semi-solidified droplets are reheated due to recuperation after injection, resulting in a solidification process similar to that of a normally cast steel ingot, resulting in macro-segregation. , Zaku nests, etc. will appear. See JP-A-58-86969 and JP-A-59-33056.
したがって、この鋼塊を熱間圧延に供する場合、表面の
手入れによる歩留り低下ならびに中心部の成分偏析、ザ
ク巣を圧着させるための強圧下圧延(圧下比5以上)が
必要であり、コスト上昇の要因となっている。Therefore, when subjecting this steel ingot to hot rolling, the yield decreases due to surface care, component segregation in the center, and strong reduction rolling (reduction ratio of 5 or more) is required to compress the crack holes, which increases costs. This is a contributing factor.
かくして、この発明の目的は、上述のような観点から、
表面および内部欠陥のない微細組織を有する任意の厚さ
の鋳塊を製造することによって、圧下比を小さ(した低
コストの熱間圧延により、高品質の厚肉鋼板を製造する
方法、つまりそのための鋳塊の鋳造方法を提供すること
である。Thus, from the above-mentioned viewpoint, the object of the present invention is to
A method for producing high-quality thick-walled steel plates by low-cost hot rolling with small rolling reduction ratios by producing ingots of arbitrary thickness with a microstructure free of surface and internal defects, i.e. An object of the present invention is to provide a method for casting an ingot.
(1題を解決するための手段)
本発明者らは、かかる目的達成のために種々検討を重ね
たところ、注入溶鋼流の可及的均一な注入が特に有効で
あり、そのためには平面的に拡がって設けた複数個の注
入溶鋼流によりモールド内に注入を行えばよく、またそ
の場合、各注入溶鋼流毎に注入条件を変更して最適の注
入条件を付与することによって表面および内部欠陥の改
善はより効果的に行われ得ることを知り、本発明を完成
した。(Means for Solving Problem 1) The inventors of the present invention have conducted various studies to achieve the above object, and have found that it is particularly effective to inject the molten steel flow as uniformly as possible, and that it is necessary to Injection into the mold can be carried out using multiple injected molten steel streams spread out over the area, and in that case, surface and internal defects can be eliminated by changing the injection conditions for each injected molten steel stream and providing optimal injection conditions. The present invention was completed based on the knowledge that improvements can be made more effectively.
ここに、本発明の要旨とするところは、溶鋼流を粒滴化
し、底面と側壁面とから構成されるエンドレスモールド
内に落下させて凝固させる鋳造方法において、上記の注
入溶鋼流を3本以上の溶鋼流で構成することを特徴とす
る厚肉鋼板製造用の鋳塊の鋳造方法である。Here, the gist of the present invention is to provide a casting method in which a molten steel stream is made into droplets and allowed to fall and solidify into an endless mold consisting of a bottom surface and a side wall surface, in which three or more of the above-mentioned injected molten steel streams are formed. This is a method for casting an ingot for producing thick-walled steel plates, which is characterized by comprising a molten steel flow of.
本発明の好適態様によれば、前記注入溶鋼流はそれぞれ
異った粒滴化条件に設定するか、または、該注入溶鋼流
の中、一部の溶鋼流を粒滴化せず完全溶融状態のまま前
記モールド内に注入するようにしてもよい。According to a preferred embodiment of the present invention, the injected molten steel flows are set to different dropletization conditions, or some of the molten steel flows are completely molten without being made into droplets. It may be injected into the mold as is.
このように、本発明によれば、3本以上の平面的に拡が
って配設した注入溶鋼流をモールド内に注入することに
より、好ましくは各注入溶鋼流の粒滴化条件をそれぞれ
変えることによって均質な微細組織を有し、表面性状の
良好な鋳塊が得られるのである。As described above, according to the present invention, by injecting three or more injected molten steel streams spread out in a plane into a mold, preferably by changing the dropletization conditions of each injected molten steel stream, respectively. An ingot with a homogeneous microstructure and good surface quality can be obtained.
本発明により鋳造された鋳塊は次いで慣用法により熱間
圧延等の加工を経て厚鋼板に加工されるのである。The ingot cast according to the present invention is then processed into a thick steel plate through processes such as hot rolling using conventional methods.
このようにして得られた鋳塊は表面性状はもちろん内質
的にも通常凝固材のような成分偏析、ザク巣といった欠
陥が皆無であるので鋳造または圧延は形状(寸法)を整
える程度でよく、圧下比は小さく1.3以上あれば安定
した品質の厚肉鋼板が得られる。The ingot obtained in this way has no defects such as component segregation or hollow spots that are found in ordinary solidified materials, not only in surface quality but also in internal quality, so casting or rolling is only required to adjust the shape (dimensions). If the reduction ratio is small and is 1.3 or more, a thick steel plate of stable quality can be obtained.
ここに、本発明による鋳塊から得られる厚鋼板は100
m−程度のものも、また10mm程度のものも包含する
ものであり、一般には上記肉厚の範囲10〜10抛−程
度であって、例えば海洋構造物用に用いる鋼讐反を云う
のである。Here, the thick steel plate obtained from the ingot according to the present invention is 100
This includes those with a thickness of approximately 10 mm and those with a thickness of approximately 10 mm, and generally has a wall thickness in the range of 10 to 10 mm, and refers to steel used for marine structures, for example. .
なお、鋳塊表面に対応する溶鋼流は粒滴化せずに通常鋳
込み流にすれば鋳塊表面は良くなる。特に、鋳造速度が
速くなると、その効果は顕著になる。Note that the surface of the ingot will be improved if the molten steel flow corresponding to the ingot surface is made into a normal pouring flow without being turned into droplets. In particular, the effect becomes more pronounced as the casting speed increases.
(作用)
次に、添付図面を参照しながら、本発明をさらに具体的
に説明する。(Operation) Next, the present invention will be described in more detail with reference to the accompanying drawings.
第1図(イ)および同(ロ)は、それぞれ本発明にかか
る鋳造方法を説明する模式的側面図および平面図であり
、第2図および第3図(イ)および同(ロ)は、溶鋼の
注入の様子を示す略式説明図である。FIGS. 1(a) and 1(b) are a schematic side view and a plan view, respectively, illustrating the casting method according to the present invention, and FIGS. 2, 3(a), and 3(b) are FIG. 3 is a schematic explanatory diagram showing how molten steel is poured.
第1図(イ)に示すように、取鍋lからタンデイツシュ
2に供給された溶鋼3は、底部に設けた複数のノズルか
ら注入溶鋼流4となって落下するが、このとき、各ノズ
ル周囲に設けた粒滴化ガス吹出し口5からのガス流によ
ってそれぞれ独立して粒滴化される。なお、第1図(イ
)では外側の溶鋼3は粒滴化を行わない例を示している
。−旦粒滴化し、落下中に冷却すれば、モールド内注入
後の溶鋼の流動は殆ど無いので1個の注入溶鋼流を均一
に分散させる範囲には限界がある。特に、本発明の対象
である板状鋳塊では困難であるので、第1図(ロ)に示
すように大小の注入溶鋼流3.4を複数個に平面的に拡
げて配設することによって、粒滴をモールド7上に可及
的均一に分散させることが不可欠である。As shown in FIG. 1(a), the molten steel 3 supplied from the ladle l to the tundish 2 falls from a plurality of nozzles provided at the bottom as an injected molten steel flow 4, but at this time, the molten steel flows around each nozzle. The particles are individually formed into droplets by the gas flow from the droplet-forming gas outlet 5 provided in the . Note that FIG. 1(a) shows an example in which the outer molten steel 3 is not converted into droplets. - If the molten steel is formed into small droplets and cooled while falling, there is almost no flow of the molten steel after being poured into the mold, so there is a limit to the range in which a single molten steel flow can be uniformly dispersed. In particular, this is difficult to do with plate-shaped ingots, which is the subject of the present invention, so by arranging a plurality of large and small injected molten steel flows 3.4 in a planar manner as shown in Fig. 1 (b). , it is essential to distribute the droplets on the mold 7 as uniformly as possible.
複数個配設した注入溶鋼流の粒滴化条件の設定理由は次
のとおりである。The reason for setting the dropletization conditions for the plurality of injected molten steel flows is as follows.
落下中に冷却された半凝固状態の粒滴状の注入溶鋼流4
は注入後のモールド7内での冷却条件によって、その後
の凝固過程も異なる。すなわち、鋳塊6の表面(第3図
(イ)で符号13で示す領域、または第2図で符号12
で示す領域)では、落下中に冷却された粒滴4°は大気
側への放熱により、そのま\冷却されるのでモールド内
での流動もなく、当然のことながら成分偏析も起こりえ
ない。Injected molten steel flow in the form of semi-solid droplets cooled during falling 4
The subsequent solidification process also differs depending on the cooling conditions within the mold 7 after injection. In other words, the surface of the ingot 6 (the area indicated by reference numeral 13 in FIG. 3(a) or the area indicated by reference numeral 12 in FIG. 2)
In the region shown by ), the droplet 4° cooled during falling is cooled as it is due to heat radiation toward the atmosphere, so there is no flow within the mold, and naturally no component segregation occurs.
しかしモールド7に接する鋳塊6の表面(例えば、第3
図(イ)で符号9で示す領域)では、注入された半凝固
状態の粒滴4°は注入と同時に急冷されるので、粒滴形
状のま一残存し粒子が積み重なった状態となり、従来の
通常鋳込みに見られるスプラッシュ疵に類領した表面欠
陥につながる。However, the surface of the ingot 6 in contact with the mold 7 (for example, the third
In the region indicated by reference numeral 9 in Figure (A), the injected semi-solidified droplet 4° is rapidly cooled at the same time as the injection, so the droplet shape remains unchanged and the particles are piled up, unlike the conventional method. This leads to surface defects similar to splash defects normally seen in castings.
第3図(ロ)は第3図(イ)の符号9で示す領域の部分
拡大図であって、そのような様子を拡大して示す。FIG. 3(B) is a partially enlarged view of the area indicated by the reference numeral 9 in FIG. 3(A), and shows such a situation in an enlarged manner.
一方、鋳塊6の中心部では、注入後のモールド7内では
抜熱が遅く、特に大型鋳塊(厚みが大きく)なると、落
下中に冷却され一旦半凝固状態にされた粒滴4°もモー
ルド7内では抜熱が遅くなるので複熱し、半凝固状態の
粒が再溶解する。すなわち、鋳塊6の中心部では通常鋳
込みと同じような凝固現象が起こる。いわゆる、完全溶
融状態の溶鋼が鋳塊表面から順次凝固することになる。On the other hand, in the center of the ingot 6, the heat is removed slowly in the mold 7 after pouring, and especially in large ingots (thickness), the droplets 4°, which are cooled during falling and are once in a semi-solidified state, are Since the heat is removed slowly in the mold 7, double heat is generated, and the semi-solidified grains are remelted. That is, in the center of the ingot 6, a solidification phenomenon similar to that in normal casting occurs. So-called completely molten molten steel gradually solidifies from the surface of the ingot.
したがって、第3図(イ)に示すように鋳塊表面からの
柱状晶lOによる組織の粗大化、又成分偏析の出現と同
時に凝固収縮に起因するキャビティ1)が出現する。Therefore, as shown in FIG. 3(a), cavities 1) due to solidification shrinkage appear at the same time as the structure becomes coarse due to columnar crystals 1O from the ingot surface and component segregation appears.
本発明にあって、上記の問題を解決するには、注入溶鋼
流4を3本以上の複数個二次元的な拡が゛りをもって配
設するとともに、必要によりさらに注入溶鋼流4に流量
限定も含めてそれぞれ任意の粒滴化条件を設定するので
ある。In the present invention, in order to solve the above problem, three or more molten steel flows 4 are arranged with two-dimensional expansion, and if necessary, the flow rate of the molten steel flows 4 is further limited. In this way, arbitrary droplet formation conditions are set for each of these conditions.
かくして、本発明によれば、そのような構成を採ること
によって表面欠陥がなく、かつ内質的にも、微細組織で
均質な鋳塊を製造することができ、この鋳塊によって、
後工程の熱間圧延、鍛造の圧下比を小さくすることがで
き、製品としての厚鋼板の品質改善および製造コスト低
減をもたらすことができる。Thus, according to the present invention, by adopting such a configuration, it is possible to produce an ingot that has no surface defects and is internally homogeneous with a fine structure, and with this ingot,
It is possible to reduce the rolling reduction ratio in hot rolling and forging in the post-process, and it is possible to improve the quality of the thick steel plate as a product and reduce the manufacturing cost.
ここで、本発明における表面欠陥がなく、かつ内部も均
質な鋳塊を得るための粒滴化条件の一例を具体的に説明
すると、次の通りである。Here, an example of droplet-forming conditions for obtaining an ingot free of surface defects and homogeneous inside in the present invention is as follows.
モールド7に接する鋳塊6の表面(第2図の符号8で示
す領域、第3図の符号9で示す領域)に対応する注入溶
鋼3は注入後、モールド7内で急冷されるので粗大な粒
滴を注入する。すなわち、凝固率の小さい粒滴を注入す
ることにより、鋳塊6の表面8を滑らかにする。言い換
えると、流動性の高い溶鋼で、滑らかな鋳塊表面を形成
する。After pouring, the injected molten steel 3 corresponding to the surface of the ingot 6 in contact with the mold 7 (the area indicated by reference numeral 8 in FIG. 2 and the area indicated by reference numeral 9 in FIG. Inject droplets. That is, the surface 8 of the ingot 6 is made smooth by injecting droplets with a low solidification rate. In other words, a smooth ingot surface is formed using highly fluid molten steel.
特に、この鋳塊表面(第2図の符号8、および第3図の
符号9で示す領域)に対応する溶鋼を粒滴化せず、通常
鋳込流にすれば、従来の通常鋳込による鋳塊(スラブ等
)と同等の鋳塊表面肌が得られることは言うまでもない
、第2図の表面8参照。In particular, if the molten steel corresponding to the surface of the ingot (area indicated by reference numeral 8 in Fig. 2 and numeral 9 in Fig. 3) is made into a normal casting flow without being made into droplets, it is possible to It goes without saying that the ingot surface texture equivalent to that of an ingot (slab, etc.) can be obtained, see surface 8 in FIG. 2.
なお、この場合、凝固はモールド7側から進行するので
組織には方向性を有するが、急冷されるので組織は微細
である。In this case, since the solidification proceeds from the mold 7 side, the structure has directionality, but since it is rapidly cooled, the structure is fine.
また、その内部(第2図の符号8°で示される領域)に
は冷却された粒滴が堆積するので、溶鋼流動が抑制され
、成分偏析、が起こりえず、組織も細粒化する。当然の
事ながら更に、その内部については細粒滴化が有効であ
る。ただし、細粒化が過ぎると(凝固率10%以上)モ
ールド内注入後の冷却が遅く鋳塊がポーラス化する。In addition, since cooled droplets are deposited inside the molten steel (the area indicated by 8° in FIG. 2), the flow of the molten steel is suppressed, no component segregation occurs, and the structure becomes finer. Naturally, it is also effective to make the inside of the particles finer. However, if the grain size is too fine (solidification rate of 10% or more), cooling after injection into the mold is slow and the ingot becomes porous.
一方、モールド7と接触しない鋳塊表面(第2図の符号
12で示す領域)では、モールド7と接触する鋳塊表面
8に比べ、径太後の冷却速度は小さいが、鋳塊表面12
を滑らかにする条件として凝固率の低い粒滴、すなわち
、粗大粒滴か通常鋳込溶鋼(粒滴化せず)を注入するこ
とが好ましい。On the other hand, on the ingot surface that does not come into contact with the mold 7 (the area indicated by the reference numeral 12 in FIG. 2), the cooling rate after the diameter is increased is lower than that on the ingot surface 8 that comes into contact with the mold 7.
As a condition for smoothing this, it is preferable to inject droplets with a low solidification rate, that is, coarse droplets or normally cast molten steel (not turned into droplets).
ここに、注入溶鋼流の配置について述べると、すでに述
べたところからも明らかなように、「平面的波がり」、
つまり二次元的波がりをもってそれらを配置することが
必要であるが、これは少なくとも3本の注入溶鋼流から
構成されるのであって、一般には第1図(イ)に示すよ
うに、周辺部には少量の注入溶鋼流を配置し、これは粗
大粒滴か通常鋳込溶鋼とし、その内側には可及的に多く
の流れが均一に平面的に拡がって配置されるようにする
のが好ましい、その他、第1図(ロ)に示す配置例にあ
って、鋳塊の周辺部に相当する注入溶鋼流の粒滴化条件
を粗大粒滴とし、一部の注入流を通常鋳込溶鋼として組
み合わせることなども考えられる。Here, when talking about the arrangement of the injected molten steel flow, as is clear from what has already been said, there are "planar undulations",
In other words, it is necessary to arrange them with two-dimensional waves, but this consists of at least three injected molten steel flows, and generally, as shown in Figure 1 (a), the surrounding area is A small amount of injected molten steel flow is arranged in the molten steel, and this is coarse droplets or usually cast molten steel, and inside it, as much flow as possible is arranged evenly and flatly. Preferably, in the arrangement example shown in FIG. 1 (B), the conditions for forming the injected molten steel flow corresponding to the periphery of the ingot are coarse droplets, and a part of the injected flow is made into normal cast molten steel. It is also possible to combine them as
次に、各注入溶鋼流における注入条件の変更法であるが
、これはそれぞれに対応するタンプッシュノズルからの
溶鋼流を粒滴化するときの粒滴化ガス噴霧条件を変更す
ることによって容易に変更できる0例えば、粒滴化ガス
噴霧量を少なくすることによって粒滴を粗粒化するとと
もに、その凝固率を小さ(でき、反対に粒滴化ガス噴霧
量を多くすることによって凝固率を高くでき、粒滴化ガ
ス噴霧速度を増加させることによってより小さな粒滴を
生成させ得るのである。そしてこれらは各注入溶鋼流毎
に変えることができるのである。また、タンデイツシュ
底部のノズル孔の径そのものを変更することにより流量
を制限できる。Next, there is a method for changing the injection conditions for each injected molten steel flow, but this can be easily done by changing the droplet-forming gas spray conditions when the molten steel flow from the corresponding tump push nozzle is turned into droplets. Can be changed to 0. For example, by reducing the amount of dropletizing gas sprayed, the droplets can be made coarser and the coagulation rate can be reduced (on the contrary, by increasing the amount of dropletizing gas sprayed, the coagulation rate can be increased). Smaller droplets can be produced by increasing the dropletization gas spray velocity, and these can be varied for each injected steel stream.Also, the diameter of the nozzle hole at the bottom of the tundish can itself be changed. The flow rate can be restricted by changing the .
次に、実施例によって本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail with reference to Examples.
実施例
第1表に本発明法の実施例および比較例とじて現行プロ
セスの注入流を2本とした場合の鋳造例(比較N1)と
t、Hm塊法による製造N(比較例2)の各製造条件お
よび結果を、第2表には製造した鋳塊の成分を示す。Examples Table 1 shows examples and comparative examples of the method of the present invention, as well as a casting example (comparative N1) when two injection streams are used in the current process, and a casting example N (comparative example 2) manufactured by the t, Hm block method. Table 2 shows the manufacturing conditions and results, and the components of the manufactured ingots.
また第4図には比較例として用いたLH鋼塊の製造プロ
セスの概要を示した。大定盤そして定盤のうえに載せた
偏平鋳型の内部に注入管よりの溶鋼を下注ぎ方式で注入
し、鋳型内部に断熱スリー゛ブを設けることによって一
方向凝固を行う、場面頂部には保温板と保温蓋が置かれ
ており、一方向凝固を確実なものとしている。Moreover, FIG. 4 shows an outline of the manufacturing process of the LH steel ingot used as a comparative example. Molten steel is injected from an injection pipe into a large surface plate and a flat mold placed on the surface plate using a bottom pouring method, and solidification is performed in one direction by providing an insulating sleeve inside the mold. A heat insulating plate and a heat insulating lid are placed to ensure one-way solidification.
第1図に示した本発明法で幅1000+u+、高さ40
0ma+。Width 1000+u+, height 40
0ma+.
長さ3000mmの鋳塊を製造するとともに、比較例1
として現行プロセスである注入流2本により、幅100
〇−曽、高さ40〇−園、長さ3000m−の鋳塊を製
造した。また、比較例2として現行のLH鋼塊プロセス
により、1000 X 1000mm、高さ920m−
の鋳塊を製造した0本発明の場合、タンデイシュからモ
ールドへの注入は8本のノズルで行った。注入速度は各
ノズルでそれぞれ0.39 トン/分で粒滴化には液体
窒素を用い、5US304製環状ノズルで注入溶鋼流に
噴射させた。液体窒素量は注入ノズル8本の内第1図に
示す6本の注入流に対して各噴射ノズルより0.651
/5teel kg・winで行った。また、比較例
1の場合は注入ノズル2本で行い、注入速度は各々1.
45トン/分で粒滴化には液体窒素を用い、環状ノズル
は本発明の実施例と同じものを用いた。While manufacturing an ingot with a length of 3000 mm, Comparative Example 1
With the current process of two injection streams, a width of 100
An ingot with a height of 400m and a length of 3000m was manufactured. In addition, as Comparative Example 2, a steel ingot of 1000 x 1000 mm and a height of 920 m-
In the case of the present invention, in which an ingot was produced, eight nozzles were used to inject from the tundish into the mold. The injection rate was 0.39 ton/min for each nozzle, and liquid nitrogen was used to form droplets into the molten steel stream using a 5US304 annular nozzle. The amount of liquid nitrogen is 0.651 from each injection nozzle for the injection flow of 6 of the 8 injection nozzles shown in Figure 1.
/5teel kg・win. In addition, in the case of Comparative Example 1, two injection nozzles were used, and the injection speed was 1.
Liquid nitrogen was used for droplet formation at 45 tons/min, and the same annular nozzle as in the example of the present invention was used.
液体窒素量は2本の注入流に対して各々0.6j!/5
teel kg−winで行った。なお、溶鋼過熱度は
本発明法および比較例1の場合ΔT=60℃、比較例2
の場合ΔT−40℃であった。The amount of liquid nitrogen is 0.6j for each of the two injection streams! /5
I went with Teel kg-win. In addition, the degree of superheating of molten steel is ΔT=60°C in the case of the present invention method and Comparative Example 1, and Comparative Example 2.
In the case of ΔT-40°C.
製造した鋳塊の内、本発明法で製造したものは、そのま
ま厚板圧延にて板厚200+msの鋼板に圧延した。Among the manufactured ingots, those manufactured by the method of the present invention were directly rolled into steel plates with a thickness of 200+ms by plate rolling.
比較例1の鋼塊は、鋼塊の底面および側面の表面欠陥部
(過冷却によるポーラス化部)を10+g−削除し、高
さ390mm 、輻980+*−とし、さらに鋼塊頂面
も手入した後、本発明法で製造した鋳塊同様厚板圧延に
て板厚2001の綱板に圧延した。In the steel ingot of Comparative Example 1, the surface defects (porous parts due to supercooling) on the bottom and side surfaces of the steel ingot were removed by 10+g-, the height was 390 mm, and the radius was 980+*-, and the top surface of the steel ingot was also cleaned. After that, it was rolled into a steel plate with a thickness of 2001 mm by plate rolling, similar to the ingot produced by the method of the present invention.
また、現行のLH鋼塊プロセスで製造した鋼塊は、先ず
鋼塊頂面側の偏析部(約30%)を切り捨て、高さ60
0+u+とし、分塊圧延で高さ40(1wmに圧延した
後、厚板圧延にて板厚200mm+の鋼板に圧延した。In addition, steel ingots manufactured using the current LH steel ingot process are manufactured by first cutting off the segregated portion (approximately 30%) on the top side of the steel ingot, and then
0+u+, and after rolling to a height of 40 (1 wm) by blooming, it was rolled to a steel plate with a thickness of 200 mm+ by plate rolling.
それぞれの鋼板について超音波検査を行った結果、同じ
く第1表にまとめて示すようにいずれのiiiとも超音
波による欠陥は全く見られなかった。As a result of performing an ultrasonic inspection on each steel plate, as also summarized in Table 1, no defects caused by ultrasonic waves were observed in any of the steel plates iii.
以上の結果、本発明方法によって得た鋳塊から製造した
厚鋼板が、現行プロセス並の品質保証ができることを確
認するとともに、コスト高に直結する歩留りの大幅な改
善ならびに圧下比の低減ができることが明らかとな9た
。As a result of the above, it was confirmed that the steel plates manufactured from the ingots obtained by the method of the present invention can have quality assurance equivalent to the current process, and also that it is possible to significantly improve the yield and reduce the rolling reduction ratio, which is directly linked to higher costs. Obviously 9.
第1表 実施例および比較例の製造条件と結果第2表
鋳塊の成分(%)
(発明の効果)
以上詳述したように、本発明によれば、表面欠陥がなく
、内質的にもキャビティ、成分偏析と言ったマクロ的欠
陥がなく、かつ微細組織を有する鋳塊が得られるのであ
って、その鋳塊を利用することにより、圧下比の小さい
圧延または鍛造によっても品質的にすぐれた厚肉綱板が
得られるためコストを著しく低減することができる。Table 1 Manufacturing conditions and results for Examples and Comparative Examples Table 2
Ingot composition (%) (Effects of the invention) As detailed above, according to the present invention, there is no surface defect, no internal macroscopic defects such as cavities and component segregation, and fine ingots. An ingot with a texture can be obtained, and by using this ingot, a thick steel plate with excellent quality can be obtained even by rolling or forging with a small reduction ratio, so costs can be significantly reduced. can.
第1図(イ)および同(ロ)は、本発明による鋳造法の
概要を示すそれぞれ模式的側面図および平面図;
第2図は、本発明による鋳塊の凝固状況の略式第3図(
イ)および同(ロ)は、従来法の鋳塊の凝固状況を模式
的に示すそれぞれ略式説明図および一部拡大図:および
第4図は、比較例で使用した従来のLH鋼塊プロセスの
略式説明図である。Figures 1 (A) and 1 (B) are schematic side views and plan views, respectively, showing an outline of the casting method according to the present invention; Figure 2 is a schematic diagram 3 (
A) and (B) are a schematic explanatory diagram and a partially enlarged view, respectively, schematically showing the solidification status of an ingot using the conventional method; and Figure 4 is a diagram of the conventional LH steel ingot process used in the comparative example. FIG.
Claims (2)
るエンドレスモールド内に落下させて凝固させる鋳造方
法において、上記の注入溶鋼流を3本以上の溶鋼流で構
成することを特徴とする厚肉鋼板製造用の鋳塊の鋳造方
法。(1) A casting method in which the molten steel stream is made into droplets and dropped into an endless mold consisting of a bottom surface and a side wall surface to solidify, characterized in that the above-mentioned injected molten steel stream is composed of three or more molten steel streams. A method for casting ingots for manufacturing thick-walled steel plates.
定すること、または、該注入溶鋼流のうち、一部の溶鋼
流を粒滴化せず完全溶融状態のまま前記モールド内に注
入することを特徴とする請求項(1)に記載の鋳造方法
。(2) Setting the injected molten steel flows to different dropletization conditions, or placing some of the injected molten steel flows in the mold in a completely molten state without turning them into droplets. The casting method according to claim 1, further comprising injection.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15614988A JPH01321049A (en) | 1988-06-24 | 1988-06-24 | Method for casting cast slab for producing thick steel plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15614988A JPH01321049A (en) | 1988-06-24 | 1988-06-24 | Method for casting cast slab for producing thick steel plate |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01321049A true JPH01321049A (en) | 1989-12-27 |
Family
ID=15621410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15614988A Pending JPH01321049A (en) | 1988-06-24 | 1988-06-24 | Method for casting cast slab for producing thick steel plate |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01321049A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5343926A (en) * | 1991-01-02 | 1994-09-06 | Olin Corporation | Metal spray forming using multiple nozzles |
-
1988
- 1988-06-24 JP JP15614988A patent/JPH01321049A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5343926A (en) * | 1991-01-02 | 1994-09-06 | Olin Corporation | Metal spray forming using multiple nozzles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109663892B (en) | Progressive solidification forming device for large cast ingot or casting blank | |
JPH01321049A (en) | Method for casting cast slab for producing thick steel plate | |
JP2020062678A (en) | Continuous metal casting device and method | |
JPS5886969A (en) | Liquid drop casting method | |
JPH06246425A (en) | Method for casting large sealed steel ingot | |
JPS5847255B2 (en) | Steel ingot making method | |
JPS609553A (en) | Stopping down type continuous casting machine | |
JPS632534A (en) | Method of bottom pouring steel ingot making | |
JP3465578B2 (en) | Method of manufacturing rectangular slab by continuous casting | |
JP2003103355A (en) | Manufacturing method for forging steel ingot | |
JP2750929B2 (en) | Continuous casting method with spray deposit method | |
JPS58218359A (en) | Production of thin metallic plate | |
CA1074976A (en) | Method of producing steel ingots from unkilled steel | |
JPS5952013B2 (en) | Continuous casting method for seawater resistant steel | |
JPS60145252A (en) | Direct production of steel plate | |
JPS5917475Y2 (en) | Bottom metal for continuous casting | |
JP3356094B2 (en) | Manufacturing method of round billet slab by continuous casting | |
JPS6466061A (en) | Production of ingot having double layers | |
JPS61123446A (en) | Production of steel ingot | |
JPS63180351A (en) | Cast slab casting method | |
RU2108200C1 (en) | Casting mold for producing annular ingots | |
JPH0472629B2 (en) | ||
JPS5935855A (en) | Production of steel ingot | |
JPS5933056A (en) | Production of thick walled steel plate | |
JPH08243701A (en) | Production of cast slab for rolling |