JPS5886969A - Liquid drop casting method - Google Patents

Liquid drop casting method

Info

Publication number
JPS5886969A
JPS5886969A JP16270881A JP16270881A JPS5886969A JP S5886969 A JPS5886969 A JP S5886969A JP 16270881 A JP16270881 A JP 16270881A JP 16270881 A JP16270881 A JP 16270881A JP S5886969 A JPS5886969 A JP S5886969A
Authority
JP
Japan
Prior art keywords
segregation
liquid
droplets
mold
molten steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16270881A
Other languages
Japanese (ja)
Inventor
Yasuo Sugitani
杉谷 泰夫
Masahiro Yoshihara
正裕 吉原
Michio Ohashi
大橋 通男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP16270881A priority Critical patent/JPS5886969A/en
Publication of JPS5886969A publication Critical patent/JPS5886969A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To prevent the formation of a defect occuring in macro segregation, and to improve the quality of a steel ingot, by fractionized molten steel once to liquid drops, and stacking the granular drops cooled to an imperfectly solidified state in a mold. CONSTITUTION:The charging flow of molten steel 27 is fractionized to liquid drops of <=5mm. grain sizes by the liquid nitrogen or liquid argon sprayed from a nozzle 22 and is at the same time removed of heat. During dropping, the liquid drops cooled by convection and radiation heat transfer in the gaseous nitrogen or argon atmosphere maintained at a low temp. by the heat of evaporation and attain the imperfectly solidified state, wherein the surfaces are solidified and the inside are unsolidified. These liquid drops are stacked in a mold 24 to form a stacked ingot 28. Thus V segregation, inverse V segregation and segregation in the head part are eliminated at all, and the quality of the steel ingot is improved.

Description

【発明の詳細な説明】 本発明は溶鋼の#1減内への注入法、より詳しくは溶鋼
を一旦液滴化し、不完全凝固状態に冷却し九粒滴を鋳型
内に集積する液滴鋳造法に関する。
Detailed Description of the Invention The present invention relates to a method of injecting molten steel into a #1 tank, more specifically, droplet casting in which molten steel is once turned into droplets, cooled to an incompletely solidified state, and nine droplets are accumulated in a mold. Regarding the law.

鋼の鋳込みは一般に取鍋またはタンディシェに入ってい
る溶鋼を鋳型に直接注入することにより行なわれている
。この方法では、鋳塁内に注入された溶鋼は鋳型表If
i111から中心部に向って順次凝固していくためにマ
クロ的な成分偏析が起ることが避けられず、インゴット
でV偏析と逆V偏析が、またCC(連続−造)−片で中
心偏析あるいは内部割れが見られることはよく知られえ
事実である。
Steel casting is generally carried out by pouring molten steel in a ladle or tundish directly into a mold. In this method, the molten steel injected into the casting base is
As solidification occurs sequentially from i111 toward the center, it is unavoidable that macroscopic component segregation occurs, and V segregation and reverse V segregation occur in ingots, and center segregation occurs in CC (continuously manufactured) pieces. It is a well-known fact that internal cracks can be seen.

これらの欠陥は鋼塊の品質を低下させ、あるいは余分の
1楊を必要とする。
These defects reduce the quality of the steel ingot or require an extra tooth.

かかるマクロ偏析に起因する欠陥の生成を防止し、鋼塊
の品質を向上させる手段として、従来、鋳込後の凝固4
根において残溶鋼を電磁的に攪拌し、偏析を軽減する方
法(電磁攪拌法)、鋳込中の溶鋼流に鉄!などの凝固核
生成剤を添加する方法、および低温鋳、込法が提案ない
し実用化されている。しかし、電磁攪拌法は凝固核画面
の濃化した溶質を攪拌することkよりて分散させ、偏析
帯の形状を変えているにすぎず、したがって偏析の根本
的な解消には至らな−。また、凝固核生成剤を添加する
方法では、この添加の際に添加剤の酸化により介在物が
増加す名こと、あるいは成分調整が厄介なことなど、実
用化にア九りて解消すべき技術的課聰が残っている。一
方、低温鋳造法についてもノズル結)など、技術的に@
界がある。1  ′しかも、いずれの場合も、鋼塊表面
から順次a固させていく方式を変えるものではなく、シ
たがりてこの方式に固有のマクロ偏析による前記欠陥の
発生という問題点を根本的に解決するには至らなかった
As a means to prevent the formation of defects caused by such macro-segregation and improve the quality of steel ingots, solidification after casting
A method of electromagnetically stirring residual molten steel at the base to reduce segregation (electromagnetic stirring method), iron is added to the molten steel flow during pouring! A method of adding a solidification nucleating agent, such as, and a low-temperature casting method have been proposed or put into practical use. However, the electromagnetic stirring method merely disperses the concentrated solute in the solidification core screen by stirring and changes the shape of the segregation zone, and therefore does not fundamentally eliminate segregation. In addition, with the method of adding a solidification nucleating agent, the number of inclusions increases due to the oxidation of the additive during addition, and the adjustment of the components is troublesome. There are still some supervisors left. On the other hand, regarding the low temperature casting method, there are also technical issues such as nozzle connection).
There is a world. 1 'Moreover, in either case, it does not change the method of sequentially solidifying the steel from the surface of the steel ingot, and thus fundamentally solves the problem of the occurrence of defects due to macro-segregation inherent to this method. I wasn't able to do it.

本発明の目的は、インゴットやCC鋳片のマクロ偏析を
完全に防止することのできる鋼の製造法を提供すること
である。
An object of the present invention is to provide a steel manufacturing method that can completely prevent macro segregation of ingots and CC slabs.

ここに、本発明は溶鋼を堆絹またはタンディシェから鋳
型内に注入する際に、溶鋼流を液化不活性ガスの噴射に
より粒径6■以下に液滴化し、生成した液滴を、鋳型内
圧落下するまでに1その表面のみ凝固し、内部は未凝1
固の11の不完全凝固状態に冷却し、この状態で鋳型内
に捕集することを%徴とする、溶鋼の鋳込方法である。
In this case, the present invention is characterized in that when molten steel is injected into a mold from a pile or a tundish, the molten steel flow is turned into droplets with a particle size of 6 mm or less by injection of liquefied inert gas, and the generated droplets are By the time 1 is solidified, only the surface is solidified, and the inside is unsolidified.
This is a method of casting molten steel that involves cooling it to an incompletely solidified state of 11% and collecting it in a mold in this state.

本発明の方法はインゴット製造および連鋳法のいずれに
も適用できるものである。
The method of the present invention is applicable to both ingot production and continuous casting.

本発明によると、取鍋またはタンディジ、から鋳型内に
注入される溶鋼流を液化不活性ガスの流体噴ll!(ア
トマイゼーシ璽ン)Kよプ直径5−以下の液ttI4伏
にまず液滴化する。液化不活性ガスとしては液体窒素ま
たは液体アルゴンが使用される。
According to the invention, a fluid jet of liquefied inert gas flows through the molten steel stream injected into the mold from a ladle or tandige! (Atomization) First, the liquid is atomized into droplets with a diameter of 5 mm or less. Liquid nitrogen or liquid argon is used as the liquefied inert gas.

以下の説明では、液体N、または液体Arに限定して説
明しているが、その他の液化不活性ガスも所望により使
用できる。生成した液滴を次゛いて適当な冷却手段によ
)冷却し、その表向のみが凝固し、内部は未凝固の不完
全凝固状態の粒滴とし、この状態で鋳型内に落下・集積
させる。各粒調の表向が既に凝固しているため、粒滴間
の成分移動が起らないので、マクロ的な偏析は完全に防
止される。したがって、本発明の方法でインゴットを鋳
造した場合、V偏析や逆偏析はもちろん、頭部の偏析も
軽減ないし実質的に皆無となるので、鋼塊の品質向上と
ともに、押湯切断によって決まる歩留りも向上する。ま
た、本発明の方法を連鋳法に適用すると、CC鋳片の中
心偏析が皆無になるとともに、バルジングによる内部割
れも解消され、大幅な品質向上が=r能となる。
Although the following explanation is limited to liquid N or liquid Ar, other liquefied inert gases can also be used as desired. The generated droplets are then cooled (by an appropriate cooling means) to form droplets in an incompletely solidified state where only the surface is solidified and the inside is not solidified, and in this state they are allowed to fall and accumulate in the mold. . Since the surface of each grain size has already solidified, there is no movement of components between grain droplets, so macroscopic segregation is completely prevented. Therefore, when an ingot is cast by the method of the present invention, not only V segregation and reverse segregation but also head segregation are reduced or virtually eliminated, which improves the quality of the steel ingot and also reduces the yield determined by feeder cutting. improves. Furthermore, when the method of the present invention is applied to a continuous casting method, center segregation of CC slabs is completely eliminated, internal cracks due to bulging are also eliminated, and quality can be significantly improved.

インゴットあるいはCC鋳片から轡(イブなどの製品を
製造する場合、鍛造および圧延の工程があり、加圧され
る。特に、極厚鋼板は加圧の程度(圧下率)Kよ多品質
が決まる。すなわち、マクロ的な偏析などの欠陥を加圧
下によシ消滅させる。拳法によればこの圧下率(通常1
15)が大1Jに軽減される。
When manufacturing products such as eaves from ingots or CC slabs, there are forging and rolling processes, which are then pressurized.In particular, the quality of extra-thick steel plates is determined by the degree of pressurization (reduction ratio) K. In other words, defects such as macroscopic segregation are eliminated under pressure. According to Kenpo, this reduction rate (usually 1
15) is reduced to 1J.

これは美大な設備費(加圧)の削減につながり、メリッ
トは大きい。
This leads to a huge reduction in equipment costs (pressurization), which is a great benefit.

本発明の方法において、溶鋼流は液体N、ま九は液体A
rの噴射によシ液滴化される。液体N。
In the method of the present invention, the molten steel flow is liquid N, and the flow is liquid A.
The liquid is turned into droplets by the injection of r. Liquid N.

および液体Arは、後述のように、液滴化と同時に液滴
を表面から冷却し、その気化熱により粒滴の分離手段が
不要となる点で有利である。しかも、このN、およびA
rはいずれも不活性で、落下中の短時間の間には粒MK
実質的な作用を及ぼさず、これらの気化したガスが、表
面積の大きい粒滴の酸化防止シールの役目も果す。
As will be described later, liquid Ar is advantageous in that it cools the droplets from the surface at the same time as they are formed into droplets, and the heat of vaporization eliminates the need for droplet separation means. Moreover, this N, and A
Both r are inert, and during a short period of time during falling, the particles MK
Without any substantial effect, these vaporized gases also serve as an anti-oxidation seal for the large surface area droplets.

生成した液滴の粒径は、噴射する液体の種類、その流速
、噴射角度、流入される溶湯(溶鋼fi)の流径をはじ
めとする多くの因子に依存する。所望の液滴粒径を生ず
る噴射φ件は実験的に決定できる。
The particle size of the generated droplets depends on many factors, including the type of liquid to be injected, its flow rate, the injection angle, and the flow diameter of the molten metal (molten steel fi) flowing into the injected liquid. The injection φ value that produces the desired droplet size can be determined experimentally.

液体の粒径が6s+aをこえると、各々の粒滴内に凝固
収縮孔ができ、凝固率が大きい場合、粒調表面の凝固殻
も強くなるためにモールド内での変形が充分起らず、粒
滴間の空隙が一塊段階では微細な孔として残存する。こ
れはその後の加圧により消滅するが従来のマクロ的な成
分偏析などの欠陥を有する鋼塊と同じような加圧力が必
要となる。
When the particle size of the liquid exceeds 6s+a, solidification shrinkage pores are formed in each droplet, and when the solidification rate is large, the solidification shell on the grain surface also becomes strong, so that sufficient deformation within the mold does not occur. The voids between the droplets remain as fine pores in the lump stage. This will disappear with subsequent pressurization, but the same pressurizing force as conventional steel ingots with defects such as macroscopic component segregation is required.

父、当然であるが抜熱効率も急くなシ、落下距離が8r
rL以上必要となり、実用プロセスとして設備上不可と
なる。したがって、液滴の粒径は5■以IFK制限され
る。好ましい粒径の範囲は約Q1〜zO■である。
Father, of course, don't rush the heat removal efficiency, the falling distance is 8r.
rL or more is required, making it impossible due to equipment considerations as a practical process. Therefore, the particle size of the droplets is limited by IFK to 5 cm or more. A preferred particle size range is about Q1 to zO■.

生成した液滴は、液体Ntまたは液体Arの気化潜熱に
より液滴化と同時に表面から抜熱され、冷却・凝固を受
ける。また、その後の鋳型内への落下中も、気化したN
鵞ま九はArが周囲雰囲気電板の上昇を抑制し、抜熱効
率をよくして、対流、輻射伝熱による冷却を行なう、し
たがって、特に冷却手段を設けなくても粒調は表面のみ
が凝固した不完全凝固状態になるが、l#型内への落下
中に所望の粒調の凝固率が容易に得られるように落下希
酸すなわち冷却槽に冷却手段を別に設けることもできる
。本発明の方法において、冷却手段は粒調に悪影響を及
ばずものでなければ任意の手段が採用できるが、液滴化
に用いたのと同じ流体、すなわち、液体N、ま九は液体
Arの噴射により、落下中の粒調を直接冷却するか、も
しくはその気化熱により鳩囲温度上昇を抑制し抜熱効率
を良くして冷却するのが特に好ましい。
The generated droplets are cooled and solidified by the latent heat of vaporization of liquid Nt or liquid Ar, which removes heat from the surface at the same time as the droplets form. Also, during the subsequent fall into the mold, the vaporized N
In Kusumaku, Ar suppresses the rise of the electric plate in the surrounding atmosphere, improves heat removal efficiency, and performs cooling by convection and radiation heat transfer. Therefore, even without any special cooling means, only the surface of the grain solidifies. However, a cooling means may be separately provided in the falling dilute acid, that is, in the cooling bath, so that the solidification rate of the desired grain size can be easily obtained during the falling into the l# mold. In the method of the present invention, any cooling means can be used as long as it does not adversely affect the grain quality, but the same fluid as that used for forming droplets, that is, liquid N and liquid Ar, can be used as the cooling means. It is particularly preferable to directly cool down the falling grains by injection, or to cool them by suppressing the rise in ambient temperature by the heat of vaporization and improving heat removal efficiency.

本発明において、「不完全凝固状態」とは、凝固率IX
以上、100%未満の状態を意味する。
In the present invention, the "incomplete solidification state" refers to the solidification rate IX
The above means a state of less than 100%.

ただし、こむで言う凝固率とは、凝固潜熱に対する抜熱
の割合である。
However, the solidification rate referred to in Komu is the ratio of heat removal to latent heat of solidification.

次に1図面を参照して、本発明の方法についてさらに詳
述する。
The method of the invention will now be described in further detail with reference to one drawing.

第1図は、従来の通常の鋳込法で製造した大型鋼塊(i
L)およびCC鋳片(b)の凝固過根と発生した欠陥を
模式的に示したもので、lが大型鋼塊における中心部で
のV偏析、2が逆V偏析(ゴースト)、8が頭部の偏析
帯で、4がCC−片に見られる中心−折、6が内部割れ
で娶る。ま九、破−6,7゜8.9 は−込儀の各時期
における凝固桿菌の位置を示したものである。これらの
欠陥の生成mwtにはいくつかの要因があるが、いずれ
の場合も、鋳込まれた溶−が鋳塊の表面から順次凝固し
ていくことに根本的な原因がある。これらの欠陥のため
、インゴットでは頭部偏析帯を取除くように押湯切断が
行なわれ、その分だけ歩留りが低下することKなる。、
′tた、その他の欠陥は、これらにょる鋳塊の品質低下
を避けるために、鋳塊から生製品(鋼板、棒鋼)に至る
鍛造・圧延工程での加圧下を大きくして、これらの欠陥
の影響を緩和しているが、その緩和の程度は完全ではな
く、時間的にも経済的にもロスが大きい。
Figure 1 shows a large steel ingot (i
L) and CC slab (b) schematically show oversolidified roots and defects that occur, where l is V segregation at the center of a large steel ingot, 2 is inverted V segregation (ghost), and 8 is V segregation at the center of a large steel ingot. In the segregation zone of the head, 4 is a central fold seen in the CC-piece, and 6 is an internal crack. Figures 9, 6, 7 and 8.9 show the positions of coagulation rods at each stage of the process. There are several factors that contribute to the generation mwt of these defects, but in any case, the fundamental cause is that the poured melt solidifies sequentially from the surface of the ingot. Because of these defects, the ingot is cut with a feeder to remove the head segregation zone, and the yield is reduced accordingly. ,
In order to avoid deterioration in the quality of the ingot, the pressure applied during the forging and rolling process from the ingot to the raw product (steel plate, steel bar) is increased to eliminate these defects. However, the degree of mitigation is not complete, and there is a large loss in both time and economic terms.

第2図は、本発明の方法を模式的に示したもので、21
は堆鍋(またはタンディシュ)、22は液体Nutたは
液体Arの環状噴射ノズル、28け冷却槽、24は鋳型
、26け排気ガス簡、26は粒調捕集板である。第2図
に示すように、本発明の方法では、溶@21の注入流は
、ノズル22から噴射される液体N!または液体Arの
噴射によりて液滴化され、同時に液体N、またはArに
より抜熱され、さらに落下中にその気化熱によって低温
に保持されたN、またはArガス雰囲気中で対流、輻射
伝熱による冷却を受け、表向は凝固し、内部は未凝固の
不完全凝固状態となってam内に集積され、集積塊28
を形成する。42図に示したIll様では別に冷却手段
を設けておらず、抜熱量、すなわち粒調の凝固率は、液
体N、またはATの噴射流量とm型内への落下距IIm
!(す々わち、冷却槽の喪さ)とによシ制岬される。こ
の場合、たとえばaitMI卓10V、の粒滴を得るた
めには、一般に約1−Jm以上の自然落下距離が必要で
ある。
FIG. 2 schematically shows the method of the present invention, with 21
2 is a composting pot (or tundish), 22 is an annular injection nozzle for liquid Nut or liquid Ar, 28 cooling tanks, 24 is a mold, 26 is an exhaust gas plate, and 26 is a grain size collection plate. As shown in FIG. 2, in the method of the invention, the injected stream of melt@21 is injected from the nozzle 22 of liquid N! Or N is formed into droplets by jetting liquid Ar, and at the same time is heat removed by liquid N or Ar, and is further kept at a low temperature by the heat of vaporization while falling, or by convection or radiation heat transfer in an Ar gas atmosphere. Upon cooling, the surface is solidified and the inside is in an incompletely solidified state, which is accumulated in the am, and the accumulated mass 28
form. In the model Ill shown in Fig. 42, no separate cooling means is provided, and the amount of heat removed, that is, the solidification rate of the grain size, is determined by the injection flow rate of liquid N or AT and the falling distance IIm into the mold m.
! (In other words, the loss of the cooling tank) was finally completed. In this case, in order to obtain droplets of, for example, aitMI table 10V, a free fall distance of about 1-Jm or more is generally required.

冷却を促進し、凝固率の制御を容易にするために、冷却
槽2BK冷細手段、好ましくは液体N、またはATの噴
射装置を設けることができる。
To accelerate cooling and facilitate control of the solidification rate, the cooling tank 2BK can be provided with cooling means, preferably liquid N or AT injection.

第8図は溶鋼の液滴化およ島により生じ九粒滴を模式的
に示したもので、(a)は落下中の粒調、(b)は鋳型
内に集積され九粒滴の状態を示す。
Figure 8 schematically shows nine droplets produced by molten steel becoming droplets and islands; (a) shows the grain size during falling, and (b) shows the state of nine droplets accumulated in the mold. shows.

図中、イが凝固殻、口が溶鋼である。図に示すように、
流体噴射により生じた液滴は、表向張力によシ球形の形
状をとシ、落下中もほぼ球形伏線のまま表面が凝固して
いくが、11Il′!i内に集積されると自重および上
に集積した粒調の重量により変形して、ga(b)図に
示すように粒滴間の間隙はなくなる。凝固は、個々の粒
爾内では従来のような表面からの凝固であり、その意味
でミクロ的には偏析は起っている。しかし、各粒滴の表
面に凝固殻イが存在するために、粒滴と粒調の間の溶鋼
の流動あるいは成分移動は禁止されているので、マクロ
的な成分偏析は皆無となシ、したがって、かかる偏析に
起因する前述の各種欠陥の発生も起らない。ただし、凝
固率が100%になって、粒滴が完全に凝固すると、集
積後の粒滴の変形がほとんど起らず、粒滴と粒滴の境界
に空隙ができ、大型−塊のサグと呼ばれる欠陥に類似し
た状態になるため、機械的性質劣化の原因となる。同時
に、得られた鋼塊の表面肌も悪化する。し九がって、鋳
型内への集積直面の粒滴の凝固率は100%未満でなけ
ればならず、%に約6〜40%の範囲の凝固率が好まし
い。
In the figure, A is the solidified shell and the mouth is the molten steel. As shown in the figure,
The droplet generated by the fluid jet loses its spherical shape due to surface tension, and the surface solidifies while falling, maintaining an almost spherical shape, but 11Il'! When the droplets are accumulated in i, they are deformed by their own weight and the weight of the particles accumulated above, and the gaps between the droplets disappear as shown in the ga(b) diagram. Solidification occurs from the surface within individual grains, as in the past, and in that sense, segregation occurs on a microscopic level. However, due to the presence of a solidified shell on the surface of each droplet, the flow of molten steel or the movement of components between the droplets and the grain size is prohibited, so there is no macroscopic component segregation. Also, the various defects described above due to such segregation do not occur. However, when the solidification rate reaches 100% and the droplets are completely solidified, there is almost no deformation of the droplets after accumulation, and voids are formed at the boundaries between the droplets, causing sag of large lumps. Since the condition resembles a so-called defect, it causes deterioration of mechanical properties. At the same time, the surface texture of the obtained steel ingot also deteriorates. Therefore, the solidification rate of the droplets on the collection surface into the mold must be less than 100%, with solidification rates in the range of about 6-40% being preferred.

本発明のように、注入途中の1111wI4を液滴化す
る方法を採用する場合、表面積が大となるので、酸化防
止が不可欠であることはもちろんであるが、本発明の方
法では液滴化に液体N、tたはArを使用するために、
この液体が気化したNItたはArガスが崗囲雰囲気を
構成し、酸化防止の役目も同時に果す、したがって、酸
化の11度も通常の上注による鋳込法と同程度におさえ
られる。
When adopting a method of forming 1111wI4 into droplets during injection as in the present invention, since the surface area becomes large, it is of course essential to prevent oxidation. To use liquid N, t or Ar,
Nit or Ar gas, which is vaporized from this liquid, constitutes the surrounding atmosphere and also serves as an oxidation prevention agent.Therefore, the oxidation level of 11 degrees can be suppressed to the same level as in the ordinary over-pouring casting method.

実施例 後出の第一1表に示す組成の溶鋼から、本発明の方法に
よシ、第2図に概略を示す装置を用いて、480■x4
10mMIX 1810−の寸法の2トン鋼塊を作った
。比較のために、同一組成の溶鋼を従来の上注法によυ
鋳込んで、同一寸法の2トン鋼塊を作−)九0両者の製
造秦件を第81Iに、得られた一塊の性状を第8表に示
す。 ・ 本発明法では液滴化に02’ld/Tの液体N、量を用
いて、環状ノズルから噴射した。これは流蓋に換算する
とQ 12//minに相当する。粒滴の冷却は、液滴
化に用い友液体N、量を利用したもので、この液体N雪
が気化するに要する潜熱および大気温までの顕熱は、溶
鋼の凝固潜熱の86%に相当する。
From the molten steel having the composition shown in Table 11 given later in the Examples, 480×4
A 2 ton steel ingot with dimensions of 10 mm MIX 1810- was made. For comparison, molten steel with the same composition was υ
A 2-ton steel ingot of the same size was produced by casting.The manufacturing conditions for both are shown in Table 81I, and the properties of the obtained ingot are shown in Table 8. - In the method of the present invention, an amount of liquid N of 02'ld/T was used to form droplets and was injected from an annular nozzle. This corresponds to Q 12//min in terms of flow rate. The cooling of the droplets utilizes the amount of liquid N used to form them into droplets, and the latent heat required for this liquid N to vaporize and the sensible heat up to atmospheric temperature are equivalent to 86% of the latent heat of solidification of molten steel. .

第2衆に示した条件下で生成した粒滴の大きさは平均的
08−4i&であシ、鋳型内に集積直前の粒滴の凝固率
は約8696糧度であった。
The size of the droplets produced under the conditions shown in Part 2 was on average 08-4I, and the solidification rate of the droplets just before accumulation in the mold was about 8696 grains.

第8表に示す結果かられかるように1本発明法では郷軸
晶率が従来法の2倍以上に大幅に増大するとともに、従
来法の通常鋼塊に見られる逆V偏析(ゴースト)および
鋼塊中心部の成分偏析(S偏析)もほとんどなく、マク
ロ的な成分偏析は皆無であり九。また、溶鋼酸化による
介在物、すなわち清#度についても、気化し九N、ガス
シールによって、通常鋳込法とほぼ同根1fK抑えられ
た。
As can be seen from the results shown in Table 8, in the method of the present invention, the Go-axis crystallinity is significantly increased to more than twice that of the conventional method. There is almost no component segregation (S segregation) in the center of the steel ingot, and there is no macroscopic component segregation. In addition, inclusions due to molten steel oxidation, that is, the cleanliness, were suppressed to 1 fK, which is approximately the same as the normal casting method, by vaporizing to 9N and gas sealing.

Jlll1表#綱組成 (重量%) 第1′111製造東件 秦り:@状スリットOa C・ニスリット噴射孔oH間 gill m流性状 表図面の簡単なIIg#4 第1図は、″従来の通常の鋳込法で製造した大型鋼塊(
&)およびCC鋳片(b)の凝固過楊と発生欠陥を示す
模式的断面図、 第2図は、本発明の方法およびそれに使用しうる装置を
模式的に示した断面図(一部斜視図)、および 第8図は、本発明の方法によシ溶鋼の液滴化訃よび不完
全凝固に伴なりて生成した落下中(a)および集積後(
b)の粒滴の断面を模式的に示す図である。
Jlll1 Table # Steel composition (weight %) 1st 111 Manufacturing East case Hataori: @ shaped slit Oa C・Nislit injection hole oH gill m flow property table A simple diagram IIg#4 Figure 1 shows the ``conventional Large steel ingots manufactured using the normal casting method (
&) and CC slab (b), and Fig. 2 is a schematic cross-sectional view (partially perspective) showing the method of the present invention and an apparatus that can be used therein. Fig. 8) and Fig. 8 show the falling (a) and after accumulation (a) of molten steel generated due to dropletization and incomplete solidification by the method of the present invention.
It is a figure which shows typically the cross section of the droplet of b).

21 取@(またはタンディジ&) 22 噴射ノズル
 28 冷却槽 24 鋳蓋 出願人代珈人  弁理士 広 瀬 章 −尾2 図 手続補正書(自発) 特許庁長官 若 杉 和 夫 殿 昭和57年12月28日 1、事件の表示 昭和56年特許願第162708号 2、発明の名称  液滴鋳造法 3、補正をする者 事件との関係  特許出願人 住所 大阪市東区北浜5丁目15番地 名称 (211)住友金属工業株式会社4、代理人 住所 〒101東京都千代田区神田多町2丁目9番地 
日中ビル 電話(03) 254−7767説明の欄 6、補正の内容 (1)特許請求の範囲を次の遺り補正する。
21 Tori @ (or Tandiji&) 22 Injection nozzle 28 Cooling tank 24 Patent attorney Akira Hirose, Patent attorney Hirose Akira -O 2 Drawing procedure amendment (voluntary) Commissioner of the Japan Patent Office Kazuo Wakasugi December 1982 28th 1, Display of the case 1982 Patent Application No. 162708 2, Title of the invention Droplet casting method 3, Relationship with the person making the amendment Patent applicant address 5-15 Kitahama, Higashi-ku, Osaka Name (211) Sumitomo Metal Industries Co., Ltd. 4, Agent address: 2-9 Kanda Tamachi, Chiyoda-ku, Tokyo 101
Nichichu Building Telephone (03) 254-7767 Explanation Column 6, Contents of Amendment (1) The scope of the claims will be amended as follows.

「溶銅を取鍋またはタンディシュから鋳型内に注入する
際に、溶鋼流を液体jンにプ7L隘其、液体11の噴射
により粒径5IIIIl以下に液滴化し、生成した液滴
を、鋳型内に落下するまでに、その表面のみ凝固し、内
部は未凝固のままの不完全凝固状態に冷却し、この状態
で鋳型内に捕集することを特徴とする液滴鋳造法、j (2)明細書第3頁10−11および19行目の「液化
不活性ガス」をr液体アルゴンまたは液体窒素」と訂正
する。
``When injecting molten steel into a mold from a ladle or tundish, the molten steel flow is turned into liquid 7L, and the liquid 11 is jetted to form droplets with a particle size of 5IIIl or less, and the resulting droplets are poured into the mold. A droplet casting method characterized by cooling to an incompletely solidified state where only the surface solidifies and the inside remains unsolidified before falling into the mold, and is collected in the mold in this state. ) "Liquefied inert gas" on page 3, page 10-11 and line 19 of the specification is corrected to "liquid argon or liquid nitrogen."

(3)明細書中の次の個所における「N2」を「窒素j
と訂正する。
(3) In the following parts of the specification, "N2" is replaced with "nitrogen
I am corrected.

5頁8.9及び15行目、6頁16及び19行目、7頁
9行目8頁20行目、9頁4.5.7.12及び18行
目、11頁8及び9行目、12頁1.4.5及び17行
目、並びに13頁第2表の本発明法の欄(2個所)。
Page 5, lines 8.9 and 15, Page 6, lines 16 and 19, Page 7, line 9, Page 8, line 20, Page 9, lines 4, 5, 7, 12, and 18, Page 11, lines 8 and 9. , p. 12, lines 1.4.5 and 17, and the column of the method of the present invention (two places) in table 2, p. 13.

(4)明細書中の次の個所におけるrArJを「アルゴ
ン」と訂正する。
(4) rArJ in the following part of the specification is corrected to "argon".

5頁9、lO及び15行目、6頁16及び19行目、7
頁9行目、8頁20行目、9頁4.5.7.13及び1
9行目、並びに11頁8及び10行目。
5 page 9, lO and line 15, page 6 line 16 and 19, 7
Page line 9, page 8 line 20, page 9 4.5.7.13 and 1
Line 9, and lines 8 and 10 on page 11.

(5)明細書第4頁1−5行目の「液化不活性ガスとし
ては・・・・・・所望により使用できる。」を削除する
(5) Delete "As the liquefied inert gas...it can be used as desired" in lines 1-5 on page 4 of the specification.

(6)明細書中、次の個所を以下の通り訂正する。(6) The following parts in the description are corrected as follows.

且  丘 −訂正1−  −紅正後一一4 12 逆偏
析      逆V偏析9 15−16一般に    
   (削除)9 16 以上の自然      の 1113  実施例      実施例113  15
 0.27rrr/T     O,27nr/5te
el Ton14 5 偏析率      最大偏析率
(7)明細書箱5頁18行目と19行目の間に下記を挿
入する。
And Hill - Correction 1 - - Koshogo 11 4 12 Reverse segregation Reverse V segregation 9 15-16 In general
(Deleted) 9 16 More than 1113 Examples of Nature Example 113 15
0.27rrr/TO, 27nr/5te
el Ton14 5 Segregation rate Maximum segregation rate (7) Insert the following between lines 18 and 19 on page 5 of the statement box.

「一般にガス(気体)噴射によってでも溶鋼流の液滴化
は可能であるが、生成した液滴を冷却する能力は、気化
熱が利用できる液体窒素や液体アルゴンに比べて著しく
劣るため、液滴が鋳型内に捕集されるまでにその表面を
凝固させるためには、液体窒素や液体アルゴンに比べて
極めて多量のガスが必要となり、コスト的に極めて高価
となることは無給のこと、ガス噴射設備や液滴捕集設備
等について実用的なものを作ることも極めて困難である
。」 (8)明細書箱6頁3行目の「きる。」の次に下記を挿
入する。
``In general, it is possible to turn a molten steel stream into droplets by gas injection, but the ability to cool the generated droplets is significantly inferior to that of liquid nitrogen or liquid argon, which can utilize the heat of vaporization. In order to solidify the surface before it is collected in the mold, an extremely large amount of gas is required compared to liquid nitrogen or liquid argon, and the cost is extremely high. It is extremely difficult to create practical equipment, droplet collection equipment, etc.” (8) Insert the following after “Kiru.” in the third line of page 6 of the specification box.

r例えば液体窒素を噴射する場合、液体窒素の噴射量は
、注入スル溶111kg当りl) 100gナイL80
0g、噴射ノズル直前での液体窒素圧力は5kg/cd
ないし60kg/aJ、ノズルからの液体窒素の噴出速
度はI N/seeないし20 m/secが望ましい
。j(9)明細書箱1,4頁の第3表の次に下記を挿入
する。
For example, when injecting liquid nitrogen, the amount of liquid nitrogen to be injected is 100 g per 111 kg of melt injected.
0g, liquid nitrogen pressure just before the injection nozzle is 5kg/cd
It is desirable that the liquid nitrogen be ejected from the nozzle at a speed of I N/see to 20 m/sec. j(9) Insert the following next to Table 3 on pages 1 and 4 of the specification box.

を実施例2 実施例1と同様の方法により2トン鋼塊を製造した。た
だし製造条件は下記の第4表に示す通りであった。比較
のために従来法による製造も行った。なお本発明法では
CC鋳型に凝固金属を注入するために捕集板を使用した
。これらの鋳造の結果、本発明法よって製造した鋳塊に
は中心偏析が皆無であった。
Example 2 A 2-ton steel ingot was manufactured in the same manner as in Example 1. However, the manufacturing conditions were as shown in Table 4 below. For comparison, a conventional method was also used. Note that in the method of the present invention, a collection plate was used to inject solidified metal into the CC mold. As a result of these castings, the ingots produced by the method of the present invention had no center segregation.

一方、従来法により製造した鋳塊には明瞭な中心偏析が
みられた。
On the other hand, clear center segregation was observed in the ingots produced by the conventional method.

Claims (1)

【特許請求の範囲】[Claims] (1)  溶鋼を取鍋またはタンディシェから鋳型内に
注入する際に、溶鋼流を液化不活性ガスの噴射によυ粒
径6−以下に液滴化し、生成した液滴を、!#截内に落
下するまでに、その表面のみ凝固し、内部は未凝固のま
まの不完全凝固状態に冷却し、この状態で鋳型内に捕集
することを特徴とする液滴鋳造法。
(1) When pouring molten steel into a mold from a ladle or tundish, the molten steel stream is turned into droplets with a particle size of υ6- or less by injection of liquefied inert gas, and the resulting droplets are... # A droplet casting method characterized by cooling to an incompletely solidified state where only the surface solidifies and the inside remains unsolidified before falling into the cutout, and is collected in the mold in this state.
JP16270881A 1981-10-14 1981-10-14 Liquid drop casting method Pending JPS5886969A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16270881A JPS5886969A (en) 1981-10-14 1981-10-14 Liquid drop casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16270881A JPS5886969A (en) 1981-10-14 1981-10-14 Liquid drop casting method

Publications (1)

Publication Number Publication Date
JPS5886969A true JPS5886969A (en) 1983-05-24

Family

ID=15759779

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16270881A Pending JPS5886969A (en) 1981-10-14 1981-10-14 Liquid drop casting method

Country Status (1)

Country Link
JP (1) JPS5886969A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933057A (en) * 1982-08-18 1984-02-22 Sumitomo Metal Ind Ltd Production of clean steel ingot
JPS62142065A (en) * 1985-04-19 1987-06-25 ナシヨナル リサ−チ デベロツプメント コ−ポレ−シヨン Method and device for manufacturing metal
US4690875A (en) * 1984-01-12 1987-09-01 Degussa Electronics Inc., Materials Division High vacuum cast ingots
JPS62282765A (en) * 1985-03-25 1987-12-08 オスピリ−.メタルス.リミテツド Casting method
US4804034A (en) * 1985-03-25 1989-02-14 Osprey Metals Limited Method of manufacture of a thixotropic deposit
US4926924A (en) * 1985-03-25 1990-05-22 Osprey Metals Ltd. Deposition method including recycled solid particles
CN103706778A (en) * 2013-12-31 2014-04-09 大连福岛精密零部件有限公司 Method for utilizing non-vacuum furnace to produce high temperature alloy parts of Stirling engine

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146554A (en) * 1974-08-21 1976-04-21 Osprey Metals Ltd
JPS52151626A (en) * 1976-06-14 1977-12-16 Nippon Steel Corp Method of forcedly cooling molten metal
JPS5433829A (en) * 1977-06-08 1979-03-12 Eketorp Sven Method and apparatus for casting molten metal

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5146554A (en) * 1974-08-21 1976-04-21 Osprey Metals Ltd
JPS52151626A (en) * 1976-06-14 1977-12-16 Nippon Steel Corp Method of forcedly cooling molten metal
JPS5433829A (en) * 1977-06-08 1979-03-12 Eketorp Sven Method and apparatus for casting molten metal

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5933057A (en) * 1982-08-18 1984-02-22 Sumitomo Metal Ind Ltd Production of clean steel ingot
JPH0472629B2 (en) * 1982-08-18 1992-11-18 Sumitomo Metal Ind
US4690875A (en) * 1984-01-12 1987-09-01 Degussa Electronics Inc., Materials Division High vacuum cast ingots
JPS62282765A (en) * 1985-03-25 1987-12-08 オスピリ−.メタルス.リミテツド Casting method
US4804034A (en) * 1985-03-25 1989-02-14 Osprey Metals Limited Method of manufacture of a thixotropic deposit
US4926924A (en) * 1985-03-25 1990-05-22 Osprey Metals Ltd. Deposition method including recycled solid particles
US4926923A (en) * 1985-03-25 1990-05-22 Osprey Metals Ltd. Deposition of metallic products using relatively cold solid particles
JPS62142065A (en) * 1985-04-19 1987-06-25 ナシヨナル リサ−チ デベロツプメント コ−ポレ−シヨン Method and device for manufacturing metal
CN103706778A (en) * 2013-12-31 2014-04-09 大连福岛精密零部件有限公司 Method for utilizing non-vacuum furnace to produce high temperature alloy parts of Stirling engine

Similar Documents

Publication Publication Date Title
CN110340315A (en) A kind of method of big cross section rectangular billet caster martensitic stain less steel
JPS5886969A (en) Liquid drop casting method
JPH0289542A (en) Method for continuously casting aluminum-lithium alloy
CN110722162A (en) Preparation method of 1420 aluminum lithium alloy hollow ingot blank by spray forming
JP2012528722A (en) Continuous casting method of impact guarantee beam blank
JP4337739B2 (en) Continuous casting method for molten steel
JP2004216411A (en) Continuous casting method for special molten steel
JPH06246425A (en) Method for casting large sealed steel ingot
JPS61123446A (en) Production of steel ingot
CN112517862B (en) Secondary hole shrinkage control method for large-size high-temperature alloy master alloy cast ingot
US2280833A (en) Treatment of cast metals
JPS61123447A (en) Production of steel ingot
JPS6036631A (en) Production of aluminum alloy casting ingot
JP7068628B2 (en) Casting method
JPH01313165A (en) Continuous casting method partially containing semi-molten metal
JP2750929B2 (en) Continuous casting method with spray deposit method
JPS60145252A (en) Direct production of steel plate
JPH01233048A (en) Production of alloy using super cooling liquid
JPH02182346A (en) Drip casting method
JPH01321049A (en) Method for casting cast slab for producing thick steel plate
JPH0472629B2 (en)
JPS6163342A (en) Method and device for producing hollow steel ingot
JP2567452B2 (en) Continuous casting method for steel
JPS5954443A (en) Spray casting method
RU2163933C1 (en) Method of steel alloying with bismuth