JPH01320320A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device

Info

Publication number
JPH01320320A
JPH01320320A JP15089288A JP15089288A JPH01320320A JP H01320320 A JPH01320320 A JP H01320320A JP 15089288 A JP15089288 A JP 15089288A JP 15089288 A JP15089288 A JP 15089288A JP H01320320 A JPH01320320 A JP H01320320A
Authority
JP
Japan
Prior art keywords
shaft
bearing
bearing device
dynamic pressure
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15089288A
Other languages
Japanese (ja)
Inventor
Masami Sekizawa
関澤 昌美
Torao Goto
後藤 寅雄
Kiyohisa Kusunoki
清尚 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP15089288A priority Critical patent/JPH01320320A/en
Publication of JPH01320320A publication Critical patent/JPH01320320A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve wear resistance and to intend to improve durability by giving nitriding to at least either one member of a rotary body or a bearing member. CONSTITUTION:A ball body 2 is press fitted to a cylindrical body 1 as a bearing member at bottom end part on inner side, and together with support on the bottom end of a shaft 3, are formed radial bearing faces 4 in upper and lower two steps on bore surface of the cylindrical body 1 and dynamic pressure generating channels 5 at the positions facing to the bearing faces 4 on outer cylindrical surface of the shaft 3. The ball body 2 is given nitriding after heat treatment. It is possible to improve wear resistance and to improve durability accordingly.

Description

【発明の詳細な説明】 (産業上の利用分野〕 この発明は、動圧軸受装置に係り、とくに、ビデオレコ
ーダー、ビデオディスク゛、磁気ディスク等の高精度な
回転部品を支持する場合に使用される動圧軸受装置に関
するものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a hydrodynamic bearing device, and is particularly used for supporting high-precision rotating parts such as video recorders, video disks, and magnetic disks. The present invention relates to a hydrodynamic bearing device.

〔従来の技術〕[Conventional technology]

一般に、高速回転される回転体とこれを支持する軸受部
材の対向面における一方にヘリングボーン溝やスパイラ
ル溝から成る動圧発生溝を形成した動圧軸受装置におい
ては、回転体の高速回転時に、動圧発生溝のポンプ作用
により回転体と軸受部材間の軸受すきまに流体が送り込
まれ、その流体によって回転体が支持されるため、回転
体の回転精度が高く、また、騒音や振動の発生もきわめ
て少ない。
In general, in a hydrodynamic bearing device in which a dynamic pressure generating groove such as a herringbone groove or a spiral groove is formed on one side of the opposing surfaces of a rotating body that rotates at high speed and a bearing member that supports this, when the rotating body rotates at high speed, Due to the pumping action of the dynamic pressure generating groove, fluid is sent into the bearing gap between the rotating body and the bearing member, and the rotating body is supported by the fluid, so the rotational accuracy of the rotating body is high and noise and vibration are not generated. Very few.

このため、上記動圧軸受装置は、OA機器(オフィスオ
ートメーション機器)やAV機器(オーディオ−ビジュ
アル機器)の回転部品の支持装置に広く用いられている
For this reason, the hydrodynamic bearing device is widely used as a support device for rotating parts of OA equipment (office automation equipment) and AV equipment (audio-visual equipment).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、上記動圧軸受装置においては、回転体の停止
時、その回転体は軸受部材の軸受面と接触する状態にあ
るため、回転体の回転初期および停止直前に、回転体は
軸受部材に対して接触回転し、接触部に摩耗が生じる。
By the way, in the above hydrodynamic bearing device, when the rotating body is stopped, the rotating body is in contact with the bearing surface of the bearing member, so at the beginning of rotation and just before stopping, the rotating body is in contact with the bearing member. The contact rotates, causing wear on the contact area.

とくに、ラジアル軸受面に動圧発生溝を形成し、スラス
ト軸受面を接触式とした動圧軸受装置においては、スラ
スト軸受部が常に接触状態であるため、スラスト軸受面
の摩耗が大きく、その摩耗によって回転体が軸方向に変
位し、耐久性に問題があった。
In particular, in hydrodynamic bearing devices in which dynamic pressure generating grooves are formed on the radial bearing surface and the thrust bearing surface is in contact, the thrust bearing is constantly in contact, so the thrust bearing surface is subject to large wear. This caused the rotating body to be displaced in the axial direction, which caused problems with durability.

そこで、この発明は−1−記の問題を解決し、軸受面の
摩耗を少なくすることを技術的課題としている。
Therefore, the technical object of the present invention is to solve the problem described in -1- and to reduce wear on the bearing surface.

(課題を解決するための手段〕 」1記のi!!!題を解決するために、この発明におい
ては、高速回転される回転体とこれを支持する軸受部材
の対向面における少なくとも一方に動圧発生溝を形成し
、その回転体と軸受部材のうち、少なくとも一方の部材
に浸窒処理を施した構成を採用したのである。
(Means for Solving the Problems) In order to solve the problem i!!! in item 1, in this invention, at least one of the opposing surfaces of a rotating body that rotates at high speed and a bearing member that supports it is moved. A configuration was adopted in which pressure generating grooves were formed and at least one of the rotating body and the bearing member was subjected to nitriding treatment.

ここで、浸窒処理とは、A+ 点(720℃)以−ヒの
焼入れ加熱時に、雰囲気のRXガス(浸炭処理で光揮焼
入れに使用する吸熱型雰囲気ガス)に10%前後のN1
(、ガスを添加し、鋼の表面にチノ素(N)を浸入させ
る処理をいう。
Here, nitriding treatment refers to approximately 10% N1 added to the RX gas (endothermic atmospheric gas used for photovolatile hardening in carburizing treatment) in the atmosphere during quenching heating above point A+ (720°C).
(This refers to a process in which chinomine (N) is infiltrated into the surface of steel by adding gas.

〔作用〕[Effect]

上記のように、回転体と軸受部材のうち、少なくとも一
方の部材に浸窒処理を施すと、オーステナイト状態で窒
素が拡散することになり、そのまま焼入れ急冷すること
によってオーステナイトからマルテンサイトの変態が生
じ、内部まで硬度を11RC60以」二とすることがで
きる。
As mentioned above, when at least one of the rotating body and the bearing member is subjected to nitriding treatment, nitrogen diffuses in the austenite state, and by quenching and rapidly cooling it, transformation from austenite to martensite occurs. The hardness can be set to 11RC60 or higher up to the inside.

浸窒処理では、炭化物を多くすることができるので、マ
ルテンサイトの高硬度と相俟って、耐摩耗性の向上を図
ることができ、回転体と軸受部材の接触部における摩耗
の抑制に効果を挙げることができる。
Since the nitriding treatment can increase the amount of carbide, combined with the high hardness of martensite, it is possible to improve wear resistance, which is effective in suppressing wear at the contact area between the rotating body and the bearing member. can be mentioned.

〔実施例〕〔Example〕

第1図は、動圧軸受装置の一例を示す。この動圧軸受装
置は、軸受部材としての筒体1の内側下端部に球体2を
圧太し、その球体2によって筒体1の内側に挿入した回
転体としてのシャフト3の下端面を支持している。
FIG. 1 shows an example of a hydrodynamic bearing device. In this hydrodynamic bearing device, a sphere 2 is compressed at the inner lower end of a cylindrical body 1 as a bearing member, and the lower end surface of a shaft 3 as a rotating body inserted inside the cylindrical body 1 is supported by the sphere 2. ing.

また、筒体1の内径面には、上下2段にラジアル軸受面
4を形成し、一方、シャフト3の外径面には、上記ラジ
アル軸受面4と対向する位置に動圧発生溝5を形成しで
ある。
Further, radial bearing surfaces 4 are formed in two stages, upper and lower, on the inner diameter surface of the cylinder 1, while dynamic pressure generating grooves 5 are formed on the outer diameter surface of the shaft 3 at positions facing the radial bearing surfaces 4. It is formed.

第2図は、動圧軸受装置の他の例を示し、第1図の球体
2の代りにスラスト板6を筒体1の内側下端部に固着し
、そのスラスト板6の上面でシャフト3の下端に形成し
た球面部7を支持している。
FIG. 2 shows another example of a hydrodynamic bearing device, in which a thrust plate 6 is fixed to the inner lower end of the cylindrical body 1 instead of the sphere 2 in FIG. It supports a spherical part 7 formed at the lower end.

第1図および第2図で示す動圧軸受装置において、シャ
フト3を高速回転させると、動圧発生溝5のポンプ作用
によって、ラジアル軸受面4とシャフト3の外径面間に
形成されたラジアル軸受すきま8に圧力流体が送り込ま
れる。このため、シャフト3は圧力流体により支持され
、ラジアル軸受面4に対して非接触の状態で回転する。
In the hydrodynamic bearing device shown in FIGS. 1 and 2, when the shaft 3 is rotated at high speed, the pumping action of the dynamic pressure generating groove 5 causes a radial radial ring formed between the radial bearing surface 4 and the outer diameter surface of the shaft 3. Pressure fluid is fed into the bearing clearance 8. Therefore, the shaft 3 is supported by the pressure fluid and rotates without contacting the radial bearing surface 4.

また、シャフト3は、球体2又はスラスト板6に接触す
る状態で回転する。
Further, the shaft 3 rotates while in contact with the sphere 2 or the thrust plate 6.

第1図および第2Mの動圧軸受装置においては、筒体1
を軸受部材とし、シャフト3を回転体としたが、上記と
逆に、筒体1を回転体とし、シャフト3を軸受部材とし
てもよい。
In the hydrodynamic bearing device shown in FIGS. 1 and 2M, the cylindrical body 1
is used as a bearing member and the shaft 3 is used as a rotating body, but contrary to the above, the cylindrical body 1 may be used as a rotating body and the shaft 3 may be used as a bearing member.

第3図は、シャフト3を軸受部材とし、筒体1を回転体
とした動圧軸受Hによって、ビデオテープレコーダのビ
デオヘッドを有する回転ドラム9を支持した例を示す。
FIG. 3 shows an example in which a rotating drum 9 having a video head of a video tape recorder is supported by a dynamic pressure bearing H in which the shaft 3 is a bearing member and the cylinder 1 is a rotating body.

すなわち、ベース10にシャフト3の下端部を固定し、
そのシャフト3の外側に嵌合した筒体1の外側に回転ド
ラム9を固定している。また、回転ドラム9の下部にモ
ータロータ11を取付け、一方ヘース10の上面側にモ
ータステータ12を取付け、そのモータステータ12に
対する通電によって回転ドラム9を間遠回転させるよう
にしている。
That is, the lower end of the shaft 3 is fixed to the base 10,
A rotating drum 9 is fixed to the outside of the cylindrical body 1 fitted to the outside of the shaft 3. Further, a motor rotor 11 is attached to the lower part of the rotating drum 9, and a motor stator 12 is attached to the upper surface side of the heath 10, so that the rotating drum 9 is rotated a long distance by energizing the motor stator 12.

ところで、回転ドラム9を支持する動圧軸受装置は、ス
ラスト軸受が接触式であるため、回転ドラム9の回転時
、シャフト3の上端と球体2の接触部で摩耗が生じ、摩
耗の進行に伴なって回転ドラム9の位置が軸方向に変位
する不都合が生じる。
By the way, since the thrust bearing of the hydrodynamic bearing device that supports the rotating drum 9 is of a contact type, when the rotating drum 9 rotates, wear occurs at the contact portion between the upper end of the shaft 3 and the sphere 2, and as the wear progresses, wear occurs. This causes a disadvantage that the position of the rotating drum 9 is displaced in the axial direction.

その不都合を解消するため、この発明においては、軸受
鋼2種C3UJ 2)から成る球体2を熱処理してH*
C60〜67の硬さに仕上げ、これを浸窒処理を施すよ
うにしている。
In order to eliminate this inconvenience, in this invention, the sphere 2 made of bearing steel type 2 C3UJ 2) is heat treated to provide H*
It is finished to a hardness of C60 to C67 and then subjected to nitriding treatment.

上記のように、軸受鋼から成る球体2に浸窒処理を施す
と、前述のように、オーステナイト状態でチノ素(N)
が拡散するため、表層のみならず内部までチッ素が侵入
し、そのまま焼入れ急冷することにより、オーステナイ
トからマルテンサイトに変態するため、内部まで硬度を
Il、C60以上とすることができる。
As mentioned above, when the sphere 2 made of bearing steel is subjected to nitriding treatment, chino(N) is formed in the austenitic state as described above.
Due to the diffusion of nitrogen, nitrogen penetrates not only into the surface layer but also into the inside, and by quenching and rapidly cooling it as it is, it transforms from austenite to martensite, so that the hardness can be increased to Il, C60 or higher even to the inside.

また、浸窒処理は、炭化物を多くすることができるため
、マルテンサイトの高硬度と相俟って球体2の耐摩耗性
の向上を図ることができ、摩耗を少なくすることができ
る。このため、回転ドラム9の軸方向の変位を少なくす
ることができる。
Further, since the nitriding treatment can increase the amount of carbide, together with the high hardness of martensite, the wear resistance of the sphere 2 can be improved and wear can be reduced. Therefore, the displacement of the rotating drum 9 in the axial direction can be reduced.

なお、球体2に代えて、シャフト3の端部を浸窒処理し
てもよく、あるいはシャフト3と球体2のそれぞれを浸
窒処理してもよい。また、第2図に示すように、スラス
ト板6によってスラスト荷重を支持する場合には、スラ
スト板6とシャフト3の少なくとも一方の部材を浸窒処
理する。
Note that instead of the sphere 2, the end of the shaft 3 may be nitrided, or the shaft 3 and the sphere 2 may each be nitrided. Further, as shown in FIG. 2, when the thrust load is supported by the thrust plate 6, at least one of the thrust plate 6 and the shaft 3 is nitrided.

ところで、チッ素の浸入によって硬度を高める方法には
、前記の浸窒処理の他に、窒化処理が存在する。
By the way, in addition to the above-mentioned nitriding treatment, there is a nitriding treatment as a method of increasing hardness by infiltrating nitrogen.

しかし、窒化処理はA1点(720℃)以下で処理する
ため、フェライト状態でチッ素が拡散し、その後、急冷
しても表層のみが硬く、内部まで高硬度とすることがで
きない、このような窒化化合物は、硬いので耐摩耗性に
優れるが、脆いので表層の窒素拡散層に小さな欠けがあ
るとかじりの原因となる。
However, since the nitriding process is performed below the A1 point (720°C), nitrogen diffuses in the ferrite state, and even after rapid cooling, only the surface layer is hard, and it is not possible to achieve high hardness inside. Nitrided compounds are hard and have excellent wear resistance, but they are brittle and can cause galling if there is a small chip in the surface nitrogen diffusion layer.

浸窒処理は、前記のように、部品の内部まで硬度を高め
ることができるため、球体2とシャフト3相互間におけ
るかじりを防止することができる。
As described above, the nitriding treatment can increase the hardness even to the inside of the component, so that galling between the sphere 2 and the shaft 3 can be prevented.

第4図は、動圧軸受装置のさらに他の例を示す。FIG. 4 shows still another example of the hydrodynamic bearing device.

この動圧軸受Hは、シャフト3の下端を支持するスラス
ト板6の上面に、第5図に示すように動圧発生溝13を
形成し、他の構成は、第2図に示す動圧軸受装置と同じ
構成としである。
This dynamic pressure bearing H has a dynamic pressure generating groove 13 formed on the upper surface of the thrust plate 6 that supports the lower end of the shaft 3, as shown in FIG. 5, and the other structure is as shown in FIG. It has the same configuration as the device.

上記のような動圧軸受においては、シャフト3の高速回
転時、スラスト板6に形成した動圧発生溝13のポンプ
作用によって、スラスト板6とシャフト3の対向面間に
圧力流体が送り込まれるため、シャフト3はスラスト板
6に対して非接触の状態で回転するが、シャフト3の回
転初期および停止直前にシャフト3はスラスト板6と接
触する状態で回転するため、シャフト3とスラスト板6
の接触部において摩耗が生じる。
In the hydrodynamic bearing described above, when the shaft 3 rotates at high speed, pressure fluid is sent between the facing surfaces of the thrust plate 6 and the shaft 3 by the pumping action of the dynamic pressure generation groove 13 formed in the thrust plate 6. , the shaft 3 rotates without contacting the thrust plate 6, but at the beginning of the rotation of the shaft 3 and immediately before stopping, the shaft 3 rotates in contact with the thrust plate 6, so that the shaft 3 and the thrust plate 6
Wear occurs at the contact area.

したがって、上記のような動圧軸受装置の場合にも、シ
ャフト3とスラスト板6の少なくとも一方の部材を浸窒
処理を施すようにする。
Therefore, also in the case of the hydrodynamic bearing device as described above, at least one of the shaft 3 and the thrust plate 6 is subjected to nitriding treatment.

なお、第1図、第2図および第4図の動圧軸受装置にお
いて、シャフト3の回転初期および停止直前にシャフト
3の外径面はラジアル軸受面4に対して接触回転し、そ
の接触による摩耗によってシャフト3の回転精度に問題
が生じる。そのため、シャフト3と筒体1の少なくとも
一方の部材に浸窒処理を施して摩耗を抑制するのがよい
In the hydrodynamic bearing devices shown in FIGS. 1, 2, and 4, the outer diameter surface of the shaft 3 rotates in contact with the radial bearing surface 4 at the beginning of the rotation of the shaft 3 and just before it stops, and due to this contact, A problem arises in the rotation accuracy of the shaft 3 due to wear. Therefore, it is preferable to perform nitriding treatment on at least one of the shaft 3 and the cylinder 1 to suppress wear.

第6図は、軸受鋼を830℃〜840℃の温度で焼入れ
した後、180℃で焼戻しした標準熱処理品と同様の材
料から成る浸窒処理品との摩耗の比較実験の結果を示す
。これは、外径30龍、内径IQms。
FIG. 6 shows the results of a wear comparison experiment between a standard heat-treated product in which bearing steel was quenched at a temperature of 830° C. to 840° C. and then tempered at 180° C., and a nitrided product made of the same material. This has an outer diameter of 30mm and an inner diameter of IQms.

厚み3龍のリング状試験片と、板厚5龍の板状試験片と
を3kgfの荷重下において、120m/l1inのす
べり速度で接触させたときの摩耗実験であり、リング状
試験片の表面粗さ、および板状試験片の表面粗さをそれ
ぞれ0.88としである。また、潤滑ン由は、60#ス
ピンドルン由を用いている。
This is a wear experiment in which a ring-shaped specimen with a thickness of 3 mm and a plate-shaped specimen with a thickness of 5 mm were brought into contact at a sliding speed of 120 m/l 1 inch under a load of 3 kgf. The roughness and the surface roughness of the plate-shaped test piece were each 0.88. Furthermore, a 60# spindle is used for the lubrication.

第6図から明らかなように、浸窒処理品は、標準処理品
と比べて約1八に摩耗が減少している。
As is clear from FIG. 6, the wear of the nitrided product is reduced by about 18 times compared to the standard treated product.

また、リング状試験品と板状試験品のうち、一方の試験
品のみ浸窒処理品とするだけでも約1八に摩耗が減少し
ている。
Moreover, even if only one of the ring-shaped test pieces and the plate-shaped test pieces was nitrided, the wear was reduced to about 18.

また、第7図には、第1図に示す動圧軸受装置を用い、
球体2およびシャフト3を標準熱処理品とした場合と、
球体2を浸窒処理品とし、シャフト3を標準熱処理品と
した場合の摩耗試験した場合の結果を示す。ここで、シ
ャフト3の外径2s■、軸受すきま12fm、球体2の
外径2fiとしである。
In addition, in FIG. 7, the hydrodynamic bearing device shown in FIG. 1 is used,
When the sphere 2 and the shaft 3 are made of standard heat-treated products,
The results of a wear test are shown in which the sphere 2 is a nitrided product and the shaft 3 is a standard heat treated product. Here, the outer diameter of the shaft 3 is 2s, the bearing clearance is 12fm, and the outer diameter of the sphere 2 is 2fi.

また、潤滑油としてフッ素系油を用い、シャフト3を2
000rp−で500時間連続回転させた場合の摩耗実
験である。
In addition, fluorine-based oil is used as a lubricating oil, and the shaft 3 is
This is an abrasion experiment when continuously rotating at 000 rpm for 500 hours.

この結果から明らかなように、浸窒処理品の摩耗に対す
る効果は明らかであり、実機でもその効果を確認するこ
とができる。
As is clear from these results, the effect of the nitrided product on wear is clear, and this effect can be confirmed in actual equipment.

第8図は、球体2を浸窒処理品とし、シャフト3を標準
熱処理品とした第1図の動圧軸受装置を用い、シリコン
油、αオレフィン油、エステル油およびフッ素油を潤滑
油として用いた場合の摩耗深さを測定した試験結果を示
す。試験条件は、第7図の場合と同しである。
Fig. 8 shows the hydrodynamic bearing device of Fig. 1 in which the sphere 2 is a nitrided product and the shaft 3 is a standard heat-treated product, and silicon oil, α-olefin oil, ester oil, and fluorine oil are used as lubricating oils. The test results are shown in which the wear depth was measured when The test conditions are the same as in FIG.

第8図から、エステル油とフッ素油の摩耗深さは同程度
であるが、エステル油よリッツ素泊の方が温度特性がよ
い点を考えると、動圧軸受にはフッ素油を用るのが好ま
しい。
From Figure 8, the wear depth of ester oil and fluorine oil is about the same, but considering that litz oil has better temperature characteristics than ester oil, it is better to use fluorine oil for hydrodynamic bearings. is preferred.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、回転体と軸受部材の
うち、少なくとも一方の部材に浸窒処理を施すようにし
たので、軸受部の耐摩耗性が著しく向上し、耐久性の向
」二を図ることができる。
As described above, according to the present invention, since at least one of the rotating body and the bearing member is subjected to nitriding treatment, the wear resistance of the bearing portion is significantly improved and the durability is improved. It is possible to achieve the second goal.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図は、この発明に係る動圧軸受装置の
各実施例を示す縦断正面図、第3図は第1図に示す動圧
軸受装置をビデオテープレコーダに用いた例を示す縦断
正面図、第4図は同上動圧軸受装置のさらに他の例を示
す縦断正面図、第5図は同上のスラスト板の平面図、第
6図乃至第8図は摩耗の試験結果を示すグラフである。 1・・・・・・筒体、     2・・・・・・球体、
3・・・・・ノヤフト、   5.13・・・・・・動
圧発生溝。 特許出願人  エヌ・チー・エヌ 東洋ヘアリング株式会社
1 and 2 are longitudinal sectional front views showing each embodiment of the hydrodynamic bearing device according to the present invention, and FIG. 3 shows an example in which the hydrodynamic bearing device shown in FIG. 1 is used in a video tape recorder. 4 is a vertical sectional front view showing still another example of the same hydrodynamic bearing device as above, FIG. 5 is a plan view of the same thrust plate as above, and FIGS. 6 to 8 show the results of wear tests. It is a graph. 1... cylinder, 2... sphere,
3...Noyaft, 5.13...Dynamic pressure generation groove. Patent applicant: NCH NTOYO HAIRING CO., LTD.

Claims (1)

【特許請求の範囲】[Claims] (1)高速回転される回転体とその回転体を回動自在に
支持する軸受部材の対向面における一方に動圧発生溝を
形成した動圧軸受装置において、上記回転体と軸受部材
のうち、少なくとも一方の部材に浸窒処理を施したこと
を特徴とする動圧軸受装置。
(1) In a hydrodynamic bearing device in which a dynamic pressure generating groove is formed on one side of the opposing surfaces of a rotating body that rotates at high speed and a bearing member that rotatably supports the rotating body, of the rotating body and the bearing member, A hydrodynamic bearing device characterized in that at least one member is subjected to nitriding treatment.
JP15089288A 1988-06-17 1988-06-17 Dynamic pressure bearing device Pending JPH01320320A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15089288A JPH01320320A (en) 1988-06-17 1988-06-17 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15089288A JPH01320320A (en) 1988-06-17 1988-06-17 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JPH01320320A true JPH01320320A (en) 1989-12-26

Family

ID=15506660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15089288A Pending JPH01320320A (en) 1988-06-17 1988-06-17 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JPH01320320A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989823A (en) * 1982-11-11 1984-05-24 Matsushita Electric Ind Co Ltd Fluid bearing device
JPS61112814A (en) * 1984-11-06 1986-05-30 Canon Inc Fluid bearing and manufacturing method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5989823A (en) * 1982-11-11 1984-05-24 Matsushita Electric Ind Co Ltd Fluid bearing device
JPS61112814A (en) * 1984-11-06 1986-05-30 Canon Inc Fluid bearing and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2003095855A1 (en) Method of producing bearing raceway member
WO1998044270A1 (en) Rolling bearing
US7284908B2 (en) Hydrodynamic bearing device and motor
JP2001193743A (en) Rolling bearing
JP3326912B2 (en) Rolling bearing
US6440233B2 (en) Rolling bearing
JP3656372B2 (en) Rolling bearing
JP3509803B2 (en) Rolling bearing
JP3321862B2 (en) Outer race for constant velocity joints
JP2004052997A (en) Rolling device and manufacturing method
JPH01320320A (en) Dynamic pressure bearing device
Trivedi et al. Effect of silicon nitride ball on adhesive wear of martensitic stainless steel pyrowear 675 and AISI M-50 races with type II ester oil
JP4186568B2 (en) Rolling bearing and method for manufacturing inner ring of rolling bearing
JP3519548B2 (en) Rolling bearing and manufacturing method thereof
JP3391345B2 (en) Rolling bearing
JP2002349581A (en) Roller
JPH04194415A (en) Rolling bearing
JP2009236145A (en) Steelmaking equipment bearing component, steelmaking rolling bearing, and steelmaking equipment
JP3036987B2 (en) Rolling bearing
JP2001295848A (en) Rolling device
JPH03277808A (en) Dynamic pressure bearing device
JP2001323932A (en) Rolling support device
JP2000199524A (en) Rolling device
Krak et al. Scuffing Resistance of Surface Treated 8625 Alloy Steels
JP2001295847A (en) Rolling device