JPH03277808A - Dynamic pressure bearing device - Google Patents

Dynamic pressure bearing device

Info

Publication number
JPH03277808A
JPH03277808A JP7835490A JP7835490A JPH03277808A JP H03277808 A JPH03277808 A JP H03277808A JP 7835490 A JP7835490 A JP 7835490A JP 7835490 A JP7835490 A JP 7835490A JP H03277808 A JPH03277808 A JP H03277808A
Authority
JP
Japan
Prior art keywords
shaft
bearing
salt bath
nitriding treatment
thrust bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7835490A
Other languages
Japanese (ja)
Inventor
Masami Sekizawa
関澤 昌美
Kiyohisa Kusunoki
清尚 楠
Torao Goto
後藤 寅雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP7835490A priority Critical patent/JPH03277808A/en
Publication of JPH03277808A publication Critical patent/JPH03277808A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To enhance abrasion resistance so as to improve durability by applying a salt bath nitriding treatment to thrust bearing surfaces of a rotor body and bearing member. CONSTITUTION:A shaft 3 is supported by a thrust bearing surface 9 at an upper face of a ball body 2 fitted under pressure into a lower end portion inside of a cylinder body 1 serving as a bearing member and a thrust bearing surface 10 at the underside of the shaft 3. The shaft 3 is made of stainless steel, and the ball body 2 is formed of bearing steel of the secondary group. A salt bath nitriding treatment is applied to the shaft 3 and the ball body 2. Therefore, abrasion resistance and durability of the bearing surfaces 9, 10 can be enhanced, and high accuracy can be maintained for a long time.

Description

【発明の詳細な説明】 〔産業上の利用分野] この発明は、ビデオレコーダー、ビデオディスク、磁気
ディスク等の高精度な回転部品を支持する場合に使用さ
れる動圧軸受装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a hydrodynamic bearing device used to support high-precision rotating parts such as video recorders, video disks, magnetic disks, and the like.

〔従来の技術〕[Conventional technology]

従来、音響機器や情報処理機器の回転部品の支持部には
、高速回転される回転体とこれを支持する軸受部材の対
向面における一方に、ヘリングボーン溝やスパイラル溝
から成る動圧発生溝を形成した動圧軸受装置が用いられ
ている。
Conventionally, in supporting parts of rotating parts of audio equipment and information processing equipment, dynamic pressure generating grooves such as herringbone grooves or spiral grooves have been installed on one side of the opposing surface of the rotating body that rotates at high speed and the bearing member that supports it. The developed hydrodynamic bearing device is used.

このような動圧軸受装置においては、回転体の高速回転
時に、動圧発生溝のポンプ作用により回転体と軸受部材
間の軸受すきまに流体が送り込まれ、その流体によって
回転体が支持されるため、回転体の回転精度が高く、騒
音や振動の発生もきわめて少ない特性が得られる。
In such hydrodynamic bearing devices, when the rotating body rotates at high speed, fluid is sent into the bearing gap between the rotating body and the bearing member by the pumping action of the dynamic pressure generation groove, and the rotating body is supported by the fluid. The rotational accuracy of the rotating body is high, and the generation of noise and vibration is extremely low.

[発明が解決しようとする課題] ところで、上記動圧軸受装置においては、回転体の停止
時、その回転体は軸受部材の軸受面と接触する状態にあ
るため、回転体の回転初期および停止直前に、回転体は
軸受部材に対して接触回転し、接触部に摩耗が生じる。
[Problems to be Solved by the Invention] In the above hydrodynamic bearing device, when the rotating body is stopped, the rotating body is in contact with the bearing surface of the bearing member. Secondly, the rotating body rotates in contact with the bearing member, causing wear on the contact portion.

とくに、ラジアル軸受面に動圧発生溝を形成し、スラス
ト軸受面を接触式とした動圧軸受装置においては、スラ
スト軸受部が常に接触状態であるため、スラスト軸受面
の摩耗が大きく、その摩耗によって回転体が軸方向に変
位し、耐久性が低下する問題がある。
In particular, in hydrodynamic bearing devices in which dynamic pressure generating grooves are formed on the radial bearing surface and the thrust bearing surface is in contact, the thrust bearing is constantly in contact, so the thrust bearing surface is subject to large wear. This causes a problem in that the rotating body is displaced in the axial direction, resulting in reduced durability.

この発明は、上記の問題を解決し、スラスト軸受面の耐
摩耗性を向上させることにより、耐久性を大きく向上さ
せた動圧軸受装置を提供するものである。
The present invention solves the above problems and provides a hydrodynamic bearing device with significantly improved durability by improving the wear resistance of the thrust bearing surface.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題を解決するため、この発明は、回転体と軸受
部材のスラスト軸受面に塩浴窒化処理を施した構成を採
用したものである。
In order to solve the above problems, the present invention employs a configuration in which the thrust bearing surfaces of the rotating body and the bearing member are subjected to salt bath nitriding treatment.

また、上記の構成において、回転体のスラスト軸受面を
軸受部材のスラスト軸受面で接触支持し、かつそのスラ
スト軸受面の少なくとも一方をステンレス鋼で形成する
ことができる。
Further, in the above configuration, the thrust bearing surface of the rotating body can be contacted and supported by the thrust bearing surface of the bearing member, and at least one of the thrust bearing surfaces can be formed of stainless steel.

なお、ここでいう塩浴窒化処理とは、520°C〜58
0℃の加熱状態で綱をシアン酸化物(KCNOlNaC
NO等)により塩浴し、その酸化物から発生する活性の
窒素(N)を鋼の表面に侵入させる処理をいう。
In addition, the salt bath nitriding treatment here refers to a temperature of 520°C to 58°C.
Cyan oxide (KCNOlNaC)
This is a treatment in which active nitrogen (N) generated from oxides of nitrogen (NO, etc.) is introduced into the surface of the steel.

〔作用] 上記のように、塩浴窒化処理を施して窒化化合物をスラ
スト軸受面の表面に形成すると、スラスト軸受面の耐摩
耗性が著しく向上し、接触による摩耗を抑制することが
できる。
[Function] As described above, when a nitride compound is formed on the surface of the thrust bearing surface by performing salt bath nitriding treatment, the wear resistance of the thrust bearing surface is significantly improved, and wear due to contact can be suppressed.

また、スラスト軸受面をステンレス鋼で形成すると、塩
浴窒化処理によって表面かたさがHv1000以上の高
硬度のものが得られ、耐摩耗性を大きく向上させること
ができる。
Further, when the thrust bearing surface is formed of stainless steel, a high hardness surface with a surface hardness of Hv1000 or more can be obtained by salt bath nitriding treatment, and wear resistance can be greatly improved.

〔実施例〕〔Example〕

以下、添付図面に基づいてこの発明の詳細な説明する。 Hereinafter, the present invention will be described in detail based on the accompanying drawings.

第1図に示す実施例の動圧軸受装置は、軸受部材として
の筒体1の内側下端部に球体2を圧入し、その球体2に
よって筒体1の内側に挿入した回転体としてのシャフト
3の下端面を接触支持している。この場合、シャフト3
の下端面と球体2の上面がスラスト軸受面9.10にな
る。
In the hydrodynamic bearing device of the embodiment shown in FIG. 1, a sphere 2 is press-fitted into the inner lower end of a cylindrical body 1 as a bearing member, and a shaft 3 as a rotating body is inserted into the inside of the cylindrical body 1 by means of the sphere 2. The lower end surface of is supported in contact with it. In this case, shaft 3
The lower end surface of the sphere 2 and the upper surface of the sphere 2 become the thrust bearing surface 9.10.

また、筒体1の内径面には、上下2段にラジアル軸受面
4を形成し、一方、シャフト3の外径面には、上記ラジ
アル軸受面4と対向する位置に動圧発生溝5を形成しで
ある。
Further, radial bearing surfaces 4 are formed in two stages, upper and lower, on the inner diameter surface of the cylinder 1, while dynamic pressure generating grooves 5 are formed on the outer diameter surface of the shaft 3 at positions facing the radial bearing surfaces 4. It is formed.

第2図は、動圧軸受装置の他の例を示し、第1図の球体
2の代りにスラスト板6を筒体1の内側下端部に固着し
、そのスラスト板6の上面でシャフト3の下端に形成し
た球面部7を接触支持している。
FIG. 2 shows another example of a hydrodynamic bearing device, in which a thrust plate 6 is fixed to the inner lower end of the cylindrical body 1 instead of the sphere 2 in FIG. It contacts and supports a spherical portion 7 formed at the lower end.

第1図および第2図で示す装置では、シャフト3を高速
回転させると、動圧発生溝5のポンプ作用によって、ラ
ジアル軸受面4とシャフト3の外径面間に形成されたラ
ジアル軸受すきま8に圧力流体が送り込まれる。このた
め、シャフト3は圧力流体により支持され、ラジアル軸
受面4に対して非接触の状態で回転すると共に、シャフ
ト3と球体2又はスラスト板6に形成したスラスト軸受
面9.10は互いに接触した状態で回転する。
In the device shown in FIGS. 1 and 2, when the shaft 3 is rotated at high speed, a radial bearing clearance 8 is formed between the radial bearing surface 4 and the outer diameter surface of the shaft 3 due to the pumping action of the dynamic pressure generating groove 5. Pressure fluid is pumped into. Therefore, the shaft 3 is supported by the pressure fluid and rotates without contacting the radial bearing surface 4, and the shaft 3 and the thrust bearing surface 9.10 formed on the sphere 2 or the thrust plate 6 are in contact with each other. Rotate in the state.

上記の動圧軸受装置においては、シャフト3をステンレ
ス鋼で形成し、球体2又はスラスト板6を軸受鋼2種(
SUJ2)で形成して、その両方に塩浴窒化処理を施し
ている。
In the above hydrodynamic bearing device, the shaft 3 is made of stainless steel, and the sphere 2 or thrust plate 6 is made of two types of bearing steel (
SUJ2) and both of them are subjected to salt bath nitriding treatment.

この塩浴窒化処理は、例えば、KCNOとKCNをほぼ
60:40の割合に混合したものに、NazCO2等の
炭酸塩を加え、それを550°C前後に加熱・熔融して
そのとき生成されるシアン酸化物(KNCO)に、処理
対象であるシャフト3及び球体2又はスラスト板6を塩
浴窒化して行なわれる。この塩浴では、シアン酸化物の
分解によって発生する活性な窒素Nが鋼の表面に侵入し
て、その表面に窒化化合物を形成する。
In this salt bath nitriding process, for example, a carbonate such as NazCO2 is added to a mixture of KCNO and KCN in a ratio of approximately 60:40, and the mixture is heated to around 550°C and melted. This is done by nitriding the shaft 3 and sphere 2 or thrust plate 6 to be treated in a salt bath using cyanide oxide (KNCO). In this salt bath, active nitrogen N generated by the decomposition of cyanide oxide penetrates the surface of the steel and forms nitride compounds on the surface.

この塩浴窒化処理により、ステンレス鋼で形成されるシ
ャフト3の表面硬度は、Hv 1(100以上にもなり
、極めて高い耐摩耗性が得られる。
By this salt bath nitriding treatment, the surface hardness of the shaft 3 made of stainless steel becomes Hv 1 (100 or more), and extremely high wear resistance is obtained.

一方、低炭素鋼の軸受鋼で形成される球体2やスラスト
板6は、表面の硬さがHv500〜600の範囲になる
が、窒化化合物の存在によりその表面の耐摩耗性は著し
く向上する。なお、上記の表面硬さは、従来のガス窒化
法に比べて比較的低いが、逆にこの硬度の低さが材料表
面の脆さを無くし、接触するスラスト軸受面の表面層の
微小欠けやかしりを抑制する効果がある。
On the other hand, the surface hardness of the sphere 2 and thrust plate 6 made of low carbon bearing steel is in the range of Hv 500 to 600, but the presence of the nitride compound significantly improves the wear resistance of the surface. The above surface hardness is relatively low compared to the conventional gas nitriding method, but conversely, this low hardness eliminates the brittleness of the material surface and prevents micro-chips in the surface layer of the thrust bearing surface that comes into contact with it. It has the effect of suppressing stiffness.

このように塩浴窒化処理を施すことにより、スラスト軸
受面9.10の耐摩耗性が大きく向上するため、相互の
接触によって生しる摩耗を少なくすることができる。こ
のため、シャフト3と軸受部材の軸方向の変位が減少し
、長時間にわたって高い支持精度を維持することができ
る。
By performing the salt bath nitriding treatment in this way, the wear resistance of the thrust bearing surfaces 9.10 is greatly improved, so that the wear caused by mutual contact can be reduced. Therefore, axial displacement between the shaft 3 and the bearing member is reduced, and high support accuracy can be maintained over a long period of time.

ところで、窒素を侵入させることにより鋼表面の硬度を
高める方法としては、前記の塩浴窒化処理の他に浸窒処
理が知られる。
By the way, in addition to the salt bath nitriding treatment described above, nitriding treatment is known as a method of increasing the hardness of a steel surface by introducing nitrogen into the steel.

この浸窒処理は、A1変態点(720℃)以上の焼入れ
加熱時において、吸熱型の雰囲気ガスにNH,ガスを添
加して、鋼の表面に窒素Nを侵入させるもので、鋼表面
の耐摩耗性を向上できる効果がある。
This nitriding treatment involves adding NH and gas to an endothermic atmospheric gas during quenching heating above the A1 transformation point (720°C) to infiltrate the steel surface with nitrogen. It has the effect of improving wear resistance.

ここで、塩浴窒化処理と浸窒処理の効果の差を見るため
、第1図に示す構造において、シャフト3と球体2に塩
浴窒化処理を施した本実施例(塩浴窒化処理品)と、同
様の材料から成るシャフトと球体に浸窒処理を施した浸
窒処理品と、軸受鋼で形成したシャフトと球体を、83
0°C〜840°C前後の温度で焼入れした後180”
Cで焼戻した標準熱処理品とをそれぞれ用意し、その3
者について連続回転試験を実施して、スラスト軸受面の
摩耗量を比較した。第3図はその結果を示している。
Here, in order to see the difference in the effects of salt bath nitriding treatment and nitriding treatment, in this example (salt bath nitriding treated product), shaft 3 and sphere 2 were subjected to salt bath nitriding treatment in the structure shown in Fig. 1. 83, a nitrided product in which a shaft and sphere made of similar materials were subjected to nitriding treatment, and a shaft and sphere made of bearing steel.
180” after quenching at a temperature of around 0°C to 840°C
A standard heat-treated product tempered with C was prepared, and part 3
A continuous rotation test was carried out on two types of bearings, and the amount of wear on the thrust bearing surface was compared. Figure 3 shows the results.

上記の比較試験においては、シャフト3と球体2間に0
.1kgfのスラスト力を付加し、すべり速度を0.1
m/sinで設定しており、スラスト軸受面の浸窒処理
粗さは0.33で形成した。
In the above comparative test, there was no difference between the shaft 3 and the sphere 2.
.. Add a thrust force of 1 kgf and reduce the sliding speed to 0.1
m/sin, and the nitriding roughness of the thrust bearing surface was 0.33.

また、第3図の各棒グラフは、それぞれ複数の試験片に
よって得られた摩耗量を示しており、その各棒グラフの
中で斜線の部分は球体の摩耗量を示している。さらに、
回申には、スラスト軸受面の摩耗量の各平均値を結ぶ線
aと、球体の摩耗量の各平均値を結ぶ線すを併記しであ
る。
Moreover, each bar graph in FIG. 3 shows the amount of wear obtained by a plurality of test pieces, and the shaded part in each bar graph shows the amount of wear of the sphere. moreover,
The report also includes a line a connecting each average value of the amount of wear on the thrust bearing surface and a line connecting each average value of the amount of wear on the sphere.

第3図の結果から、浸窒処理品は標準熱処理品と比べて
大きく摩耗量が減少するが、その浸窒処理品よりもさら
に塩浴窒化処理品の摩耗は小さ(なっており、これによ
り、塩浴窒化処理が、スラスト軸受面の摩耗を抑制する
上で極めて大きな効果があることが明らかである。
From the results shown in Figure 3, the wear amount of the nitrided product is greatly reduced compared to the standard heat treated product, but the wear of the salt bath nitrided product is even smaller than that of the nitrided product. It is clear that salt bath nitriding treatment is extremely effective in suppressing wear on the thrust bearing surface.

また、塩浴窒化処理は、他の処理法、例えば浸窒処理と
併用しても摩耗を抑制する効果があるが、他の処理法と
併用するよりも、回転体と軸受部材の両方に塩浴窒化処
理を施す方がより大きな抑制効果をあげることができる
In addition, salt bath nitriding treatment has the effect of suppressing wear when used in combination with other treatment methods, such as nitriding treatment, but salt bath nitriding treatment is more effective in suppressing wear when used in combination with other treatment methods. A greater suppressive effect can be achieved by performing bath nitriding treatment.

例えば、第1図の構造において、シャフト3に塩浴窒化
処理を施し、球体2に浸窒処理を施したものと、両者に
塩浴窒化処理を施したものについて連続回転させた場合
、前者の併用式のものは、運転時間が2000時間でス
ラスト軸受面に約6nの摩耗が生じたのに対して、後者
のものは4000時間経過した後でも摩耗量は3−以下
であった。これは、塩浴窒化処理と浸窒処理で得られる
耐摩耗性の差を示すと共に、軸受鋼等の低炭素鋼に対し
て塩浴窒化処理の方がより大きな耐摩耗性の向上効果が
あることを示すものと考えられる。
For example, in the structure shown in Fig. 1, when the shaft 3 is subjected to salt bath nitriding treatment, the sphere 2 is subjected to nitriding treatment, and the shaft 3 is subjected to salt bath nitriding treatment, and both are rotated continuously, the former In the combination type, approximately 6n of wear occurred on the thrust bearing surface after 2,000 hours of operation, whereas in the latter, the amount of wear was less than 3-n even after 4,000 hours. This shows the difference in wear resistance obtained between salt bath nitriding treatment and nitriding treatment, and salt bath nitriding treatment has a greater effect on improving wear resistance than low carbon steel such as bearing steel. This is considered to indicate that.

なお、第1図および第2図の動圧軸受装置においては、
筒体1を軸受部材とし、シャフト3を回転体としたが、
上記と逆に、筒体1を回転体とし、シャフト3を軸受部
材としてもよい。
In addition, in the hydrodynamic bearing device shown in FIGS. 1 and 2,
Although the cylinder 1 was used as a bearing member and the shaft 3 was used as a rotating body,
Contrary to the above, the cylinder 1 may be a rotating body and the shaft 3 may be a bearing member.

〔発明の効果〕〔Effect of the invention〕

以上のように、この発明によれば、回転体と軸受部材の
スラスト軸受面に塩浴窒化処理を施して軸受面の耐摩耗
性を向上させたので、耐久性の大きな向上が図られ、長
時間にわたって高精度の軸受を実現できる効果がある。
As described above, according to the present invention, the abrasion resistance of the bearing surfaces is improved by subjecting the thrust bearing surfaces of the rotating body and the bearing member to salt bath nitriding treatment, which greatly improves durability and improves long-term durability. This has the effect of realizing a bearing with high precision over time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明に係る動圧軸受装置の実施例を示す
縦断正面図、第2図は他の実施例を示す縦断正面図、第
3図は摩耗の試験結果を示すグラフである。 1・・・・・・筒体、     2・・・・・・球体、
3・・・・・・シャフト、    4・・・・・・ラジ
アル軸受面、5・・・・・・動圧発生溝、  6・・・
・・・スラスト板、7・・・・・・球面部、 第1図 第2図 第3図 標準熱処理品 f2窒処理品 塩浴窒化処理品
FIG. 1 is a longitudinal sectional front view showing an embodiment of a hydrodynamic bearing device according to the present invention, FIG. 2 is a longitudinal sectional front view showing another embodiment, and FIG. 3 is a graph showing the results of a wear test. 1... cylinder, 2... sphere,
3...Shaft, 4...Radial bearing surface, 5...Dynamic pressure generation groove, 6...
... Thrust plate, 7... Spherical part, Fig. 1 Fig. 2 Fig. 3 Standard heat treated product f2 Nitrogen treated product Salt bath nitrided product

Claims (2)

【特許請求の範囲】[Claims] (1)高速回転する回転体とその回転体を回転自在に支
持する軸受部材の対向面における一方に動圧発生溝を形
成した動圧軸受装置において、上記回転体と軸受部材の
スラスト軸受面に塩浴窒化処理を施したことを特徴とす
る動圧軸受装置。
(1) In a hydrodynamic bearing device in which a dynamic pressure generating groove is formed on one side of the opposing surfaces of a rotating body that rotates at high speed and a bearing member that rotatably supports the rotating body, the thrust bearing surface of the rotating body and the bearing member is provided with a hydrodynamic groove. A dynamic pressure bearing device characterized by being subjected to salt bath nitriding treatment.
(2)回転体のスラスト軸受面を軸受部材のスラスト軸
受面で接触支持し、かつそのスラスト軸受面の少なくと
も一方をステンレス鋼で形成したことを特徴とする請求
項(1)に記載の動圧軸受装置。
(2) The dynamic pressure according to claim (1), characterized in that the thrust bearing surface of the rotating body is contacted and supported by the thrust bearing surface of the bearing member, and at least one of the thrust bearing surfaces is formed of stainless steel. Bearing device.
JP7835490A 1990-03-26 1990-03-26 Dynamic pressure bearing device Pending JPH03277808A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7835490A JPH03277808A (en) 1990-03-26 1990-03-26 Dynamic pressure bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7835490A JPH03277808A (en) 1990-03-26 1990-03-26 Dynamic pressure bearing device

Publications (1)

Publication Number Publication Date
JPH03277808A true JPH03277808A (en) 1991-12-09

Family

ID=13659652

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7835490A Pending JPH03277808A (en) 1990-03-26 1990-03-26 Dynamic pressure bearing device

Country Status (1)

Country Link
JP (1) JPH03277808A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115280A (en) * 2007-11-09 2009-05-28 Ntn Corp Chain tensioner

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009115280A (en) * 2007-11-09 2009-05-28 Ntn Corp Chain tensioner

Similar Documents

Publication Publication Date Title
JP4423754B2 (en) Manufacturing method of rolling shaft
JP3291552B2 (en) Seal or bearing
WO1998044270A1 (en) Rolling bearing
JP2001193743A (en) Rolling bearing
JPH11344052A (en) One-way clutch
JP3326912B2 (en) Rolling bearing
JP2009204024A (en) Large rolling bearing
JP2006250206A (en) Constant velocity joint
JP2001280348A (en) Rolling bearing
JP2001208091A (en) Constant speed universal coupling
JPH03277808A (en) Dynamic pressure bearing device
JP3047088B2 (en) Machine parts having rolling elements
JP2004116569A (en) Rolling bearing
JP3548918B2 (en) Rolling bearing
JP2002155948A (en) Rolling bearing
JPH04194415A (en) Rolling bearing
JPH1180923A (en) Rolling bearing and its production
JPH116521A (en) Roller bearing and its manufacture
JP2007120712A (en) Double row automatic aligning roller bearing for aircraft
CN216554944U (en) Bearing for internal environment of compressor
JP2002349581A (en) Roller
JP3584921B2 (en) Corrosion resistant rolling bearing
JPH11344027A (en) Fluid bearing device and its machining method
JPH1151059A (en) Bearing retainer
JPH01320320A (en) Dynamic pressure bearing device