JPH01319975A - Blue light-emitting device - Google Patents

Blue light-emitting device

Info

Publication number
JPH01319975A
JPH01319975A JP63152577A JP15257788A JPH01319975A JP H01319975 A JPH01319975 A JP H01319975A JP 63152577 A JP63152577 A JP 63152577A JP 15257788 A JP15257788 A JP 15257788A JP H01319975 A JPH01319975 A JP H01319975A
Authority
JP
Japan
Prior art keywords
diamond
schottky
negative electrode
electrode
blue light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63152577A
Other languages
Japanese (ja)
Other versions
JP2716732B2 (en
Inventor
Akio Hiraki
昭夫 平木
Hiroshi Kawarada
洋 川原田
Shoji Usuda
臼田 昭司
Kazukiyo Yamamoto
一清 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idec Corp
Original Assignee
Idec Izumi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idec Izumi Corp filed Critical Idec Izumi Corp
Priority to JP15257788A priority Critical patent/JP2716732B2/en
Publication of JPH01319975A publication Critical patent/JPH01319975A/en
Application granted granted Critical
Publication of JP2716732B2 publication Critical patent/JP2716732B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/34Materials of the light emitting region containing only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0033Devices characterised by their operation having Schottky barriers

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electroluminescent Light Sources (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To improve the injection efficiency of electrons largely by the spreading of a contact area and electric-field concentration, and to obtain distinct blue emission having high brightness by forming the joint surface of a Schottky negative electrode and a diamond in an irregular shape having corner sections. CONSTITUTION:A Schottky negative electrode 2 is formed onto one side face of a diamond 1, and an ohmic positive electrode 3 is shaped onto an opposed side face. A large number of fine recessed sections 4 having a wedge-shaped sectional form are formed to the side face, on which the Schottky negative electrode 2 is shaped, in the diamond 1. The with (l) and depth (d) of the fine recessed section 4 are both approximately in several mum. An electrode material such as tungsten is attached onto one side face of the diamond 1, to which a large number of the fine recessed sections 4 are shaped, through a vacuum deposition method, etc. Accordingly, one side face of the thin-film material 1 of the diamond is coated with the electrode material such as tungsten, but the insides of the fine recessed sections 4 are also buried with the electrode at the same time.

Description

【発明の詳細な説明】 (a)産業上の利用分野 この発明は、電界の印加により青色に発光する青色発光
デバイスに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a blue light emitting device that emits blue light upon application of an electric field.

(b)従来の技術 バルク状または薄膜状に形成したダイヤモンドの対向す
る2側面のそれぞれにショットキ負電極とオーミ、り正
電極とを接触させ、これに電界を印加すると青色に発光
することが知られている。
(b) Conventional technology It is known that when an electric field is applied to a Schottky negative electrode and an ohmic or positive electrode on each of the two opposing sides of a diamond formed in the form of a bulk or thin film, it emits blue light. It is being

この青色発光は、P型結晶体であるダイヤモンドに負電
極から電子を注入することによって生じる電子−正孔結
合が原因である。負電極をショットキ電極とするのは負
電極をエミッタ電極として負電極から電子を注入し、ダ
イヤモンド内部で強制的に電子−正孔結合を行わせるた
めである。一般に負電極を構成する材料としては、ダイ
ヤモンドとショットキ接合するタングステンなどの金属
材料が用いられる。また、正電極としてはTi  (チ
タン)等、ダイヤモンドとの関係でオーミック電極を構
成する材料が選ばれる。
This blue light emission is caused by electron-hole coupling that occurs when electrons are injected from the negative electrode into diamond, which is a P-type crystal. The reason why the negative electrode is a Schottky electrode is to use the negative electrode as an emitter electrode and inject electrons from the negative electrode to force electron-hole bonding inside the diamond. Generally, a metal material such as tungsten, which forms a Schottky bond with diamond, is used as a material constituting the negative electrode. Further, as the positive electrode, a material such as Ti (titanium), which constitutes an ohmic electrode, is selected due to its relationship with diamond.

(C)発明が解決しようとする課題 しかしながら、従来のダイヤモンドを用いた青色発光デ
バイスでは、ショッI・キ負電極をダイヤモンドの一方
の側面に平面状に構成していたため、ショットキ負電極
とダイヤモンドとの接触面積が十分でなく、また接触面
が平坦であるために電界集中がなかった。このため、シ
ョットキ電極からダイヤモンドへの電子の注入効率を向
上することができず、高輝度な青色発光を得ることがで
きない欠点があった。
(C) Problems to be Solved by the Invention However, in conventional blue light-emitting devices using diamond, the Schottky negative electrode was configured in a planar manner on one side of the diamond. Since the contact area was not sufficient and the contact surface was flat, there was no electric field concentration. For this reason, the efficiency of electron injection from the Schottky electrode into the diamond cannot be improved, and there is a drawback that high-intensity blue light emission cannot be obtained.

この発明の目的は、ショットキ負電極とダイヤモンドと
の接触面の形状を工夫することにより、接触面積を広く
するとともに、十分な電界集中を得、ショットキ負電極
からダイヤモンドへの電子の注入効率を向上することに
よって電子−正孔結合の効率を向上して鮮明かつ高輝度
の青色発光を得ることができる青色発光デバイスを提供
することにある。
The purpose of this invention is to widen the contact area and obtain sufficient electric field concentration by devising the shape of the contact surface between the Schottky negative electrode and the diamond, thereby improving the efficiency of electron injection from the Schottky negative electrode to the diamond. It is an object of the present invention to provide a blue light emitting device which can improve the efficiency of electron-hole coupling and thereby obtain clear and high brightness blue light emission.

(d1課題を解決するための手段 この発明の青色発光デバイスは、バルク状または薄膜状
のダイヤモンドの対向する2側面にそれぞれショットキ
負電極とオーミック正電極とを接続したデバイスにおい
て、前記ショットキ負電極とダイヤモンドとの接合面を
角部のある凹凸形状にしたことを特徴とする。
(Means for Solving Problem d1) The blue light emitting device of the present invention is a device in which a Schottky negative electrode and an ohmic positive electrode are connected to two opposing sides of a diamond in the form of a bulk or a thin film. The joint surface with the diamond is characterized by an uneven shape with corners.

また、前記ダイヤモンドに代えてバルク状または薄膜状
の青色発光半導体を用いることもできる(e)作用 この発明においては、バルク状または薄膜状のダイヤモ
ンドの一方の側面とショットキ電極との接触面が角部の
ある凹凸状となっているために、ダイヤモンドの一方の
側面に全面に渡ってショットキ負電極が平面的に接触す
る場合に比較して接触面積は増加する。また、その接触
面の形状が角部のある凹凸状であるため、接触界面の尖
鋭部において電界集中を生じる。これらのことから、シ
ョットキ負電極とダイヤモンドの側面との接触面積の拡
大と、電子注入時における電界集中とkこより、電子の
注入効率が向上する。
In addition, a bulk or thin film blue light emitting semiconductor may be used instead of the diamond. (e) Effect In this invention, the contact surface between one side of the bulk or thin film diamond and the Schottky electrode is at an angle Since the diamond has an uneven shape, the contact area increases compared to a case where the Schottky negative electrode contacts one side surface of the diamond in a planar manner over the entire surface. Further, since the shape of the contact surface is uneven with corners, electric field concentration occurs at the sharp portion of the contact interface. For these reasons, the electron injection efficiency is improved by expanding the contact area between the Schottky negative electrode and the side surface of the diamond and by concentrating the electric field during electron injection.

if)実施例 第1図は、この発明の実施例である青色発光デバイスの
概略の構成を示す図である。
if) Example FIG. 1 is a diagram showing a schematic configuration of a blue light emitting device which is an example of the present invention.

青色発光デバイス11を構成する薄膜状ダイヤモンド1
は、厚さtを数100μm程度にして形成されている。
Thin film diamond 1 constituting blue light emitting device 11
is formed with a thickness t of approximately several 100 μm.

このダイヤモンド1の一方の側面にショットキ負電極2
が形成され、対向する側面にはオーミック正電極3が形
成されている。各電極は蒸着等によりダイヤモンド表面
につけられる。ショットキ負電極2にはダイヤモンドと
ショットキ接合するタングステンなどの電極材料を用い
、オーミック電極3にはチタンなどの電極材料を用いる
ことができる。
Schottky negative electrode 2 on one side of this diamond 1
are formed, and an ohmic positive electrode 3 is formed on the opposing side surface. Each electrode is applied to the diamond surface by vapor deposition or the like. The Schottky negative electrode 2 can be made of an electrode material such as tungsten that forms a Schottky junction with diamond, and the ohmic electrode 3 can be made of an electrode material such as titanium.

第2図は、上記ダイヤモンドの一方の側面を示す要部の
拡大斜視図である。
FIG. 2 is an enlarged perspective view of essential parts showing one side of the diamond.

ダイヤモンド1においてショットキ負電極2が形成され
る側面には、模型断面形状の微小凹部4が多数形成され
ている。微小凹部4の幅℃および深さdはともに数μm
程度である。ダイヤモンド1の側面に微小凹部4を形成
する方法としては公知のRIE法(リアクティブ・イオ
ン・エツチング法)などのイオンビームエツチング法(
例えばN+N、Efren+ow他” Ion bea
m assisted etching ofdiam
ond″: J、 Vac、 Sci 、 Techn
ol 、 [13(1) + Jan/Feb1985
に示されている)を用いることができる。
On the side surface of the diamond 1 where the Schottky negative electrode 2 is formed, a large number of minute recesses 4 having a model cross-sectional shape are formed. The width °C and depth d of the minute recess 4 are both several μm.
That's about it. As a method for forming the minute recesses 4 on the side surface of the diamond 1, an ion beam etching method such as the well-known RIE method (reactive ion etching method) is used.
For example, N+N, Efren+ow, etc.” Ion bea
m assisted etching ofdiam
ond″: J, Vac, Sci, Techn
ol, [13(1) + Jan/Feb1985
) can be used.

このようにして多数の微小凹部4が形成されたダイヤモ
ンド1の一方の側面に対して真空蒸着法などによりタン
グステンなどの電極材料をつける、これによってダイヤ
モンドの薄膜材1の一方の側面はタングステンなどの電
極材料により被覆されるが同時に、微小凹部4内もその
電極で埋まる。なお、ダイヤモンド1の他方の側面には
真空蒸着等によりチタンなどの電極材料を用いてオーミ
ック正電極3が形成される。
An electrode material such as tungsten is applied by vacuum evaporation to one side of the diamond 1 in which a large number of minute recesses 4 are formed in this way. It is covered with the electrode material, but at the same time, the inside of the minute recess 4 is also filled with the electrode. Incidentally, an ohmic positive electrode 3 is formed on the other side of the diamond 1 using an electrode material such as titanium by vacuum evaporation or the like.

以上のようにして構成された青色発光デバイス11に対
して電圧を印加すると、ショットキ負電極2からダイヤ
モンド1の内部に電子が注入され電子−正孔結合が行わ
れる。この電子−正孔結合の結果、ダイヤモンドのバン
ドギャップに基づく青色が発光する。このとき、ショッ
トキ負電極2とダイヤモンドとの接触面は凹凸状でiる
ために、接触面が平坦である場合に比べて接触面積が大
きくなる。まな、第3図は、微小凹部4を埋めて。
When a voltage is applied to the blue light emitting device 11 configured as described above, electrons are injected from the Schottky negative electrode 2 into the diamond 1 and electron-hole coupling occurs. As a result of this electron-hole coupling, blue light is emitted based on the band gap of diamond. At this time, since the contact surface between the Schottky negative electrode 2 and the diamond is uneven, the contact area becomes larger than when the contact surface is flat. In Figure 3, the minute recess 4 is filled.

いるショットキ負電極2の微小凹部である。この微小凸
部5は模型形状を呈することから、青色発光デバイス1
1に電圧が印加された際、微小凸部の先端部分において
電界集中を生じる。このようにショットキ負電極2とダ
イヤモンド1との接触面積が広いこと、およびショット
キ負電極2の微小凸部5の先端部分において電界集中を
生じることによりショットキ負電極2からダイヤモンド
1への電子の注入効率が向上し、高輝度の青色発光を得
ることができる。
This is a minute recess in the Schottky negative electrode 2. Since this minute convex portion 5 has a model shape, the blue light emitting device 1
When a voltage is applied to 1, an electric field is concentrated at the tip of the minute convex portion. In this way, electrons are injected from the Schottky negative electrode 2 into the diamond 1 due to the wide contact area between the Schottky negative electrode 2 and the diamond 1 and the concentration of electric field at the tip of the minute convex portion 5 of the Schottky negative electrode 2. Efficiency is improved and high-intensity blue light emission can be obtained.

なお、ダイヤモンド1はバルク状であってもよく、また
ダイヤモンドに代えてZn5e、ZnSおよびSiCな
どの青色発光半導体を用いても良い。2また、本実施例
では微小凸部を模型形状に形成したが、これらを第4図
(A)または(B)に示すように角錐形または円錐形に
しても良く、また同図(C)に示すような立方体や直方
体形状にすることも可能である。
Note that the diamond 1 may be in a bulk form, and a blue light-emitting semiconductor such as Zn5e, ZnS, and SiC may be used instead of diamond. 2 In addition, in this example, the minute convex portions were formed in a model shape, but they may be shaped into a pyramidal or conical shape as shown in FIG. 4(A) or (B). It is also possible to make it into a cube or rectangular parallelepiped shape as shown in the figure.

(a発明の効果 この発明によれば、ショットキ負電極とダイヤモンドと
の接触面積が大きくなり、またショットキ負電極の微小
凸部は尖鋭形状のような角部のある凹凸状に形成されて
いるため電圧印加時にはその角部において電界集中を生
じる。これら接触面積の拡大および電界集中によりショ
ットキ負電極からダイヤモンドへの電子の注入効率が大
きく向上し、高輝度かつ鮮明な青色発光を得ることがで
きる。
(a) Effects of the invention According to this invention, the contact area between the Schottky negative electrode and the diamond is increased, and the minute convex portions of the Schottky negative electrode are formed in an uneven shape with sharp corners. When a voltage is applied, an electric field is concentrated at the corners.By expanding the contact area and concentrating the electric field, the injection efficiency of electrons from the Schottky negative electrode into the diamond is greatly improved, and high brightness and clear blue light emission can be obtained.

また、Zn5e、ZnSおよびSiC等の青色発光半導
体を用いた場合にも、接触面積の拡大および電界集中に
よりショットキ負電極からダイヤモン・ドへの電子の注
入効率が大きく向上し、高輝度かつ鮮明な青色発光を得
ることができる。
Furthermore, when blue-emitting semiconductors such as Zn5e, ZnS, and SiC are used, the efficiency of electron injection from the Schottky negative electrode to the diamond is greatly improved by expanding the contact area and concentrating the electric field, resulting in high brightness and clear brightness. Blue light emission can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例である青色発光デバイスの構
成を示す図、第2図は同青色発光デバイスの一部を構成
するダイヤモンドの要部を示す拡大斜視図、第3図は同
青色発光デバイスのショットキ負電極の微小凸部を示す
図である。また第4図(A)〜(C)は何れもこの発明
の他の実施例における微小凸部の形状を示す図である。 1−ダイヤモンド、 2−ショットキ負電極、 3−オーミック正電極、 4−微小凹部、 5−微小凸部、 11−青色発光デバイス。 出願人 平木 昭夫 (外2名)
Fig. 1 is a diagram showing the configuration of a blue light emitting device that is an embodiment of the present invention, Fig. 2 is an enlarged perspective view showing the main part of a diamond that constitutes a part of the blue light emitting device, and Fig. 3 is a diagram showing the same blue light emitting device. FIG. 3 is a diagram showing minute convex portions of a Schottky negative electrode of a light emitting device. Moreover, FIGS. 4(A) to 4(C) are all diagrams showing the shapes of minute convex portions in other embodiments of the present invention. 1-Diamond, 2-Schottky negative electrode, 3-Ohmic positive electrode, 4-Micro recess, 5-Micro protrusion, 11-Blue light emitting device. Applicant Akio Hiraki (2 others)

Claims (2)

【特許請求の範囲】[Claims] (1)バルク状または薄膜状のダイヤモンドの対向する
2側面にそれぞれショットキ負電極とオーミック正電極
とを接続したデバイスにおいて、前記ショットキ負電極
とダイヤモンドとの接合面を角部のある凹凸形状にした
ことを特徴とする青色発光デバイス。
(1) In a device in which a Schottky negative electrode and an ohmic positive electrode are connected to two opposing sides of a bulk or thin film diamond, the bonding surface between the Schottky negative electrode and the diamond has an uneven shape with corners. A blue light emitting device characterized by:
(2)前記ダイヤモンドに変えてバルク状または薄膜状
の青色発光半導体を用いた請求項1記載の青色発光デバ
イス。
(2) The blue light emitting device according to claim 1, wherein a bulk or thin film blue light emitting semiconductor is used in place of the diamond.
JP15257788A 1988-06-21 1988-06-21 Blue light emitting device Expired - Lifetime JP2716732B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15257788A JP2716732B2 (en) 1988-06-21 1988-06-21 Blue light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15257788A JP2716732B2 (en) 1988-06-21 1988-06-21 Blue light emitting device

Publications (2)

Publication Number Publication Date
JPH01319975A true JPH01319975A (en) 1989-12-26
JP2716732B2 JP2716732B2 (en) 1998-02-18

Family

ID=15543513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15257788A Expired - Lifetime JP2716732B2 (en) 1988-06-21 1988-06-21 Blue light emitting device

Country Status (1)

Country Link
JP (1) JP2716732B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144474A (en) * 1996-11-15 1998-05-29 Kobe Steel Ltd Light emitting element having diamond film and plane panel display
KR100480745B1 (en) * 1998-03-10 2005-05-16 삼성전자주식회사 Method of manufacturing of diamond field emitter

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144474A (en) * 1996-11-15 1998-05-29 Kobe Steel Ltd Light emitting element having diamond film and plane panel display
KR100480745B1 (en) * 1998-03-10 2005-05-16 삼성전자주식회사 Method of manufacturing of diamond field emitter

Also Published As

Publication number Publication date
JP2716732B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
US5138237A (en) Field emission electron device employing a modulatable diamond semiconductor emitter
US4683399A (en) Silicon vacuum electron devices
CA1194082A (en) Cathode ray tube with semiconductor cathode having deflection electrodes
ATE35480T1 (en) SEMICONDUCTOR DEVICE FOR GENERATION OF AN ELECTRON BEAM.
JPH0461729A (en) Micro-size vacuum tube
JPH01319975A (en) Blue light-emitting device
KR920015621A (en) Vacuum microelectronic ballistic transistor and method of manufacturing the same
JPS63257158A (en) Electron emitting element
US3916227A (en) Piezoelectric igniter with a magnetic striking mechanism
JPH05145118A (en) Light emitting device
JPS63119131A (en) Electron emitting element
JP3005023B2 (en) Semiconductor electron-emitting device and driving method thereof
GB1303659A (en)
GB1303660A (en)
JPH03266333A (en) Solid-state electron emitting device
JPS61194887A (en) Semiconductor laser
JPH07263746A (en) Light emitting diode and manufacture of it
JPS5847714Y2 (en) Schottky barrier field effect transistor
JP2000243217A (en) Semiconductor diamond electron emitting element
JPH04245135A (en) Vacuum tube with optically excited electric field emission cathode
JPS611069A (en) Light emitting diode
RU2089004C1 (en) Vacuum transistor
JPS62137886A (en) Optical fiber structure
JP3003214B2 (en) Semiconductor device
JPS58132981A (en) Zener diode