JPH01319668A - Method for coating nitride ceramics with metal - Google Patents
Method for coating nitride ceramics with metalInfo
- Publication number
- JPH01319668A JPH01319668A JP15297888A JP15297888A JPH01319668A JP H01319668 A JPH01319668 A JP H01319668A JP 15297888 A JP15297888 A JP 15297888A JP 15297888 A JP15297888 A JP 15297888A JP H01319668 A JPH01319668 A JP H01319668A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- target
- negative
- nitride ceramics
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 43
- 239000002184 metal Substances 0.000 title claims abstract description 43
- 239000000919 ceramic Substances 0.000 title claims abstract description 25
- 150000004767 nitrides Chemical class 0.000 title claims abstract description 25
- 238000000034 method Methods 0.000 title claims description 21
- 238000000576 coating method Methods 0.000 title claims description 19
- 239000011248 coating agent Substances 0.000 title claims description 14
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 21
- 238000004544 sputter deposition Methods 0.000 claims abstract description 5
- 229910052792 caesium Inorganic materials 0.000 claims description 9
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 9
- 229910021645 metal ion Inorganic materials 0.000 abstract description 10
- 150000002500 ions Chemical class 0.000 abstract description 9
- 239000002245 particle Substances 0.000 abstract description 6
- 230000001678 irradiating effect Effects 0.000 abstract description 3
- 239000002923 metal particle Substances 0.000 abstract 1
- 239000000758 substrate Substances 0.000 description 15
- 239000011247 coating layer Substances 0.000 description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 11
- 229910052737 gold Inorganic materials 0.000 description 11
- 239000010931 gold Substances 0.000 description 11
- 239000010410 layer Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 5
- 229910052582 BN Inorganic materials 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 4
- 230000001070 adhesive effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 238000001704 evaporation Methods 0.000 description 3
- 238000000605 extraction Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000017525 heat dissipation Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- 229910052724 xenon Inorganic materials 0.000 description 2
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000005468 ion implantation Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical group N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野〕
本発明は、窒化物セラミックスを金属で被覆する方法に
関する。金属で被覆した窒化物セラミックスは半導体レ
ーザー、マイクロ波素子等の放熱に用いられるヒートシ
ンク及びハイブリッドICに用いる高熱伝導性基板とし
て用いられる。Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method of coating nitride ceramics with metal.Nitride ceramics coated with metal are used as heat sinks used for heat dissipation in semiconductor lasers, microwave devices, etc. It is also used as a highly thermally conductive substrate for hybrid ICs.
〔従来の技術]
電子回路の集積化や半導体レーザ、マイクロ波素子の高
性能化にともない、構成部品から発生する熱を効率よく
放熱させることが重要となってきた。A I N、、3
13N4 、B N等の窒化物セラミックスは、熱伝導
率が高(、電気絶縁性が良好であり、ずくれた放熱材料
として期待されている。とりわけ、AβNは、ハイブリ
ット川Cの高熱伝導性基板として、また立方晶窒化ボウ
素(C−BN)ば、半導体レーザやマイクロ波素子のヒ
ートシンク材料として注目されている。ハイプリンI”
I Cの高熱伝導性基板は、電気回路を形成するため
に、基板表面への金属被覆がおごなわれ、ヒートシンク
材料についても素子とヒートシンクとを接着したり、あ
るいはヒートシンクを電極として使用するために、ヒー
トシンクの表面を金属被覆する必要がある。[Prior Art] As electronic circuits become more integrated and semiconductor lasers and microwave elements become more sophisticated, it has become important to efficiently radiate heat generated from component parts. A I N,,3
Nitride ceramics such as 13N4 and BN have high thermal conductivity (and good electrical insulation) and are expected to be excellent heat dissipation materials. In particular, AβN is a highly thermally conductive substrate for hybrid river C. In addition, cubic boron nitride (C-BN) is attracting attention as a heat sink material for semiconductor lasers and microwave devices.
In order to form an electric circuit, the high thermal conductive substrate of IC is coated with metal on the surface of the substrate, and the heat sink material is also used to bond the element and the heat sink, or to use the heat sink as an electrode. For this reason, it is necessary to coat the surface of the heat sink with metal.
一般に、A Q N、 SI3N4 、B N等の窒化
物セラミックスは金属被覆をすることが容易ではなく、
これに対して例えば(、−BNの金属被覆法とじて■ス
パックリング法によりNi膜を形成する方法〔ジャーナ
ル・オブ・フィジクス・ティ:アプライド・フィジクス
(J、 Phys、 D :八pp1.Phys、)、
第9巻(1976年)、225頁−以下文献■という]
および■周期律表第4a、5a、Ga族の遷移金属膜を
形成し、かつ(、−BNとの界面でこれらのホウ化物、
窒化物、ホウ窒化物を形成させる方法(特開昭61−1
17856号公報)がある。また、■窒化アルミニウム
の金属被覆法としてモリブデン及び/又はタングステン
粉末、ニオブ粉末、そしてニッケル及び/又はコバルト
粉末を配合したペースト組成物を用い、基板上にスクリ
ーン印刷技術によって厚膜回路を形成する方法が知られ
ている(特開昭63−79778号公報)。Generally, nitride ceramics such as AQN, SI3N4, and BN are not easy to coat with metal.
On the other hand, for example, (-BN metal coating method, ■Method of forming Ni film by spackling method [Journal of Physics T: Applied Physics (J, Phys, D: 8pp1.Phys, ),
Volume 9 (1976), page 225 - hereinafter referred to as Reference ■]
and ■ forming a transition metal film of Groups 4a and 5a of the periodic table and Ga, and (, at the interface with -BN, these borides,
Method for forming nitrides and boron nitrides (JP-A-61-1)
17856). Also, as a metal coating method for aluminum nitride, a method of forming a thick film circuit on a substrate by screen printing technology using a paste composition containing molybdenum and/or tungsten powder, niobium powder, and nickel and/or cobalt powder. is known (Japanese Unexamined Patent Publication No. 63-79778).
しかしながら、■の方法では、スパッタリングで形成さ
れる膜の(、−BNへの付着力は充分でなく剥れやすい
欠点を有し、■の方法では、周期律表第4a族の遷移金
属は熱伝導性が悪く、ヒートシンクとメタライズ層間の
熱抵抗を増加させ、また周期律表第5a族及び第6a族
の遷移金属は、C−BNとの界面に形成される化合物が
いずれも空気中で不安定で酸化されやすいため長期の安
定性やはんだイ」の際の信頼性に問題がある。また、■
の方法ではパターン精度が悪いという欠点かある。However, in the method (2), the adhesion of the film formed by sputtering to (-BN) is insufficient and it easily peels off. The transition metals in Groups 5a and 6a of the periodic table have poor conductivity and increase the thermal resistance between the heat sink and the metallized layer, and the compounds formed at the interface with C-BN are all inert in the air. Because it is stable and easily oxidized, there are problems with long-term stability and reliability during soldering.
The disadvantage of this method is that the pattern accuracy is poor.
本発明ば、AffN、Si、N4、BN等の窒化物セラ
ミックスの表面に充分な接着力を有し、かつ化学的に安
定な金属被覆を高精度で形成する方法を提供することを
目的とする。An object of the present invention is to provide a method for forming a chemically stable metal coating with sufficient adhesive strength on the surface of nitride ceramics such as AffN, Si, N4, BN, etc. with high precision. .
[課題を解決するだめの手段]
本発明者らは半導体製造プロセスで用いられるイオン源
を用いて窒化物セラミックスを金属で被覆する着想を得
て種々の検討を行なった。その結果、処理時間を実際に
利用できる程度に短縮し、かつ接着強度の高い金属被覆
を得ることに成功した。[Means for Solving the Problems] The present inventors conducted various studies based on the idea of coating nitride ceramics with metal using an ion source used in semiconductor manufacturing processes. As a result, we were able to shorten the processing time to a practically usable level and succeeded in obtaining a metal coating with high adhesive strength.
すなわち、この発明は窒化物セラミックスを金属で被覆
する方法において、前記金属の表面にセシウム蒸気を吸
着させた金属をターゲラ1−とし、該ターゲットをプラ
スに帯電した希ガスによるプラズマ内にさらし、前記タ
ーゲットに負電位を印加してスパッタすることによって
、前記金属の負イオンビームを発生させ、該負イオンビ
ームを前記窒化物セラミックスに照射することを特徴と
する窒化物セラミックスの金属被覆方法である。That is, the present invention provides a method for coating nitride ceramics with a metal, in which a metal whose surface has adsorbed cesium vapor is used as a target laser 1-, the target is exposed to a plasma of a positively charged rare gas, and the A method for coating nitride ceramics with metal, characterized in that a negative ion beam of the metal is generated by applying a negative potential to a target and sputtering, and the nitride ceramic is irradiated with the negative ion beam.
以下、この発明を第1図および第2図により詳しく説明
する。この発明で用いるターゲラI−1は被覆する金属
と同じ金属の表面にセシウム蒸気を吸着させたものであ
る。ターゲラ1−はプラスに帯電した希ガスによるプラ
ズマ内にさらし、プラズマに対して負電位を印加する。This invention will be explained in detail below with reference to FIGS. 1 and 2. The Targera I-1 used in this invention has cesium vapor adsorbed on the surface of the same metal as the metal to be coated. The target laser 1- is exposed to a positively charged rare gas plasma, and a negative potential is applied to the plasma.
プラズマはアーク放電により形成することができる。希
ガスとはアルゴン、ネオンまたはキセノンである。プラ
ズマを効果的に閉じ込めるために外容器8(ターゲット
、希ガス等を納めた容器)の外側に磁石7を取り付ける
ことが好ましい。Plasma can be formed by arc discharge. The noble gas is argon, neon or xenon. In order to effectively confine the plasma, it is preferable to attach the magnet 7 to the outside of the outer container 8 (the container containing the target, rare gas, etc.).
ターゲットに吸着したセシウムは仕事関数が低いのでス
パッタリングされた粒子に電子を与え、粒子ば負イオン
に変換される。外容器8と引き出し電極20の間に電位
差を与えることにより負金属イオンビームを引き出すこ
とができるが、同時に引き出される電子をI・ランプす
るために途中に磁石9を取り付けることが好ましい。ま
た、ターゲ71・表面にて生成した負金属イオンを効果
的に外容器の開口部5から引き出すためにターゲット1
の表面は凹面形状に加工することが好ましい。Since the cesium adsorbed on the target has a low work function, it gives electrons to the sputtered particles, and the particles are converted into negative ions. A negative metal ion beam can be extracted by applying a potential difference between the outer container 8 and the extraction electrode 20, but it is preferable to attach a magnet 9 in the middle in order to simultaneously perform an I-ramp on the extracted electrons. In addition, in order to effectively pull out negative metal ions generated on the surface of the target 71 from the opening 5 of the outer container, the target 1
It is preferable that the surface is processed into a concave shape.
負金属イオンビームば5KV〜50KVに加速され、A
IN、、Si3N4、BN等の窒化物セラミックスに照
射され、金属被覆を形成する。負金属イオン源からは、
真空雰囲気中の残留02に帰因するO−イオンビームや
その他、不純物のイオンビームが含まれるので、これが
金属被覆層に混入し問題が生ずるときには、外容器8と
負イオンビームを照射する窒化物セラミックスの間に質
量分析計を取り付は必要な負金属イオンビームのみ取り
出すようにしてもよい。The negative metal ion beam is accelerated to 5KV to 50KV and
Nitride ceramics such as IN, Si3N4, BN are irradiated to form a metallization. From a negative metal ion source,
Since O- ion beams resulting from residual 02 in the vacuum atmosphere and other impurity ion beams are included, if this contaminates the metal coating layer and causes a problem, the outer container 8 and the nitride irradiated with the negative ion beam may A mass spectrometer may be installed between the ceramics to extract only the necessary negative metal ion beam.
このようにすることにより、通常のイオン源に比較して
イオンビーム強度が2桁以上大きい数mAから数10m
Aの負金属イオンビームを引き出ずことができるため、
充分実用化レベルで材料の表面改質をおこなうことがで
きる。By doing this, the ion beam intensity can be increased by more than two orders of magnitude compared to a normal ion source, from several mA to several tens of mA.
Because it is possible to extract the negative metal ion beam of A,
Surface modification of materials can be carried out at a sufficient level for practical use.
金属被覆処理は負金属イオンビームのみを照射して行な
ってもよいが、イオン注入と同時あるいは交互に同種ま
たは異種の金属の蒸着を行なってもよい。本発明方法に
よって形成された金属被覆層は窒化物セラミックスとの
界面に金属原子と窒化物セラミックスを構成する原子が
混合した結合層が形成されるため接着強度が非常に高く
なる。The metal coating process may be performed by irradiating only a negative metal ion beam, but the same or different metals may be vapor-deposited simultaneously or alternately with the ion implantation. The metal coating layer formed by the method of the present invention has extremely high adhesive strength because a bonding layer in which metal atoms and atoms constituting the nitride ceramic are mixed is formed at the interface with the nitride ceramic.
通常は、本発明方法によって結合層を含む第1層を形成
したのち、一般のスパッタリング、EB蒸着等をおこな
うことによって第2層を形成し所定の膜厚とする方法が
能率的である。Usually, it is efficient to form a first layer including a bonding layer by the method of the present invention, and then form a second layer to a predetermined thickness by performing general sputtering, EB vapor deposition, etc.
被覆する金属の種類はと(に限定ばな(ニッケル、銀、
白金、金などが用いられる。The type of metal to be coated is limited to (nickel, silver,
Platinum, gold, etc. are used.
本発明の方法によれば、負のイオンビーJ、を窒化物セ
ラミックスに照射するので、入射するイオンビーJ、の
負の電荷と発生ずる二次電子の負の電荷が相殺されるこ
とによってチャージアンプがおこりに(いので、イオン
ビームの照射が安定しており、均一な金属被覆が得られ
る。According to the method of the present invention, since negative ion beams J are irradiated onto nitride ceramics, the charge amplifier is Due to its small size, ion beam irradiation is stable and uniform metal coating can be obtained.
[実施例〕
以下、実施例及び比較例により本発明を更に詳しく説明
する。窒化物セラミックスは以下に述べる3種類を使用
した。[Examples] Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples. Three types of nitride ceramics were used as described below.
窒化物セラミックス基体の製造
■ 基体が窒化ホウ素の場合−熱分解窒化ホウ素の板に
合成触媒としてMg5BN3を拡散含浸させ、1600
’C158000気圧で30分の高温高圧処理を行な
ゲでC−BNの焼結体にし、これを直径7胴、厚さ0.
5 mmの円板に加工した。Manufacturing of nitride ceramic substrate ■ When the substrate is boron nitride - A plate of pyrolytic boron nitride is diffused and impregnated with Mg5BN3 as a synthesis catalyst,
A high-temperature, high-pressure treatment was performed at 158,000 atmospheres for 30 minutes to form a sintered body of C-BN, which had a diameter of 7 and a thickness of 0.
It was processed into a 5 mm disk.
■ 基体が窒化アルミニウムの場合−平均粒径1、5
p mの窒化アルミニウム粉95重量部と平均粒径0.
8μmの酸化インl−リウム粉5重量部を混合し、圧力
400 kg/afl、温度1900’Cで窒素雰囲気
下で30分間ホントフッス焼結を行ない、A I!、N
Y 203焼結体を得た。これを直径7mm、厚さ
5mmの円板に加工した。■ When the substrate is aluminum nitride - average grain size 1, 5
95 parts by weight of aluminum nitride powder of pm and an average particle size of 0.
5 parts by weight of 8 μm indium oxide powder was mixed and Hontfuss sintered in a nitrogen atmosphere at a pressure of 400 kg/afl and a temperature of 1900'C for 30 minutes to produce AI! , N
A Y203 sintered body was obtained. This was processed into a disk with a diameter of 7 mm and a thickness of 5 mm.
■ 基体が窒化ケイ素の場合−平均粒径1μmのα相含
有率94%のS I 3N 4粉97重量部と平均粒径
0.7μmの酸化マグネシウム粉3重量部を混合し、圧
力300 kg/cffl、温度1800°Cで窒素雰
囲気下で60分間ホットプレス焼結を行ない、Si3N
4−Mg○焼結体を得た。これを直径7 mm、厚さ5
mmの円板に加工した。■ When the substrate is silicon nitride - 97 parts by weight of S I 3N 4 powder with an average particle size of 1 μm and an alpha phase content of 94% and 3 parts by weight of magnesium oxide powder with an average particle size of 0.7 μm were mixed, and the mixture was heated at a pressure of 300 kg/ cffl, hot press sintered at a temperature of 1800°C for 60 minutes in a nitrogen atmosphere to form Si3N
A 4-Mg◯ sintered body was obtained. This has a diameter of 7 mm and a thickness of 5
It was processed into a disk of mm.
実施例1〜5
窒化物セラミックスの基体16を試料ボルダ−17に固
定した。表に示す第1被覆層の金属と同し金属を凹面状
に加工して得たターゲラ1へ1をターゲy I・ボルダ
−14に固定した。セシウムの入ったボンへをセシウム
導入口4に接続した。外容器8の内部を排気したのち、
セシウム蒸気を導入し、ターゲラl−1の表面に吸着さ
せた。また、希ガス導入口6からキセノンを導入した。Examples 1 to 5 A nitride ceramic base 16 was fixed to a sample boulder 17. Targeter 1, which was obtained by processing the same metal as the first coating layer shown in the table into a concave shape, was fixed to Target Y I Boulder-14. A bomb containing cesium was connected to the cesium inlet 4. After evacuating the inside of the outer container 8,
Cesium vapor was introduced and adsorbed onto the surface of Targera 1-1. Additionally, xenon was introduced from the rare gas inlet 6.
熱陰極3は1.、 a B 6を用いた。熱陰極3と外
容器間に60■のアーク電圧を印加してアーク放電を生
じさせた。The hot cathode 3 is 1. , aB6 was used. An arc voltage of 60 μ was applied between the hot cathode 3 and the outer container to generate arc discharge.
外容器8に対してターゲットに950■の負電位を印加
し、外容器と引出し電極20の間に表に示す加速電圧を
かけ、表に示ずイオンビーム電流て金属負イオンビーム
を引き出した。室温で基体16に対しドーズit 10
” 1ons / cfの条件で表に示す時間金属負
イオンを照射し、第1被覆層を形成させた。なお、EB
蒸着器23は作動させなかった。A negative potential of 950 cm was applied to the target with respect to the outer container 8, an accelerating voltage shown in the table was applied between the outer container and the extraction electrode 20, and a metal negative ion beam was extracted using an ion beam current not shown in the table. Dose it 10 for substrate 16 at room temperature
The first coating layer was formed by irradiating metal negative ions under the conditions of 1 ounce/cf for the time shown in the table.
The vapor deposition device 23 was not operated.
つぎに、基体を試料ボルダ−17から取外してスパック
リング法置に移し、公知のスパックリング法(前記文献
■に記載されている方法)により表に示す第2被覆層の
被覆金属と同じ金属をターゲラ[−として、厚さ100
0人の第2被覆層を形成させた。Next, the substrate was removed from the sample boulder 17, transferred to a spackling chamber, and coated with the same metal as the coating metal of the second coating layer shown in the table using the known spackling method (method described in the above-mentioned document ①). Targera [-, thickness 100
0 people formed the second coating layer.
形成された金属被覆はいずれも脹れや厚みむらがなく均
質であった。被覆層の基体10個のうち、5個について
ダイヤモンド針による引っかきテスI・を行なった。ま
た、残り5個については大気中で温度200°Cて50
0時間の加熱後に同じ引っかきテストを行なった。なお
、引っかきテストはダイヤモンド針を指につまんで円板
」二を数回擦って傷をつり、走査型電子顕微鏡で傷を観
察し、各実施例ごとに5個の円板の・うち何個の円板に
剥がれがあるかを調べた。その結果は表に示すとおりで
ある。All of the metal coatings formed were homogeneous without swelling or uneven thickness. A scratch test I. with a diamond needle was performed on 5 of the 10 substrates of the coating layer. In addition, for the remaining five pieces, the temperature was 200°C in the atmosphere.
The same scratch test was performed after 0 hours of heating. For the scratch test, hold a diamond needle between your fingers and rub the disk several times to remove scratches.The scratches are observed using a scanning electron microscope. The disc was examined to see if there was any peeling. The results are shown in the table.
比較例1.2
表に示すとおり、第1被覆層の金属被覆を金属イオン照
射によらず、スパンクリング法(前記文献■による方法
)により行ない、その上にさらに同しスパックリング法
により第2被覆層の金属被覆を行なった。実施例1〜5
と同様に引っかきテストを行なったところ表に示すとお
り、加熱前後とも引っかきテス1〜による剥がれのある
円板があった。Comparative Example 1.2 As shown in the table, the metal coating of the first coating layer was performed by the spankling method (method according to the above-mentioned document ①) without metal ion irradiation, and then the second coating layer was further coated by the same spackle method. Metal coating of the coating layer was performed. Examples 1-5
When a scratch test was conducted in the same manner as above, as shown in the table, there were discs with peeling due to scratch test 1 to 1 both before and after heating.
実施例6
実施例1〜5で用いた基体と同じ窒化ホウ素の基体10
個を用いて、金の負イオン照射とEB蒸着法による金の
蒸着を同時に行なった。金の負イオン照射は金をターゲ
ットとして加速電圧50KV、イオンヒーム電流5mA
、イオンヒーム強度0.25rn A / ctで行な
った。ターゲラI・のセシウム蒸気処理およびその他の
イオン照射の条件は実施例1〜5と同じである。EB蒸
着法は電子銃22からの電子ビームをEB蒸着器23内
の金に照射することによって金を蒸発させ、基体16に
蒸着させた。Example 6 The same boron nitride substrate 10 as the substrate used in Examples 1 to 5
Negative ion irradiation of gold and gold vapor deposition by EB vapor deposition were performed simultaneously using the same. Negative ion irradiation of gold targets gold with an acceleration voltage of 50 KV and an ion beam current of 5 mA.
, and an ion beam intensity of 0.25 rn A/ct. The cesium vapor treatment and other ion irradiation conditions for Targera I. were the same as in Examples 1-5. In the EB evaporation method, gold in an EB evaporator 23 is irradiated with an electron beam from an electron gun 22 to evaporate the gold, and the gold is deposited on the substrate 16 .
このようにして金の負イオン照射とEB蒸着法による金
の蒸着を同時に11分間行ない、さらにEB蒸着のめを
10分間行なって厚さ1000人の金の被覆層を形成し
た。被覆層は均質であり、脹れや厚めむらがなかった。In this way, gold negative ion irradiation and gold deposition by EB evaporation were performed simultaneously for 11 minutes, and further EB evaporation was performed for 10 minutes to form a gold coating layer with a thickness of 1,000 layers. The coating layer was homogeneous, with no swelling or uneven thickness.
実施例1〜5と同様に引っかきテス1−を行なったとこ
ろ、加熱前後とも引っかきテスI・による剥がれはなか
った。When the scratch test 1- was carried out in the same manner as in Examples 1 to 5, there was no peeling due to the scratch test I- both before and after heating.
[発明の効果)
この発明の金属被覆方法によれば窒化物セラミックスの
表面に均質で、かつ接着強度の大きい金属被覆を形成す
ることができる。[Effects of the Invention] According to the metal coating method of the present invention, a homogeneous metal coating with high adhesive strength can be formed on the surface of nitride ceramics.
第2図は本発明の実施例で用いた装置の断面図であり、
第1図はその要部の断面図である。
符号
1・・・ターゲット、 2・・・石英ガラス、3・
・・熱陰極、 4・・セシウム導入口、5・・
・開口部、 6・・希ガス導入口、7・・・磁
石、 8・・外容器、9・・磁石、
10・・外部電源、11・・・外部電源、 ]2
・・アーク電源、13・・・引き出し電源、14・・タ
ーゲットホルダー、15・・・絶縁体、 16・
・・基体、17・・・試料ボルダ−118・・・アイン
ツエルレンズ、19・・・磁石、 20・・・
引出し電極、21・・・排気口、 22・・・電子
銃、23・・・EB蒸着器。
特許出願人 電気化学工業株式会社FIG. 2 is a cross-sectional view of the device used in the embodiment of the present invention.
FIG. 1 is a sectional view of the main part. Code 1... Target, 2... Quartz glass, 3...
...Hot cathode, 4.Cesium inlet, 5.
・Opening, 6. Rare gas inlet, 7. Magnet, 8. Outer container, 9. Magnet.
10...External power supply, 11...External power supply, ]2
...Arc power source, 13...Output power source, 14...Target holder, 15...Insulator, 16.
...Base, 17...Sample boulder-118...Einzel lens, 19...Magnet, 20...
Extraction electrode, 21...Exhaust port, 22...Electron gun, 23...EB evaporator. Patent applicant Denki Kagaku Kogyo Co., Ltd.
Claims (1)
て、前記金属の表面にセシウム蒸気を吸着させた金属を
ターゲットとし、該ターゲットをプラスに帯電した希ガ
スによるプラズマ内にさらし、前記ターゲットに負電位
を印加してスパッタすることによって、前記金属の負イ
オンビームを発生させ、該負イオンビームを前記窒化物
セラミックスに照射することを特徴とする窒化物セラミ
ックスの金属被覆方法。(1) In a method of coating nitride ceramics with metal, a metal with cesium vapor adsorbed on the surface of the metal is used as a target, and the target is exposed to plasma of a positively charged rare gas, and the target is placed at a negative potential. A method for coating a nitride ceramic with a metal, characterized in that a negative ion beam of the metal is generated by applying and sputtering, and the nitride ceramic is irradiated with the negative ion beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15297888A JPH01319668A (en) | 1988-06-21 | 1988-06-21 | Method for coating nitride ceramics with metal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15297888A JPH01319668A (en) | 1988-06-21 | 1988-06-21 | Method for coating nitride ceramics with metal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01319668A true JPH01319668A (en) | 1989-12-25 |
Family
ID=15552289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15297888A Pending JPH01319668A (en) | 1988-06-21 | 1988-06-21 | Method for coating nitride ceramics with metal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01319668A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030065810A (en) * | 2002-02-01 | 2003-08-09 | 필터레이 화이버 옵틱스 인코퍼레이티드 | Apparatus and method for fabricating optical coating |
-
1988
- 1988-06-21 JP JP15297888A patent/JPH01319668A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030065810A (en) * | 2002-02-01 | 2003-08-09 | 필터레이 화이버 옵틱스 인코퍼레이티드 | Apparatus and method for fabricating optical coating |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4151325A (en) | Titanium nitride thin films for minimizing multipactoring | |
WO2008018341A1 (en) | Electrostatic chuck device | |
JPH11100270A (en) | Aluminum nitride sintered body, electronic functional material and electrostatic chuck | |
US4209552A (en) | Thin film deposition by electric and magnetic crossed-field diode sputtering | |
Friese et al. | Enhanced quantum efficiency for CsI grown on a graphite-based substrate coating | |
JPS5989763A (en) | Vapor deposition device for thin film | |
JPH01319668A (en) | Method for coating nitride ceramics with metal | |
JP4471431B2 (en) | Method for producing cotton-like refractory metal material and cathode using the material | |
US5028306A (en) | Process for forming a ceramic-metal adduct | |
JPH11245371A (en) | Mask and squeegee | |
JPS6291483A (en) | Metallization for ceramic | |
JP2743201B2 (en) | Metal film formation method on ceramics surface by ion mixing method | |
US5061357A (en) | Method of producing an electron beam emission cathode | |
JPH02156066A (en) | Method for cleaning base material | |
JP2600336B2 (en) | Method of manufacturing base material for high thermal conductive IC | |
JPS63213664A (en) | Ion plating device | |
US3711326A (en) | Promethium sources | |
JP3965469B2 (en) | Electrostatic chuck | |
JPS63458A (en) | Vacuum arc vapor deposition device | |
JP2791034B2 (en) | Carbon ion beam generation method | |
JPH0794072A (en) | Hot cathode for electron radiation, its manufacture, and electron beam working device using it | |
JP2560451B2 (en) | Cu metallization method for Al ceramic material by O ion mixing | |
JP3452458B2 (en) | Thin film forming equipment | |
JP3223740B2 (en) | Semiconductor manufacturing apparatus and semiconductor device manufacturing method | |
JPS63166963A (en) | Production of thin film |