JPH01319616A - Method of operating blast furnace - Google Patents

Method of operating blast furnace

Info

Publication number
JPH01319616A
JPH01319616A JP14980988A JP14980988A JPH01319616A JP H01319616 A JPH01319616 A JP H01319616A JP 14980988 A JP14980988 A JP 14980988A JP 14980988 A JP14980988 A JP 14980988A JP H01319616 A JPH01319616 A JP H01319616A
Authority
JP
Japan
Prior art keywords
furnace
heat
operating conditions
hot metal
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP14980988A
Other languages
Japanese (ja)
Other versions
JP2724365B2 (en
Inventor
Mitsuru Kiguchi
木口 満
Masaaki Sato
政明 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP14980988A priority Critical patent/JP2724365B2/en
Publication of JPH01319616A publication Critical patent/JPH01319616A/en
Application granted granted Critical
Publication of JP2724365B2 publication Critical patent/JP2724365B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21BMANUFACTURE OF IRON OR STEEL
    • C21B5/00Making pig-iron in the blast furnace
    • C21B5/006Automatically controlling the process

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Iron (AREA)

Abstract

PURPOSE:To automatically administrate furnace conditions to a stable state by selecting blast furnace operating conditions from the respective ranks of furnace heat trends determined from a change in heat balance and the temp. of a molten iron and the information in the respective histories of the already existed operating conditions, etc. CONSTITUTION:The change in the heat balance and melting temp. determined by the heat balance model estimated by the heat balance in the lower part of the furnace are respectively segmented to prescribed ranges and the ranks of the furnace heat trends are determined. The operating conditions are previously set for each of the ranks of the furnace heat trends. The above-mentioned operating conditions are selected simultaneously from the change rate in the heat balance and the temp. of the molten iron at the time of deciding the furnace heat. The operating conditions are selected from the operating conditions before and after the above-mentioned operating conditions as a standard inclusive of said standard according to the information in the histories of the molten iron temp. to the decision of the furnace heat and the information in the histories of the already executed operating conditions including coke ratios, moisture, blast temps. and blast rates. The heat control of the blast furnace is executed precisely, automatically and adequately in this way.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高炉の操業方法に係り、詳しくは、gt N機
を用いて高炉の炉熱コントロールを行なう高炉の操業方
法にa5いて、炉熱予測の精度向上及び既実施のアクシ
ョン履歴をもとに自動的に炉況を安定した状態に管理で
きるようにした高炉の操業方法に係る。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method of operating a blast furnace, and more specifically, to a method of operating a blast furnace that uses a GT N machine to control the furnace heat of the blast furnace. The present invention relates to a method of operating a blast furnace that improves accuracy and automatically manages furnace conditions in a stable state based on the history of actions that have already been taken.

従  来  の  技  術 従来、引算機を用いて、システマテインクに高炉の炉熱
コントロールを行なう方法として、本発明の出願人のG
o−8tO1)システム等に代表される高炉の管理シス
テムがある。しかし、ごのシステムは、高炉の異常を検
知し、必要なアクションを提示するものの、予測精度が
低く、また、異常が連続した場合には連続するアクシE
lンの指示ができず、その利用範囲の狭いもの−Cあっ
た。
Prior Art Conventionally, as a method for systemically controlling the furnace heat of a blast furnace using a subtraction machine, the applicant of the present invention, G.
There are management systems for blast furnaces, such as the o-8tO1) system. However, although this system detects abnormalities in the blast furnace and suggests the necessary actions, its prediction accuracy is low, and when abnormalities occur continuously, continuous
There was a C-C that could not be used to give instructions for ln, and its scope of use was narrow.

近年、AI(人工知能)を用い、」二記システムに高炉
操業者のノウハウを盛込むこと及び高炉操業に必要な炉
熱の予測精度を高める技術が開発されつつあり、例えば
特開昭62−270708号公報や特開昭62−270
712号公報に示される如く、炉熱制御や炉況検出の8
1算機を用いたシスデム等が提案されている。
In recent years, technology has been developed that uses AI (artificial intelligence) to incorporate the know-how of blast furnace operators into the system and improve the accuracy of predicting the furnace heat required for blast furnace operation. Publication No. 270708 and JP-A-62-270
As shown in Publication No. 712, 8 of furnace heat control and furnace condition detection
A system using a computer has been proposed.

前者は炉熱を溶銑温度及び羽口並びにスラグの1IIi
!寮による人間判断ルールに従って判定し、がっ、各種
センサーから求められる情報に基づいて炉熱推移を推定
し、この炉熱レベル及び炉熱推移をもとに炉熱制御のア
クションが出されるシステムであり、また、後者はスリ
ップ、吹抜けの診断を可能とするシステムである。
The former is based on the furnace heat, hot metal temperature, tuyere, and slag.
! This is a system that makes judgments according to the dormitory's human judgment rules, estimates the furnace heat transition based on information obtained from various sensors, and takes actions to control the furnace heat based on this furnace heat level and furnace heat transition. The latter is a system that can diagnose slips and blowouts.

しかし、前者は炉熱状況からアクションを決定てぎる点
で犬きく評価できるものの、炉熱を溶銑温度及び羽口等
の観察により判定する点に′  問題があり、炉熱を判
定するには溶銑温度では、使用する代表温度の設定に困
難性があること、また、羽口等の観察法では個人差が避
(プられないことを欠点として上げることができる。
However, although the former can be highly evaluated in that the action is determined based on the furnace heat situation, there is a problem in that the furnace heat is determined by observing the hot metal temperature and the tuyeres, etc. Regarding temperature, disadvantages include the difficulty in setting the representative temperature to be used, and the inability to avoid individual differences in observation methods such as tuyeres.

さて、高炉の熱的状態を評l1IIi′7jる要素とし
て、従来がら一般的に出銑口から出銑した溶銑の温度の
測定結果が用いられている。この溶銑温度の測定は各製
鉄所によって異なるが、通常1回7/1時間程度の割合
で実施されており、溶銑温度をある一定値以上に維持す
ることが順調な高炉操業を続(づるための必須条件とさ
れている。その理由としては、 CI)溶銑温度が高炉の熱的状態を最もよく表現する指
数であること、 (旧溶銑温度が低下すると、銑鉄とスラグの排出に支障
をきたし、操業を続+−+ることが不可能(こなること
である。つまり、高炉内には溶(プた銑鉄、/8(づた
スラグがあり、炉内温度がfff、下し、>′8銑温度
が低下覆ると、その流動性が悪くなり提出が困難となる
ため、銑鉄やスラグの流動性を確保しな(づれば高か操
業は成り立たない。この流動性に対しては銑鉄やスラグ
の成分もある稈度影費があるが、溶vL温度の影響が最
も太きいがらである。
Now, as a factor for evaluating the thermal condition of a blast furnace, the measurement results of the temperature of hot metal tapped from the taphole have conventionally been generally used. This hot metal temperature measurement differs depending on each steelwork, but it is usually carried out at a rate of about 7/1 hour at a time.Maintaining the hot metal temperature above a certain value is the key to maintaining smooth blast furnace operation. The reason for this is that CI) the hot metal temperature is the index that best expresses the thermal condition of the blast furnace; , it is impossible to continue operation. In other words, there is molten pig iron and slag in the blast furnace, and the temperature inside the furnace drops to fff, >'8 If the pig temperature decreases, its fluidity will deteriorate and it will be difficult to submit. Therefore, it is necessary to ensure the fluidity of the pig iron and slag. Although slag components have an effect on culm density, the influence of melt VL temperature is the most significant.

しかしながら、溶R温度のJll定に際しては第6図(
a)、(1) ) a)よひ(C)にそれぞれ示1溶温
度度の経時変化、ラップ出銑時およびタッグ間偏差発生
時の溶銑温度の経時変化の如く、 (1)出銑初期には樋が冷えているため、温度が低いこ
と(第6図(a)参照)。
However, when determining the temperature of the melt R, as shown in Figure 6 (
a), (1) ) a) Yohi (C) shows the change in melt temperature over time, as well as the change in hot metal temperature over time during lap tapping and when deviation occurs between tags, (1) Initial stage of tapping Since the gutter is cold, the temperature is low (see Figure 6 (a)).

(2)初回出銑(長期間しか使っていない樋を始めて使
った出銑)時には樋が非常に冷えでいるため、溶銑温度
の上りは非常に遅いこと(第6図(aJ参照凡 (3)ランプ出銑時には、一方の温度が低く、−方の温
度が高い(第6図(1))参照)。
(2) At the time of the first tap (the first time the tap is tapped after a gutter that has only been used for a long time), the gutter is very cold, so the temperature of the hot metal rises very slowly (see Figure 6 (aJ)). ) During lamp tapping, the temperature on one side is low and the temperature on the - side is high (see Figure 6 (1)).

(4)出銑口偏差が発生すると、出銑口により溶銑温度
が大きく変化する(第6図(C)参照)。
(4) When a taphole deviation occurs, the temperature of hot metal changes greatly depending on the taphole (see Fig. 6(C)).

このため、実際の溶銑温度の評価においては、操業者が
測定タイミングを児て判断している。
Therefore, when evaluating the actual hot metal temperature, operators are responsible for determining the measurement timing.

つまり、どのようなタイミング及び状況で測定した。1
!I温値であるがを吟味し、操業者が真の値(外乱を除
いた状態で測定された値)を推定している。
In other words, at what timing and under what circumstances were the measurements taken? 1
! The operator estimates the true value (value measured without disturbance) by examining the I temperature value.

一方、計算機を用いて高炉の熱的状態を溶銑温度で評価
(判断)するためには、判断タイミング毎に評価対象と
なる溶銑温度が必要であるが、前記の如き状態では評価
対象の溶銑温度の設定が困難である。
On the other hand, in order to evaluate (judge) the thermal state of a blast furnace based on the hot metal temperature using a computer, it is necessary to know the temperature of the hot metal to be evaluated at each judgment timing. is difficult to set.

また、エキスパー1−システムやプロセスコンピュータ
ー等の所謂計算機を用いて、高炉の熱レベル(炉熱)を
システマティックにコン]・ロールするときには、溶銑
温度と炉熱指数(炉熱予測)を用いるのが一般的である
。炉熱指数はそのベースとなる各データが各々のセンサ
ーによって連続的に測定され、がっ、外乱も少ないので
、がなりの精度で求めることができる。
Furthermore, when systematically controlling the heat level (furnace heat) of a blast furnace using a so-called computer such as an Expert 1 system or a process computer, it is recommended to use the hot metal temperature and the furnace heat index (furnace heat prediction). Common. The furnace heat index can be determined with a high level of precision because the various data that form the basis of it are continuously measured by each sensor, and there are few disturbances.

一方、溶銑温度は既述したような外乱がありかつ測定の
周期もシステムの判断周期よりも長く、炉熱を評価する
に当って、そのタイミングにお(づる真の温度を把握す
ることが困難であった。
On the other hand, the hot metal temperature is subject to disturbances as mentioned above, and the measurement cycle is longer than the system's judgment cycle, making it difficult to ascertain the true temperature at that timing when evaluating the furnace heat. Met.

従って、計算機を用いて高炉の熱的状態を評価する場合
、評価対象となる溶銑温度が設定することができない。
Therefore, when evaluating the thermal state of a blast furnace using a computer, it is impossible to set the temperature of hot metal to be evaluated.

つまり、測定した値で直接判断した場合には、 1)測定タイミング(出銑後、どの程度時間が経過した
か) 2)樋の状態(新しい樋が、使用してきた樋が)3)溶
銑の流れの程度(太いか細いか)4)出銑目間偏差 によりばらつきが大きく、また、正しい判断として使え
ないという問題Ifある。
In other words, when making a direct judgment based on the measured values, 1) measurement timing (how much time has passed since tapping), 2) condition of the gutter (new gutter, used gutter), and 3) condition of the hot metal. Degree of flow (thick or thin) 4) There is a problem that there is a large variation due to the deviation between tap holes, and that it cannot be used as a correct judgment.

以上述べた炉熱予測精度上の問題の他、高炉へ実施する
アクションの決定に際しては、既実施アクション履歴を
考慮する必要があり、炉熱予測時の炉況に到る過去のア
クションをもとに次のアクションを決定しな(プればア
クションに過不足を生じる等の問題があり、従来例で(
ま、実用的な高炉の自動的に炉熱をロントロールてぎる
システムがなく、その出現が望まれていた。
In addition to the above-mentioned problems with the accuracy of furnace heat prediction, when deciding on actions to take to the blast furnace, it is necessary to consider the history of actions that have already been taken. If you do not decide the next action, there will be problems such as excess or deficiency of actions.
Well, there was no practical system for automatically slow-rolling the furnace heat in a blast furnace, and it was hoped that one would emerge.

発明が解決しようとする課題 本発明はこれらの問題を解決することを[」的とし、具
体的には、高炉の炉熱コントロ−ルシスデムが実用に耐
え得る精度で自動的に適切な操業条件の変更等の指示が
できる高炉の操業方法を提供することを目的とする。
Problems to be Solved by the Invention It is an object of the present invention to solve these problems, and specifically, the furnace heat control system of a blast furnace automatically adjusts appropriate operating conditions with a precision that can withstand practical use. The purpose is to provide a blast furnace operating method that allows instructions for changes, etc.

課題を解決するだめの 手段ならびにその作用 すなわち、本発明は、炉下部の熱バランスを推定する熱
バランスモデルから求まる熱バランス変化と溶銑温度を
所定範囲にイれぞれ区分し、炉熱動向ランクを定め、各
炉熱動向ランク毎に予め操業条件を設定すると共に、炉
熱判定時の熱バランス変化量と溶銑温度から前記操業条
件を選定し、炉熱判定に至る間の>g温度度の履歴情報
及C・コークス比、湿分、送風温度、送風量の既実施操
業条件の各履歴情報に応じて前記操業条件を基準とし−
C5基準を含む前後の操業条件の中から操業条件を選択
して高炉操業を行なうことを特徴とする。
Means for solving the problem and its operation, that is, the present invention classifies heat balance changes and hot metal temperature found from a heat balance model that estimates the heat balance in the lower part of the furnace into predetermined ranges, and ranks the furnace heat trend. The operating conditions are set in advance for each furnace heat trend rank, and the operating conditions are selected from the heat balance change amount and hot metal temperature at the time of furnace heat judgment, and the >g temperature degree during the furnace heat judgment is determined. Based on the historical information and historical information of the previously implemented operating conditions such as carbon/coke ratio, humidity, air blowing temperature, and air blowing amount, -
The blast furnace is characterized in that the blast furnace operation is performed by selecting operating conditions from among the operating conditions before and after the C5 standard.

そこで、これらの手段たる構成ならびにその作用につい
て説明すると、次の通りである。
Therefore, the structure of these means and their operation will be explained as follows.

本発明は第1図に示づ一フロー図により表現される全体
構成のシステムを用いる高炉操業方法であり、炉熱判定
は炉熱予測と溶銑温度を各ランク別に区別し、その程度
を1次判定する。次に、この1次判定に児合う1次アク
ションを選択するものであるが、前記溶銑温度の決定に
おいては操業者のノウハウを反映させ、一般的に適用で
きるものとする一方、1次アクションは既実施のアクシ
ョン履歴と反映させるべく過去の操業と対比ざぜられる
ものて、この対比においても操業者のノウハウを採用し
、これを具体化することにより一般化したものである。
The present invention is a blast furnace operating method using a system with an overall configuration expressed by a flowchart shown in FIG. judge. Next, a primary action that matches this primary judgment is selected, and while the operator's know-how is reflected in determining the hot metal temperature and can be generally applied, the primary action is Past operations are compared to reflect the history of actions that have already been taken, and this comparison also employs the operator's know-how and generalizes it by embodying it.

従って、最終のアクション指示は、通常、熟練した高炉
操業者が実施する精度の高いアクションと同等以上の精
度であり、ここに高炉操業の自動化が達成されるもので
ある。
Therefore, the final action instructions are usually as precise as or higher than the highly accurate actions performed by a skilled blast furnace operator, and automation of blast furnace operation is achieved here.

まず、溶銑温度の決定について述べる。First, the determination of hot metal temperature will be described.

高炉では通常1〜2本の出銑口を断続あるいは連続に順
次出銑し、溶銑温度を測定して評価している。
In a blast furnace, usually one or two tap holes are tapped intermittently or continuously, and the temperature of the hot metal is measured and evaluated.

この評価精度を向上させるため、本発明者等は従来の操
業経験をまとめた結果、次の通り行なうことにより正確
な温度を推定することを可能とした。
In order to improve the accuracy of this evaluation, the present inventors summarized their experience in conventional operations, and as a result, they were able to estimate an accurate temperature by performing the following steps.

1)出銑開始時 (1)前回出銑のその時の出銑を代表する溶銑温度を今
回出銑の代表溶銑温度とする。
1) At the start of tapping (1) Let the hot metal temperature representative of the current tapping of the previous pig iron tap be the representative hot metal temperature of the current tapping.

(2)前回または前々回出銑が今回出銑開始後、出銑止
めとなれば、出銑止め時点て今回の代表溶銑温度と前回
または前々回の代表溶銑温度と比較し、高い方を今回の
代表溶銑温度とする。
(2) If tapping is stopped after the previous or two-previous tapping starts, compare the current representative hot metal temperature with the previous or two-previous representative hot metal temperature at the time of stopping the tapping, and set the higher one as the current representative hot metal temperature. Hot metal temperature.

2)溶銑温度測定時 (1)初回出銑し過去一定時間(例えば24日)にその
出銑口を使ったかどうか]を判断する。
2) When measuring hot metal temperature: (1) Determine whether or not the tap hole was used within a certain period of time (for example, 24 days) after the first tap.

CI)初回出銑であれば、代表溶銑温度はそのままとす
る。
CI) If it is the first tap, the representative hot metal temperature remains the same.

(II)初回出銑でなければ、次の処理を行なう。(II) If it is not the first tap, the next process is performed.

(2)出銑開始から一定時間(例えば90分)経ってい
るかを判断する。
(2) Determine whether a certain period of time (for example, 90 minutes) has passed since the start of tapping.

CI+一定時間以上の場合、測定値を代表溶銑温度とす
る。
If CI+a certain time or more, the measured value is taken as the representative hot metal temperature.

(II)一定時間以内の場合、測定値がその時の代表溶
銑温度以上である時のみ、λり定値を代表溶銑温度とす
る。
(II) Within a certain period of time, only when the measured value is equal to or higher than the representative hot metal temperature at that time, the constant value of λ is taken as the representative hot metal temperature.

(3)判断 (1)ラップ出銑R(2つの出銑口から出銑)各出銑の
代表溶銑温度で高い方を評価用溶銑温度とする。
(3) Judgment (1) Lap tapping R (Tapping from two tap holes) The higher of the representative hot metal temperatures for each tap is the hot metal temperature for evaluation.

(2)出銑口偏差時(2つ以上の出銑口使用時)(■)
[今回の代表溶銑温度−前回 代表溶銑温度1〉一定値(15°C) −前回代表溶銑温度コ〉一定値(15℃)(Ill)[
炉熱指数(今回)−炉熱指数(前回)〕<一定値(15
”C) 以上(Il、(III、(III)の3条件が満足され
れば偏差有りと判断し、偏差有りの場合のみ次式のよう
にして求める。
(2) At the time of taphole deviation (when using two or more tapholes) (■)
[Current representative hot metal temperature - Previous representative hot metal temperature 1> Constant value (15°C) - Previous representative hot metal temperature Ko> Constant value (15°C) (Ill) [
Furnace heat index (this time) - Furnace heat index (previous time)] < constant value (15
"C) If the above three conditions (Il, (III), (III)) are satisfied, it is determined that there is a deviation, and only when there is a deviation, it is determined by the following equation.

評価用溶銑温度−0,5X(今回代表温度十前回代表温
度)(3)その他 評価用溶銑温度−その時の代表溶銑温度以上のようにす
ると、第4図に示す実施例の一例の時間と評価用溶銑温
度との関係を示ずグラフに示すように、種々の補正によ
り評価用溶銑温度が連続的に得られる。
Hot metal temperature for evaluation - 0.5X (representative temperature this time, representative temperature 10 times ago) (3) Other hot metal temperature for evaluation - If the temperature is set at or above the representative hot metal temperature at that time, the time and evaluation of an example of the example shown in Fig. 4 will be obtained. As shown in the graph without showing the relationship with the hot metal temperature for evaluation, the hot metal temperature for evaluation is continuously obtained by various corrections.

なお、第4図に示すPl、P2、P3及びP4のように
出銑初期及びラップ出銑時の溶銑温度の測定結果は評価
用溶銑温度とはなっていない。
Note that the measurement results of the hot metal temperature at the initial stage of tapping and during lap tapping, such as Pl, P2, P3, and P4 shown in FIG. 4, are not the hot metal temperature for evaluation.

以上のように、溶銑温度を定義したデータを用いること
により、従来、バッチでしか行なわれなく、かつ、種々
の外乱を含む溶銑温度の測温結果を高炉の熱的状態を判
断する評価用溶銑温度に変換することが可能となり、こ
のことにより計算機による炉熱の連続的(定周期)処理
が可能となった。
As described above, by using the data that defines the hot metal temperature, the hot metal temperature measurement results, which were conventionally only carried out in batches and which include various disturbances, can be used for evaluation of the thermal state of the blast furnace. It became possible to convert this into temperature, and this made it possible to process furnace heat continuously (regularly) using a computer.

次に、炉熱の予測について述べる。Next, we will discuss the prediction of furnace heat.

炉熱の予測は炉下部の熱バランスの変化から求めるもの
て、次のようにして行なう。
Furnace heat prediction is determined from changes in the heat balance in the lower part of the furnace, and is performed as follows.

(1)炉熱予測(△[Qランク) 1) TO(jo )の定義は次のように示される。(1) Furnace heat prediction (△ [Q rank) 1) The definition of TO(jo) is shown as follows.

TQ : 900°Cを基準にした炉下部の熱バランス
である。
TQ: Heat balance in the lower part of the furnace based on 900°C.

TQ=01 +02− (Q3+04+05)(103
Kcal/l・p)Ql;送風顕熱(900°C基′$
) 02;羽口先でのコークスの燃焼@ (CO基卒)03
;送用湿分の分解熱 G4;ツルロス反応 G5;ステーブ抜熱(炉下部) Q1=BV’ X(BT−900)Xo、335(比熱
にcal/Nm’−air)xlo−3十BV’  x
MoistxloづX(BT−900)X22.4/1
8X0.449(1120((1)の比熱)xlO−3
Q2=BV’ X(0,21十EO2(Ch M化率)
)×12/11.2+BV’ xMoistxlO−’
 x12/18) X 2450(Cの燃焼熱にcal
/kg−C)X10−3 Q3=BV’ XMOiStXlo−’ X3185(
分[4にcal/kgH,、o) x 1O−3Q4 
= C5ol x 3230(ツルロス反応熱にcal
/kg 〜c)05−′−△Q(ステーブ抜熱103K
cal/1()x10’ /60/PiQ(造銑スピー
ドt/Mln)G1;炉ト部の抜然削合。
TQ=01 +02- (Q3+04+05) (103
Kcal/l・p) Ql; Sensible heat of air (900°C base'$
) 02; Combustion of coke at the tip of the tuyere @ (CO basic graduate) 03
; Decomposition heat of feed moisture G4; Tsuru loss reaction G5; Stave heat removal (furnace lower part) Q1 = BV' X (BT-900) Xo, 335 (specific heat cal/Nm'-air) x
MoistxlozuX (BT-900)X22.4/1
8X0.449 (1120 (specific heat of (1)) xlO-3
Q2=BV' X (0,210 EO2 (Ch M conversion rate)
)×12/11.2+BV'xMoistxlO-'
x12/18) X 2450 (cal to combustion heat of C
/kg-C)X10-3 Q3=BV'XMOiStXlo-'X3185(
min [4 cal/kgH,, o) x 1O-3Q4
= C5ol x 3230 (cal
/kg ~c) 05-'-△Q (Stave heat removal 103K
cal/1()x10'/60/PiQ (ironmaking speed t/Mln) G1; Complete cutting of the furnace bottom.

BV’  :送風原単位(N m’/l−11)(EO
2含む)BT:送風温度(′C) Moist:送用湿分(g/Nl113)C3OI :
ソルロスc(kq/1−p)2)△TQ(jo )の定
義は次のように示される。
BV': Air consumption unit (N m'/l-11) (EO
2) BT: Blow temperature ('C) Moist: Blow moisture (g/Nl113) C3OI:
The definition of the sol loss c(kq/1-p)2)ΔTQ(jo) is shown as follows.

jo、jo  a・・・・・・;炉熱判断タイミングこ
こで。
jo, jo a...; Furnace heat judgment timing here.

a=3〜11 1)−4〜12 この△TQの量と、前記溶銑温度の基準値から変化量を
もとに炉熱判定のランク表を作成することができる。
a=3 to 11 1) -4 to 12 A rank table for furnace heat determination can be created based on the amount of ΔTQ and the amount of change from the reference value of the hot metal temperature.

なお、好ましくは、上記△TQをバラツキに応じ、更に
、細分化し炉熱予測を行なうことで、より精度を向上さ
せることができる。このバラツキはR△■0を求めるこ
とにより行なわれる。
Preferably, the accuracy can be further improved by further subdividing the above ΔTQ according to the variation and performing furnace heat prediction. This variation is determined by determining RΔ■0.

3) R△TQlo )の定義は次のように示される。3) The definition of R△TQlo) is shown as follows.

ここで、 11−1〜5 c=1〜6 4)△■0ランクの決定はR△TQを評価することによ
り第1表のように示される。
Here, 11-1~5 c=1~6 4) The determination of Δ■0 rank is shown as shown in Table 1 by evaluating RΔTQ.

第1表 (注)第1表中の−3、−2・・・・・・+2のランク
は第2表の△TQランク(炉熱予測)を示すものである
Table 1 (Note) The ranks -3, -2, . . . +2 in Table 1 indicate the ΔTQ rank (furnace heat prediction) in Table 2.

なお、△IQのみの場合はその人きさで区分ずれば良い
In addition, in the case of only △IQ, it is sufficient to classify them based on their personality.

また、以上述べた溶銑温度と△同との関係は第2図に示
すように良く対応し、第2図(a)で示ず△TOの推移
と(1))の溶銑温度の変化は同様な傾向を示し、高炉
の炉熱予測に十分なる精度を持つことがわかる。
In addition, the relationship between the hot metal temperature and △TO described above corresponds well as shown in Figure 2, and the transition of △TO (not shown in Figure 2 (a)) and the change in hot metal temperature in (1)) are similar. It can be seen that the accuracy is sufficient for predicting blast furnace heat.

2、炉熱判定 前記溶銑温度(11,M、T、)を基準値からの変化で
ランク分(プし、炉熱ランク(へ丁0ランク)とマ)〜
リックス表とすることにより炉熱を判定、各炉熱に応じ
アクション型を決定する。第2表に一つの例を示す。
2. Furnace heat determination The above hot metal temperature (11, M, T,) is changed from the standard value by the rank (P), and the furnace heat rank (Heto 0 rank) and Ma) ~
The furnace heat is determined by using the Ricks table, and the action type is determined according to each furnace heat. Table 2 shows one example.

第2表 (注)第2表は次のものを示ず。Table 2 (Note) Table 2 does not show the following.

(I)表の値はアクション型、 (TI)”なし″はNo Action、(III j
表のアクション型配置は可変(TV) X(目標H,M
、T、) x−1480〜1500°C また、アクション型とは各炉熱判定ランク別に採用すべ
き操業条件の変更量を指示したもので、予め各炉熱に対
応して定めて85<。第3表に一例を示す。
(I) Table value is action type, (TI) “None” is No Action, (III j
The action type arrangement on the table is variable (TV)
, T, ) x-1480~1500°C In addition, the action type indicates the amount of change in operating conditions that should be adopted for each furnace heat judgment rank, and is determined in advance in accordance with each furnace heat. An example is shown in Table 3.

第3表 (注)第3表は次のものを示す。Table 3 (Note) Table 3 shows the following.

CI)旧とMo i stは対策上面等と見なでことが
でき、どちらが一方を実施する。
CI) Old and Moist can be regarded as top measures, etc., and which one implements the other.

(II)BVは指定値に対する減風割合(%)(Ill
 )+は上昇、−は下降を示す。
(II) BV is the wind reduction ratio (%) relative to the specified value (Ill
) + indicates rising, - indicates falling.

ここで、 (19ン B■;送風温度(°C) Molst:送風湿分((1/Nm’)13v;送風量
の威風量(%) C1l;コークス(kg/l−Pig)表のアクション
量は変更可 以上述べたように、炉熱判定に従い、アクション型を求
め、アクション量により予め設定しであるアクション項
目、アクション量を1次アクション指示とする。
Here, (19 B■; Blow temperature (°C) Molst: Blow humidity ((1/Nm')) 13v; Power of air flow (%) C1l; Coke (kg/l-Pig) Table action The amount can be changed.As described above, the action type is determined according to the furnace heat judgment, and the action item and action amount, which are preset according to the action amount, are used as the primary action instruction.

なお、更に精度をより上げるため、溶銑温度に対し、次
の事項を倹約する。
In addition, in order to further improve accuracy, the following points should be made sparingly regarding the hot metal temperature.

(1)炉熱判定時に使用する溶銑温度−前回の溶銑温度
 ≧81(2)炉熱判定時に使用する溶銑温度−前回の
溶銑温度 ≧a2炉熱判定時に使用する溶銑;都度−前
々回の溶!1i:温度≧83ここで、(1)または(2
)の条件を満たず場合は、上昇傾向にあるとして評価に
用いる溶銑温度ランクを1ランク」二ける。
(1) Hot metal temperature used for furnace heat determination - previous hot metal temperature ≧81 (2) Hot metal temperature used for furnace heat determination - previous hot metal temperature ≧a2 Hot metal used for furnace heat determination; each time - previous hot metal temperature! 1i: temperature≧83, where (1) or (2
), the hot metal temperature rank used for evaluation will be lowered by 1 rank because it is on the rise.

ここで、al>82>a3とし、81〜83値は第2表
の溶銑ランクに対応した値とする。例えば、第2表の溶
銑ランク区分を細かく分(づれば、81〜a3値も小と
し、逆も同様である。このランクを上げる理由は、炉熱
上昇は長期推移をとるもので、この理由から傾向として
1ランク上昇を設定する。
Here, it is assumed that al>82>a3, and the values 81 to 83 correspond to the hot metal ranks in Table 2. For example, the hot metal rank classification in Table 2 is divided into small parts (that is, the 81 to a3 values are also small, and vice versa.The reason for increasing this rank is that the furnace heat rise takes a long period of time, Set the trend to increase by one rank.

更に、過去8〜16時間における送風温度の上昇分を考
慮し、アクション型を児直す。つまり、送風温度を異常
に上げなければ溶銑温度と確保できない操業は、操業が
不安定であると見なすことができる。このような場合に
は、更に送風温度を上げるよりも、より大きなアクショ
ンである減風アクションをとった方が炉況の回復が早い
Furthermore, the action type will be revised in consideration of the increase in air temperature over the past 8 to 16 hours. In other words, an operation in which the hot metal temperature cannot be maintained without abnormally increasing the air blowing temperature can be considered to be unstable. In such a case, the furnace condition will recover more quickly if a larger action is taken to reduce the air than to further raise the air blowing temperature.

また、過去に減風アクションが多い場合には、より大き
なアクションである減筒アクションをとった方が早い。
Furthermore, if there have been many wind reduction actions in the past, it would be faster to take a larger action, the cylinder reduction action.

従って、上記のような場合、第3表から選ばれるアクシ
ョン型力(減風、減筒を含まない時、そのアクション型
ランクを上げて対応することが好ましい。
Therefore, in the above case, when the action type force selected from Table 3 (not including wind reduction and cylinder reduction), it is preferable to respond by increasing the action type rank.

例えば、送風温度の上昇1〕が大きい場合、3型、4型
では送J@量のアクション項目がない。
For example, when the increase in air temperature [1] is large, there is no action item for the amount of air flow for types 3 and 4.

従って、ランクを上昇させ5型とする。Therefore, the rank is increased to type 5.

過去に減風アクションを採っている揚台、6型、7型で
は減筒のアクション項目がない。
There is no cylinder reduction action item for lifting platforms, types 6 and 7, which have adopted wind reduction actions in the past.

従って、ランクを上昇させ8型とする。Therefore, the rank is increased to type 8.

以上のように児直すことにより炉熱の早期回復を図る。By restoring the baby as described above, the furnace heat can be recovered quickly.

3、最終アクション 炉熱判定(1次)で出されたアクション指示(1次)を
上記事項に従って修正し、この修正したアクションと既
に実施されたアクション履歴を吟味して、その時点での
最適な最終アクション指示を決定する。
3. Modify the action instructions (1st stage) issued in the final action furnace heat judgment (1st stage) according to the above matters, examine this modified action and the history of actions that have already been carried out, and determine the optimal one at that point. Determine final action instructions.

まず、送風温度に対しては、以下のアクション履歴を含
める口とが好ましい。送風温度の上昇または下降のアク
ションに際しては、送風温度の変化を過去に採った量及
び経過時間の他、熱的な影響を与えるコークス比及び送
風湿分のアクション項目も含める。コークス比は以前に
実施したアクション量を加味し、また、高炉に与える影
響の期間を考慮し、前記コークス比の変更の期間を変更
したコークス量が高炉内に残留している時と、炉内を一
巡した時とに区別し最終アクションの決定に用いる。同
様に送風湿分も炉内反応に影響を与える遅れ時間で区別
して最終アクションの決定に用いる。−例を示づと、コ
ークス比の変更期間は、原料−巡する時間()4)とし
て8■を、また、送風湿分の遅れ時間として114程度
を設定することができるが、高炉操業の負荷程度、炉容
等設備固有の性格に基づいて設定すれば良い。
First, regarding the air temperature, it is preferable to include the following action history. When taking action to raise or lower the blast temperature, in addition to the amount and elapsed time of past changes in the blast temperature, action items such as coke ratio and blast moisture that have thermal effects are also included. The coke ratio is determined by taking into account the amount of previously implemented actions and the period of impact on the blast furnace. This is used to determine the final action. Similarly, the humidity of the blast air is differentiated based on the delay time that affects the reaction in the furnace and used to determine the final action. - To give an example, the period for changing the coke ratio can be set to 8■ as the raw material cycle time (4), and about 114 as the lag time for the ventilation moisture. It may be set based on the specific characteristics of the equipment, such as load level and furnace volume.

次に、アクション履歴と比較し、第3図の最終アクショ
ン指示を出す判定フロー図について説明する。
Next, a determination flowchart for issuing a final action instruction as shown in FIG. 3 by comparing with the action history will be explained.

第3図に示ずフロー図は(△CR(8H) : 8時間
のコークス比の変化、△Mo1st(ill) : 1
時間は送風湿分の変化、BT↓(1次):1次アクショ
ンのBT下げ巾、BT↓(8H) : 8時間のBT下
げ巾、BT↓(16+1J:16時間のBT下げ巾、B
T↓(R終):(最終アクションのBT下げ巾、ただし
、BT↓(最終)≦81)最終アクションのBT下降指
示の判定をするフロー図であり、ここでは△CR1△M
o1stのいずれががそれぞれ8■、1Hの間に採った
変更量との比較により訂が安定であることをもとに判定
する。
The flowchart not shown in Figure 3 is (△CR(8H): Change in coke ratio for 8 hours, △Mo1st(ill): 1
The time is the change in air humidity, BT↓(1st): BT lowering width of the primary action, BT↓(8H): 8 hours BT lowering width, BT↓(16+1J: 16 hour BT lowering width, B
T↓(R end): (BT lowering width of the final action, where BT↓(final)≦81) This is a flow diagram for determining the BT lowering instruction of the final action, and here, △CR1△M
A judgment is made based on whether the revision is stable by comparing which of o1st with the amount of change taken during 8 and 1 hour, respectively.

過去に採ったOR,Mo1stを判断し、これらアクシ
ョンが実施されていた場合は、過去の履歴の大きな変動
との比較により、また、逆は小さな変動との比較により
判定し、各判定に用いるal、〜a5の値は炉況の急変
を避けるため及び長、短期の炉況変化を検出するために
設定しており、 1a11<la2 l<1a31<laq l<las
 lの関係で示される。
The OR and Mo1st taken in the past are judged, and if these actions have been implemented, the judgment is made by comparison with large changes in the past history, and vice versa, by comparison with small changes, and the al , ~a5 values are set to avoid sudden changes in furnace conditions and to detect long and short-term changes in furnace conditions, and 1a11<la2 l<1a31<laq l<las
It is shown by the relationship of l.

なお、alは炉況の急変を避(プるための管理値、他は
炉況判定の管理値である。
Note that al is a control value for avoiding sudden changes in the furnace condition, and the others are control values for determining the furnace condition.

また、BT上昇指示の判定も同様に第3図を用いること
ができ、第3図の判定フロー図中の比較する値を逆の不
等台を与えることで成立し、各管理値はプラスの値を採
るようにすればよい。
In addition, Fig. 3 can be similarly used to determine the BT increase instruction, and the values to be compared in the judgment flow diagram of Fig. 3 are established by giving an inverse unequal table, and each management value is a positive value. All you have to do is take the value.

また、コークス比に対しては、以下のアクション履歴を
含めることが好ましく、コークス比の上昇、すなわち、
減筒指示は過去のアクションで採った変更量及びアクシ
ョンからの経過時間を考慮する。この経過時間とは過去
のアクションで採った変更部分が炉内部に滞留している
がどうかを基準とするものであり、)帛留期間内にある
場合は、1次の個別アクション量から滞留期間内に採っ
たアクション量を減少させて、最終アクション量が決定
される。
In addition, for the coke ratio, it is preferable to include the following action history, and the increase in the coke ratio, that is,
The cylinder reduction instruction takes into account the amount of change taken in past actions and the elapsed time since the action. This elapsed time is based on whether or not the changed part taken in the past action remains inside the furnace.) If it is within the retention period, the retention period is calculated from the amount of the first individual action. The final action amount is determined by reducing the amount of actions taken within.

なお、最緒CRの上昇量−1次アクション−△CR(8
)1)と表現することができ、また、CRの上昇量も過
去に採った(滞留中のもの)量に判定値を設定し、判定
値以上では前記判断を、判定値以下では炉況の変化が比
較的小と言えることがら、1次アクション量を増加させ
て操業を行なっても良い。この判定値とは、第3表に示
すアクション量の区分より小さな値を用いることで、ア
クション型内で細かな操業選択を行なうことができる。
In addition, the amount of increase in the first CR - 1st action - △CR (8
) 1), and the amount of increase in CR is also determined by setting the judgment value to the amount (remaining) taken in the past, and when it is above the judgment value, the above judgment is applied, and when it is below the judgment value, it is based on the condition of the furnace. Since the change can be said to be relatively small, the operation may be performed by increasing the amount of primary action. By using this determination value as a value smaller than the action amount classification shown in Table 3, detailed operation selection can be made within the action type.

次に、送風流量の変更は最も迅速に炉況に反映できる手
段であり、変更に対する炉況反映の安定化力(可能な直
近の211内の変化量を含めて判定すればよく、1次ア
クションで指示された減風量から過去211に採用した
風量の変更を引き去ることにより最終アクションが決定
される。
Next, changing the air flow rate is the method that can be reflected in the furnace condition most quickly, and the stabilizing power of reflecting the furnace condition against the change (it only needs to be determined including the amount of change within the latest possible 211, and the first action is The final action is determined by subtracting the air volume changes adopted in the past 211 from the air volume reduction instructed in .

実  施  例 以下、実施例を説明する。Example Examples will be described below.

第5図は本発明の実施例による炉熱コントロール例を示
すもので、第5図(a)、(I))、(C)、(d)お
よび(e)はそれぞれ操業時刻とH,M丁、 (J o
 )、△■0ランク、送風温度、送風量a5よび1次判
定の送風温度(BT)との関係を示すグラフである。
FIG. 5 shows an example of furnace heat control according to an embodiment of the present invention. Ding, (J o
), Δ■0 rank, air blowing temperature, air blowing amount a5, and a graph showing the relationship between the air blowing temperature (BT) of the primary determination.

1)まず、第4図(a)および(1))に示す11.M
、T、 (jo )と△王Qランクにより第5図(e)
に示す1次判定(送風温度)が提示される。
1) First, 11. shown in FIGS. 4(a) and (1)). M
, T, (jo) and △King Q rank in Figure 5(e)
The primary determination (blow temperature) shown in is presented.

2)次に、アクション履歴によって1次判定が児直され
、第5図(C)および(d)に示ずように送風温度と送
風量の変更が指示される。
2) Next, the primary determination is corrected based on the action history, and instructions are given to change the air blowing temperature and air blowing amount as shown in FIGS. 5(C) and (d).

3)とくに注目されるのは7時におけるアクションであ
る。
3) The action at 7 o'clock is particularly noteworthy.

(■)1次判定BT−1−20℃(アクション4型)(
II)△BT (8H) = +30°CCI)と(I
I)からアクション量BV−30ON m’ /M i
 n(アクション5型)が指示される。
(■) Primary judgment BT-1-20℃ (Action 4 type) (
II) △BT (8H) = +30°CCI) and (I
I) to action amount BV-30ON m'/M i
n (action type 5) is instructed.

4)この結果、8時ごろがら溶銑温度が回復した。4) As a result, the temperature of the hot metal recovered around 8 o'clock.

5)この一連のアクションはオペレーターのアクション
とほぼ同等程度の精度であった。
5) This series of actions had almost the same accuracy as the operator's actions.

〈発明の効果〉 以上説明したように、本発明は、炉下部の熱バランスを
推定する熱バランスモデルから求まる熱バランス変化と
溶銑温度を所定範囲にそれぞれ区分し、炉熱動向ランク
を定め、各炉熱動向ランク毎に予め操業条件を設定する
と共に、炉熱判定時の熱バランス変化量と溶銑温度から
前記操業条件を選定し、炉熱判定に至る間の溶銑温度の
履歴情報及びコークス比、湿分、送風温度、送風量の既
実施操業条件の各履歴情報に応じて前記操業条件を基準
として、基準を含む前後の操業条件の中から操業条件を
選択して高炉操業を行なうことを特徴とするものである
<Effects of the Invention> As explained above, the present invention classifies the heat balance change and hot metal temperature found from the heat balance model that estimates the heat balance in the lower part of the furnace into predetermined ranges, determines the furnace heat trend rank, and The operating conditions are set in advance for each furnace heat trend rank, and the operating conditions are selected from the heat balance change amount and hot metal temperature at the time of furnace heat determination, and the history information of the hot metal temperature and coke ratio during the period leading up to the furnace heat determination, The blast furnace is operated by selecting operating conditions from the previous and subsequent operating conditions including the reference, based on the operating conditions according to historical information of previously implemented operating conditions such as humidity, air temperature, and air flow amount. That is.

従って、本発明法【こより高炉の炉熱コン[へロールを
行ない操業づることによって、以下の効果が確認された
Therefore, the following effects were confirmed by operating the blast furnace using the method of the present invention.

1、レベルの高いオペレーターと同等の炉熱コン1へロ
ールh(可能となった。
1. Roll h (now possible) to the furnace heat controller 1 equivalent to a high-level operator.

2、操業アクションの完全な標準化h”なされオペレー
ター間のバフツキが著しく減少できた。
2. Complete standardization of operational actions has been achieved, significantly reducing variations between operators.

3、人1]な炉熱低下がなく、これに伴う高炉の減産が
なくなった。
3. There was no significant drop in furnace heat, and the resulting reduction in blast furnace production was eliminated.

4、溶銑品質が安定した。4. The quality of hot metal has become stable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明法に係る炉熱」ン1へロールシスデムの
一例の全体の構成を示すノロ−図、第2図(a)および
(1))はぞれぞれ時刻に対J−る溶銑温度、炉熱指数
との関係を示づ一グラフ、第3図は最終アクションのB
T”I:降指示の判定のフロー図、第4図は本発明の実
施例の評価用溶銑;温度の測定方法を示すタイムフロー
図、第5図(a)、(1))、(C)、(d)および(
e)はそれぞれ本発明の詳細な説明でるタイムフロー図
、第6図(a)、(1〕)および(C)はそれぞれ高炉
出銑時の溶銑ンB度の経時変化、ラップ出銑時の変化及
びタップ間の偏差を示すグラフである。
FIG. 1 is a diagram showing the overall configuration of an example of a furnace heating system according to the present invention, and FIGS. A graph showing the relationship between hot metal temperature and furnace heat index, Figure 3 is B of the final action.
T"I: Flowchart of determination of descending instruction, FIG. 4 is hot metal for evaluation of the example of the present invention; Time flow diagram showing the temperature measurement method, FIG. 5(a), (1)), (C ), (d) and (
e) is a time flow diagram showing a detailed explanation of the present invention, and Figures 6(a), (1]) and (C) are respectively changes over time in hot metal B degree during blast furnace tapping and lap tapping. FIG. 7 is a graph showing changes and deviations between taps. FIG.

Claims (1)

【特許請求の範囲】[Claims] 1)炉下部の熱バランスを推定する熱バランスモデルか
ら求まる熱バランス変化と溶銑温度を所定範囲にそれぞ
れ区分し、炉熱動向ランクを定め、各炉熱動向ランク毎
に予め操業条件を設定すると共に、炉熱判定時の熱バラ
ンス変化量と溶銑温度がら前記操業条件を選定し、炉熱
判定に至る間の溶銑温度の履歴情報及びコークス比、湿
分、送風温度、送風量の既実施操業条件の各履歴情報に
応じて前記操業条件を基準として、基準を含む前後の操
業条件の中から操業条件を選択して高炉操業を行なうこ
とを特徴とする高炉の操業方法。
1) Classify the heat balance change and hot metal temperature found from the heat balance model that estimates the heat balance in the lower part of the furnace into predetermined ranges, determine furnace heat trend ranks, and set operating conditions in advance for each furnace heat trend rank. , select the operating conditions based on the heat balance change amount and hot metal temperature at the time of furnace heat determination, and select the history information of hot metal temperature and the existing operating conditions of coke ratio, moisture, air blowing temperature, and air blowing amount until furnace heat judgment. A method for operating a blast furnace, characterized in that, based on the operating conditions, the operating conditions are selected from among the operating conditions before and after the operating conditions including the reference, and the blast furnace is operated.
JP14980988A 1988-06-17 1988-06-17 Blast furnace operation method Expired - Fee Related JP2724365B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14980988A JP2724365B2 (en) 1988-06-17 1988-06-17 Blast furnace operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14980988A JP2724365B2 (en) 1988-06-17 1988-06-17 Blast furnace operation method

Publications (2)

Publication Number Publication Date
JPH01319616A true JPH01319616A (en) 1989-12-25
JP2724365B2 JP2724365B2 (en) 1998-03-09

Family

ID=15483185

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14980988A Expired - Fee Related JP2724365B2 (en) 1988-06-17 1988-06-17 Blast furnace operation method

Country Status (1)

Country Link
JP (1) JP2724365B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221820A (en) * 2011-03-28 2011-10-19 首钢总公司 Model for controlling direction-changing period of burning of blast-furnace top combustion stove in optimized manner
CN104503230A (en) * 2014-11-25 2015-04-08 中冶南方工程技术有限公司 Decoupling control method for blast furnace slag treatment system under configuration of multiple tapping holes
CN109815282A (en) * 2018-12-03 2019-05-28 江苏省沙钢钢铁研究院有限公司 A kind of ironmaking system big data platform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102221820A (en) * 2011-03-28 2011-10-19 首钢总公司 Model for controlling direction-changing period of burning of blast-furnace top combustion stove in optimized manner
CN104503230A (en) * 2014-11-25 2015-04-08 中冶南方工程技术有限公司 Decoupling control method for blast furnace slag treatment system under configuration of multiple tapping holes
CN109815282A (en) * 2018-12-03 2019-05-28 江苏省沙钢钢铁研究院有限公司 A kind of ironmaking system big data platform

Also Published As

Publication number Publication date
JP2724365B2 (en) 1998-03-09

Similar Documents

Publication Publication Date Title
JP6930507B2 (en) Hot metal temperature prediction method, hot metal temperature prediction device, blast furnace operation method, operation guidance device, hot metal temperature control method, and hot metal temperature control device
US20150337404A1 (en) Method and device for predicting, controlling and/or regulating steelworks processes
JP2022014169A (en) Operation guidance method, blast furnace operation method, production method of hot metal, and operation guidance device
JPH01319616A (en) Method of operating blast furnace
WO1999023262A1 (en) Method of operating blast furnace
JPH02115311A (en) Method for controlling heat of blast furnace
Larsen et al. Intelligent control of cupola melting
JP3099322B2 (en) Blast furnace heat management method
JPH0248196B2 (en) KOOKUSURONOHIOTOSHIJIKANSEIGYOHOHO
JP2696114B2 (en) Blast furnace operation management method
JP2007077427A (en) Device for controlling thickness of raw material layer in bell-less blast furnace, and controlling method therefor
JP2000309817A (en) Converter blowing method
US20010052272A1 (en) Production of high titania slag from ilmenite
JPH01319615A (en) Method of operating blast furnace
CA1165561A (en) Blast furnace control method
US6733561B2 (en) Production of high titania slag from ilmenite
JPH0812349A (en) Method for controlling metal mold temperature of glass forming machine
JPH0433846B2 (en)
Kronberger et al. Latest generation sinter process optimization systems
CN116182564B (en) Intelligent control system for ignition furnace of sintering machine
JPH04103703A (en) Method and device for controlling heat of blast furnace
RU2252263C1 (en) Device of formation of a converter process control
JPS61254853A (en) Method for predicting concentration of si in molten iron
JP2737139B2 (en) Blast furnace heat control system
CN115111580A (en) Quantitative control method for slag cooler

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees