JPH0131947Y2 - - Google Patents

Info

Publication number
JPH0131947Y2
JPH0131947Y2 JP14816382U JP14816382U JPH0131947Y2 JP H0131947 Y2 JPH0131947 Y2 JP H0131947Y2 JP 14816382 U JP14816382 U JP 14816382U JP 14816382 U JP14816382 U JP 14816382U JP H0131947 Y2 JPH0131947 Y2 JP H0131947Y2
Authority
JP
Japan
Prior art keywords
plug
barrel
flow rate
outlet
head motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP14816382U
Other languages
Japanese (ja)
Other versions
JPS5953248U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14816382U priority Critical patent/JPS5953248U/en
Publication of JPS5953248U publication Critical patent/JPS5953248U/en
Application granted granted Critical
Publication of JPH0131947Y2 publication Critical patent/JPH0131947Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Aerodynamic Tests, Hydrodynamic Tests, Wind Tunnels, And Water Tanks (AREA)

Description

【考案の詳細な説明】 本考案は風洞等の流路内に置かれた胴のなかを
流れる流体の流量や衝撃波の位置を調整する流量
調整機構に関する。
[Detailed Description of the Invention] The present invention relates to a flow rate adjustment mechanism that adjusts the flow rate and position of shock waves of fluid flowing in a shell placed in a flow path of a wind tunnel or the like.

風洞を用いる航空機の空気取入口系の模型試験
は第1図に示すようにして行われる。
A model test of an aircraft air intake system using a wind tunnel is conducted as shown in Figure 1.

図においてAは図示しない風洞内の風の流れを
示しており、空気取入口の模型1は取付具2によ
つて流れA内に配設される。この模型1は、2段
ランプ1a、スロート部ランプ1b、リアランプ
1cを有し、その内部に形成される胴3内の想定
エンジン面4で圧力を計測して実験が行われる。
In the figure, A indicates a flow of wind in a wind tunnel (not shown), and a model 1 of an air intake port is disposed within the flow A by means of a fixture 2. This model 1 has a two-stage lamp 1a, a throat lamp 1b, and a rear lamp 1c, and experiments are conducted by measuring pressure at an assumed engine surface 4 in a shell 3 formed inside the model 1.

そして、胴3内の空気流量或いは衝撃波位置の
制御は胴3の下流側出口近傍に配設される流量調
整機構5によつて行われるが、第2図に該機構の
詳細が示されている。
The air flow rate or shock wave position within the shell 3 is controlled by a flow rate adjustment mechanism 5 disposed near the outlet on the downstream side of the shell 3, and the details of this mechanism are shown in Fig. 2. .

胴3の径とほぼ等しい径を有する錐形のプラグ
6は摺動可能にカバー7の先端部に嵌装されてい
る。プラグ6は、その軸芯が胴3の軸芯と一致せ
しめられ、カバー7内に収納されるリニヤヘツド
モータ8により該軸芯方向に前後に摺動されてプ
ラグ6と胴3の出口3aとの間隔を調節すること
によつて流量或いは衝撃波の位置を調整するよう
になつている。
A conical plug 6 having a diameter approximately equal to the diameter of the barrel 3 is slidably fitted to the tip of the cover 7. The plug 6 has its axis aligned with the axis of the shell 3, and is slid back and forth in the direction of the axis by a linear head motor 8 housed in the cover 7, thereby connecting the plug 6 and the outlet 3a of the shell 3. By adjusting the interval between the two, the flow rate or the position of the shock wave can be adjusted.

特に、航空機の空気取入口における圧力回復効
率向上を図るために行う模型実験では、模型1内
の胴3内を流れる突風による衝撃波の制御や流量
調節が必要であり、プラグ6の迅速な駆動や空気
抵抗対策のためには、リニヤヘツドモータ8は馬
力の比較的大なるものが要求され、また、カバー
7も大型化する等の措置が必要であつた。一方、
風洞による模型実験では、実験データの信頼性を
確保するために、流路面積に対する模型断面積比
(Blockage Ratio)の最大許容値が規制されてい
るので大型のリニヤヘツドモータを使用する流量
調整機構では実験の目的が著しく阻害されること
となつた。
In particular, in model experiments conducted to improve the pressure recovery efficiency in the air intake of an aircraft, it is necessary to control shock waves caused by gusts of wind flowing inside the shell 3 of the model 1 and to adjust the flow rate. In order to counter air resistance, the linear head motor 8 was required to have relatively high horsepower, and the cover 7 also had to be made larger. on the other hand,
In wind tunnel model experiments, in order to ensure the reliability of experimental data, the maximum permissible value of the model cross-sectional area ratio (Blockage Ratio) to the flow path area is regulated, so a flow adjustment mechanism using a large linear head motor is required. This seriously hampered the purpose of the experiment.

本考案に係る流量調整機構は、流路内に配設さ
れる胴の下流側出口近傍に軸芯を胴の軸芯と一致
させて配設される錐形のプラグと、該プラグをそ
の先端部において摺動可能に嵌装するカバーと、
該カバー内に収納されて前記プラグを軸芯方向に
前後に摺動せしめるリニヤヘツドモータとからな
り前記胴の出口とプラグとの間隔を調節すること
によつて胴内の流量を調整するものであるが、前
記プラグを中空にするとともに該プラグの錐面に
孔を穿設するものであつて、後述する如くリニヤ
ヘツドモータが小型であつても十分対応可能であ
り全体も比較的小型化し得た調整機構を提供しう
るものである。
The flow rate adjustment mechanism according to the present invention includes a conical plug disposed near the downstream outlet of a barrel disposed in a flow path with its axis aligned with the axis of the barrel; a cover slidably fitted at the portion;
It comprises a linear head motor that is housed in the cover and slides the plug back and forth in the axial direction, and the flow rate in the barrel is adjusted by adjusting the distance between the outlet of the barrel and the plug. However, since the plug is made hollow and a hole is bored in the conical surface of the plug, it can be used even if the linear head motor is small, as will be described later, and the overall size can be made relatively small. This provides an adjustable adjustment mechanism.

即ち従来技術にあつては胴の出口に対向するプ
ラグを胴より排出する流体の圧力に抗して前進さ
せるためにリニヤヘツドモータの馬力を大きくし
なければならなかつたが、本考案は、錐形のプラ
グを中空にし、その錐面に孔を穿設することによ
り、孔よりプラグ内に流入する流体がプラグに対
し背圧力として作用し、その結果、プラグが流体
により軸芯方向に受ける力が小となり、流体に対
抗してプラグを移動させるリニヤヘツドモータの
馬力も小さくてすむこととなるのである。
That is, in the conventional technology, the horsepower of the linear head motor had to be increased in order to advance the plug facing the outlet of the cylinder against the pressure of the fluid discharged from the cylinder, but the present invention By making the shaped plug hollow and drilling a hole in its conical surface, the fluid flowing into the plug from the hole acts as a back pressure on the plug, and as a result, the force that the plug receives in the axial direction due to the fluid is reduced. This reduces the horsepower of the linear head motor that moves the plug against the fluid.

以下第3図を参照し本考案の一実施例について
説明する。
An embodiment of the present invention will be described below with reference to FIG.

図において、錐形のプラグ6は、第1図と同様
の位置、即ち第1図の模型1内に形成される胴3
の下流側出口近傍に軸芯を胴3の軸芯と一致させ
て配設されるもので、中空に形成されて、錐面の
水平方向(第3図の上下)に孔6a,6bが穿設
されている。また、符号7はプラグ6をその先端
部において摺動可能に嵌装するカバーを示し、ま
た、符号8はプラグ6をその軸芯方向に前後進さ
せるリニヤヘツドモータを示している。
In the figure, the conical plug 6 is located at the same position as in FIG.
It is disposed near the outlet on the downstream side of the barrel with its axis aligned with the axis of the shell 3, and is formed hollow with holes 6a and 6b drilled in the horizontal direction of the conical surface (up and down in Fig. 3). It is set up. Further, reference numeral 7 indicates a cover into which the plug 6 is slidably fitted at its tip, and reference numeral 8 indicates a linear head motor that moves the plug 6 back and forth in its axial direction.

本考案に係る流量調整機構は以上の構成に係る
ものであるから、これを第1図と同様胴3の下流
側出口に配設してプラグ6を前後に移動して胴3
から流出する空気の流量を調整しうるものでリニ
ヤヘツドモータ8により前後に移動するプラグ6
に対し空気抵抗がその表面に作用するが、この場
合錐面に穿設される孔6a,6bから空気がその
中空部に流れ込み、プラグ内側からの背圧力とな
つて作用するものであつて、圧力分布を考慮した
穿孔に基づくプラグの内側からの背圧力によりプ
ラグの錐面に作用する抵抗と相反する方向に力を
作用せしめることとなる。
Since the flow rate adjustment mechanism according to the present invention has the above configuration, it is disposed at the downstream outlet of the barrel 3 as in FIG. 1, and the plug 6 is moved back and forth to adjust the barrel 3.
A plug 6 that can adjust the flow rate of air flowing out from the plug 6 and is moved back and forth by a linear head motor 8.
Air resistance acts on the surface of the plug, but in this case, air flows into the hollow part from the holes 6a and 6b drilled in the conical surface and acts as a back pressure from the inside of the plug. Due to the back pressure from the inside of the plug, which is based on the perforations that take pressure distribution into consideration, a force is applied in a direction opposite to the resistance acting on the conical surface of the plug.

この結果、プラグ6に大なる空気力が作用して
いてもプラグ自身を移動させる力は小さくてす
み、リニヤヘツドモータの馬力も小さくてすみ機
構全体の容積の過大化を回避することができて極
めて有用である。
As a result, even if a large aerodynamic force is acting on the plug 6, the force required to move the plug itself is small, and the horsepower of the linear head motor is also small, making it possible to avoid increasing the volume of the entire mechanism. Extremely useful.

なお、プラグ6の錐面に穿たれる孔6a,6b
は抗力と背圧力とが釣り合つて表面圧力が発生す
る位置で空力的に差の少ないよう左右に設けるの
がよいが、プラグ表面面積を2等分するあたりで
も有効である。また、孔の面積と背圧力の高低と
は直接関係はないが、背圧力の作用開始時間に影
響するので、試験時間を考慮して適宜決めるのが
よい。
Note that holes 6a and 6b formed in the conical surface of the plug 6
It is preferable to provide the plugs on the left and right sides so that there is little aerodynamic difference at the position where the surface pressure is generated by balancing the drag force and the back pressure, but it is also effective to divide the plug surface area into two equal parts. Further, although there is no direct relationship between the area of the hole and the level of back pressure, it does affect the time at which the back pressure starts acting, so it is better to decide appropriately in consideration of the test time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は模型実験の説明図、第2図は従来の流
量調整機構の説明図、第3図は本考案に係る流量
調整機構の一実施例を示す説明図である。 1……模型、2……取付具、3……胴、5……
流量調整機構、6……プラグ、6a,6b……
孔、7……カバー、8……リニヤヘツドモータ。
FIG. 1 is an explanatory diagram of a model experiment, FIG. 2 is an explanatory diagram of a conventional flow rate adjustment mechanism, and FIG. 3 is an explanatory diagram of an embodiment of the flow rate adjustment mechanism according to the present invention. 1...Model, 2...Mounting tool, 3...Body, 5...
Flow rate adjustment mechanism, 6... plug, 6a, 6b...
Hole, 7...Cover, 8...Linear head motor.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 流路内に配設される胴の下流側出口近傍に、軸
芯を胴の軸芯と一致して配設される錐形のプラグ
と、該プラグをその先端部において摺動可能に嵌
装するカバーと、該カバー内に収納されて前記プ
ラグを軸芯方向に前後に摺動させるリニヤヘツド
モータとからなり前記胴の出口とプラグとの間隔
を調節することによつて胴内の流量を調整する機
構において、前記プラグを中空にするとともに該
プラグの錐面に孔を穿設することを特徴とする流
量調整機構。
A conical plug is disposed near the outlet on the downstream side of the barrel disposed in the flow path so that its axis coincides with the axis of the barrel, and the plug is slidably fitted at its tip. A linear head motor is housed in the cover and slides the plug back and forth in the axial direction.The flow rate inside the barrel is adjusted by adjusting the distance between the outlet of the barrel and the plug. A flow rate adjusting mechanism characterized in that the plug is hollow and a hole is bored in a conical surface of the plug.
JP14816382U 1982-09-30 1982-09-30 Flow rate adjustment mechanism Granted JPS5953248U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14816382U JPS5953248U (en) 1982-09-30 1982-09-30 Flow rate adjustment mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14816382U JPS5953248U (en) 1982-09-30 1982-09-30 Flow rate adjustment mechanism

Publications (2)

Publication Number Publication Date
JPS5953248U JPS5953248U (en) 1984-04-07
JPH0131947Y2 true JPH0131947Y2 (en) 1989-10-02

Family

ID=30329268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14816382U Granted JPS5953248U (en) 1982-09-30 1982-09-30 Flow rate adjustment mechanism

Country Status (1)

Country Link
JP (1) JPS5953248U (en)

Also Published As

Publication number Publication date
JPS5953248U (en) 1984-04-07

Similar Documents

Publication Publication Date Title
WO1995021996A1 (en) Fuel supply system for miniature engines
JPH0131947Y2 (en)
CN220884804U (en) Adjustable air inlet device of engine
CN218236264U (en) Gas pressure regulator commander capable of being finely adjusted
CN219865248U (en) Axisymmetric air inlet channel test model center cone adjusting structure
JPS6018371U (en) Lift cylinder flow control valve
JPS58116871U (en) Water flow adjustment device for water heater
SU954959A1 (en) Vortex amplifier
JPH03239941A (en) High speed wind tunnel
JPS6052010U (en) heat steel plate cooling system
JPS596718U (en) air flow detection device
JPS5869217U (en) pneumatic variable resistor
JPS58136274U (en) Nut runner
JPS58151818U (en) Ultrasonic flowmeter for internal combustion engine intake air
JPS5897613U (en) Gas pressure regulator
JPS5828179U (en) 2 position control logic valve
JPS5913757U (en) Fluid constant pressure device
Ericsson The moving wall effect vis-a-vis other dynamic stall flow mechanisms
JPS59110772U (en) Flow control valve of constant flow pump for power steering
JPS6114205U (en) Single acting retractable air cylinder
JPS6144393U (en) Cavity erosion prevention device for marine propellers
JPS5997346U (en) air volume regulator
JPS58108671U (en) thermostatic expansion valve
JPS6092734U (en) Eddy current control device
JPS58169275U (en) Throttle valve with check valve