JPH03239941A - High speed wind tunnel - Google Patents

High speed wind tunnel

Info

Publication number
JPH03239941A
JPH03239941A JP3621890A JP3621890A JPH03239941A JP H03239941 A JPH03239941 A JP H03239941A JP 3621890 A JP3621890 A JP 3621890A JP 3621890 A JP3621890 A JP 3621890A JP H03239941 A JPH03239941 A JP H03239941A
Authority
JP
Japan
Prior art keywords
nozzle
ejector
wind tunnel
pressure
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3621890A
Other languages
Japanese (ja)
Inventor
Kiichi Fukumoto
福本 喜一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP3621890A priority Critical patent/JPH03239941A/en
Publication of JPH03239941A publication Critical patent/JPH03239941A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently control the mixing of ejector outflow gas and a primary fluid by providing a slide mechanism for moving an outlet position of an ejector nozzle, and a contraction mechanism for varying a cross-sectional area of the nozzle. CONSTITUTION:An ejector nozzle 7 is provided on a contraction part of a back flow of a measuring part of a high speed wind tunnel, and by forming an ejector fitting part 8 by a slide plane type and moving an outlet position of the nozzle 7 in the axial direction of a wind tunnel passage, an interval between a nozzle outlet and an ejector outer cylinder 5 is controlled. Also, by forming the nozzle 7 by a focus plane type, making a cross-sectional area of the nozzle variable and varying a flow velocity of an ejector outlet, and mixing with a primary fluid of a wind tunnel nozzle part 3 is controlled. In such a way, by the interlocking control of pressure 11 of a flow straighting cylinder part, pressure of gas 13 supplied to an ejector 6, a position of the fitting part 8, and an opening of a hole of the nozzle 7, and air flow state of the wind tunnel is stabilize, and by feeding back a ratio of side wall pressure of the wind tunnel nozzle part 3 and the pressure 11 of the flow straighting cylinder part, the control of the position of the fitting part 8 and the opening of the hole of the nozzle 7 can be stabilized.

Description

【発明の詳細な説明】 〔卒業上の利用分野〕 本発明は、高速風洞、特に風洞始動時に自在に千カ低下
できる高速風洞に関するもので、ダクト内の高速流の自
動調節にも適用できる。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application] The present invention relates to a high-speed wind tunnel, and particularly to a high-speed wind tunnel that can freely lower the power at the time of wind tunnel startup, and can also be applied to automatic adjustment of high-speed flow in a duct.

ご従来の技術〕 第5図:ま従来の超音速風洞の一例を示す縦断面図であ
る。図中(1)は整流筒部、(2)は第1スロート喉部
)、 r3)は風洞7ノズル部(供試体の入る計測部)
、f4Cよ第2スロート、(5)はエノエクタ外筒、(
6)はエジェクタ、(7)はエジェクタノズルをそれぞ
れ示す。
Prior Art FIG. 5 is a vertical sectional view showing an example of a conventional supersonic wind tunnel. In the figure, (1) is the rectifying cylinder part, (2) is the first throat part), and r3) is the wind tunnel 7 nozzle part (the measurement part where the specimen enters).
, f4C is the second throat, (5) is the Enoecta outer cylinder, (
6) indicates an ejector, and (7) indicates an ejector nozzle.

上記第1および第2のスロー)(2)、 (4)の面積
は、風洞内の気流の整定に関係するもので、第2のスロ
ート(4)は、計測部(3)に衝撃波が存在しなくなる
よう、コントロールされる。この種の風洞においてはま
た、エジェクタノズル(7)の後流の圧力を下げること
によって、計測部(3)の圧力を下げることができる。
The areas of the first and second throws) (2) and (4) are related to the settling of the airflow in the wind tunnel, and the area of the second throat (4) is determined by the presence of shock waves in the measurement section (3). It is controlled so that it does not occur. In this type of wind tunnel, the pressure in the measuring section (3) can also be lowered by lowering the pressure in the wake of the ejector nozzle (7).

そうすると、計測部(3)に入っている供試体に加わる
荷重が大幅に削減でき、センサーや供試体を保護できる
。また、高速風洞で風洞内を超音速にするには、整流筒
部(1)とエジェクタノズル(7)後方の圧力比によっ
て成立条件が異ってくるが、いずれにしても超音速とな
る場合は、始動荷重(風洞内に超音速領域が整定された
状態)がこの圧力比により変わってくる。したがって、
できるだけ圧力比を小さくし、しかも超音速となるよう
にしなければならない。
By doing so, the load applied to the specimen contained in the measurement section (3) can be significantly reduced, and the sensor and the specimen can be protected. In addition, in order to achieve supersonic speed inside the wind tunnel in a high-speed wind tunnel, the conditions for achieving supersonic speed vary depending on the pressure ratio behind the rectifier tube section (1) and the ejector nozzle (7), but in any case, when supersonic speed is achieved, The starting load (the state in which the supersonic region has been established in the wind tunnel) changes depending on this pressure ratio. therefore,
It is necessary to reduce the pressure ratio as much as possible and to achieve supersonic speed.

上記従来の超音速風洞においては、エジェクタノズル(
7)の断面積およびエジェクタ(6)の取付部(8)は
固定であり、風洞ノズル部(3)の流体(12)を−度
定めた後は、整流筒部(1)の圧力およびエジェクタへ
注入する流体(13)の圧力を適当に調節して、流体(
12)の状態を安定にする。
In the conventional supersonic wind tunnel mentioned above, the ejector nozzle (
The cross-sectional area of 7) and the mounting part (8) of the ejector (6) are fixed, and after the fluid (12) in the wind tunnel nozzle part (3) is determined, the pressure in the rectifier cylinder part (1) and the ejector are fixed. By appropriately adjusting the pressure of the fluid (13) injected into the fluid (13),
12) Stabilize the condition.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記従来の高速風洞には次のような問題点があった。 The conventional high-speed wind tunnel has the following problems.

1)風洞内の高速流体を始動する時、従来は整流筒圧力
とエジェクタ圧力をある一定の圧力にして流体を流して
いたが、始動状態が途中でくずれた場合のコントロール
が困難であった。
1) When starting high-speed fluid in a wind tunnel, conventionally the fluid was allowed to flow by keeping the rectifier cylinder pressure and ejector pressure at a certain pressure, but it was difficult to control if the starting condition collapsed midway.

2) 風洞の始動には圧力の微妙なコントロールが4・
要であるが、整流筒圧力とエジェクタ圧力のコントロー
ルだけでは余裕がない。
2) Starting the wind tunnel requires delicate control of pressure.
Although it is important, controlling the rectifier cylinder pressure and ejector pressure alone is insufficient.

3) 高速流体を低圧にするためには、エジェクタによ
り風洞の背圧(第5回の符号(15) )を下げる必要
があるが、この時エジェクタノズル(7)出口とエジェ
クタ外筒(5)の形状のマツチングおよびエジェクタの
出口速度(第5図串打号(14) )によって流体状態
は非常に異り、流体は低圧を保持できず、始動がくずれ
て振動を生しる。
3) In order to lower the pressure of the high-speed fluid, it is necessary to reduce the back pressure in the wind tunnel (code (15) in Part 5) using the ejector, but at this time, the ejector nozzle (7) outlet and the ejector outer cylinder (5) The fluid condition is very different depending on the shape matching and the ejector exit velocity (Figure 5, skewer number (14)), and the fluid cannot maintain a low pressure, causing failure in starting and vibration.

〔課題を解決するための手段] 本発明は、前記従来の課題を解決するために、測定部後
流の縮流部にエジェクタノズルを備えた高速風洞におい
て、上記エジェクタノズルの出口位置を風洞流路の軸方
向に移動させるスライド機構と、上記エジェクタノズル
のノズル断面積を変化させる絞り機構を設けたことを特
徴とする高速風洞を提案するものである。
[Means for Solving the Problems] In order to solve the above-mentioned conventional problems, the present invention provides a high-speed wind tunnel in which an ejector nozzle is provided in a flow contraction section downstream of a measurement section, and the exit position of the ejector nozzle is adjusted to the wind tunnel flow. The present invention proposes a high-speed wind tunnel characterized by being provided with a slide mechanism that moves the ejector nozzle in the axial direction, and a throttle mechanism that changes the nozzle cross-sectional area of the ejector nozzle.

(作用〕 1) エジェクタノズルの出口位置を風洞流路の軸方向
に可動とすることにより、エジェクタノズル出口とエジ
ェクタ外筒(外壁)との間隔すなわち面積をコントロー
ルする。
(Function) 1) By making the exit position of the ejector nozzle movable in the axial direction of the wind tunnel flow path, the interval or area between the ejector nozzle exit and the ejector outer cylinder (outer wall) is controlled.

2) エジェクタノズルの断面積を可変にすることによ
り、エジェクタ出口の流速を変え、I!I洞ノズル部(
計測部)の−次流体との流れの混合具合(ミキノング)
を効率よくコントロールする。
2) By making the cross-sectional area of the ejector nozzle variable, the flow velocity at the ejector outlet can be changed and I! I-song nozzle part (
Mixing condition of the flow with the next fluid (measuring part) (Mikinong)
control efficiently.

3) 整流筒部とエジェクタ入口の流体圧力および上記
1)、 2)の連動制御により、liI洞流体流体記−
次流体)の始動状態を安定化する。
3) Due to the fluid pressure at the rectifying cylinder and the ejector inlet and the interlocking control of 1) and 2) above, the fluid pressure in the liI sinus is reduced.
Stabilizes the starting conditions of the following fluids.

4)風洞ノズル部(計測部)の圧力検出を行なって制御
対象部にフィードバンクすれば、上記1)2)のコント
ロールを安定化できる。
4) By detecting the pressure in the wind tunnel nozzle section (measuring section) and feeding it to the control target section, the control in 1) and 2) above can be stabilized.

〔実施例〕〔Example〕

第1図は本発明の一実施例を示す継断面図、第2図は同
しくエジェクタノズル部の拡大図、第3図は第2図の■
−■断面図、第4図は第2図の■■断面図である。これ
らの図において、前記第5図により説明した従来のもの
と同様の部分については、冗長になるのを避けるため、
同一の符号を付けて詳しい説明を省く。
Fig. 1 is a joint sectional view showing one embodiment of the present invention, Fig. 2 is an enlarged view of the ejector nozzle portion, and Fig. 3 is a cross-sectional view of Fig. 2.
-■ Cross-sectional view, FIG. 4 is a ■■ cross-sectional view of FIG. In these figures, to avoid redundancy, the same parts as the conventional one explained with reference to FIG.
The same reference numerals are used to omit detailed explanation.

本実施例においては、第2図に示すエジェクタノズル部
を第3図のようにフォーカスプレーンタイプ;こし、自
動により穴(21)の開度を自由自在に制御′Bする。
In this embodiment, the ejector nozzle shown in FIG. 2 is of a focus plane type as shown in FIG. 3, and the opening degree of the hole (21) is automatically controlled as desired.

また、第1図、第2図に示すエジェクタ取付部(8)を
第4図のようにスライドブレーンタイプにし、自動Qこ
より位置を自在走査し制御する。
Further, the ejector mounting portion (8) shown in FIGS. 1 and 2 is of a slide brain type as shown in FIG. 4, and the automatic Q-row position is freely scanned and controlled.

この時、スライド部に切欠き部ができないよう、スライ
ドプレート(22)を設け、エジェクタの移動と同時に
移動して流路をふさく機構とする。エジェクタに接続の
配管は、エジェクタの移動に対してフレキシブルな配管
にする。
At this time, a slide plate (22) is provided so that a notch is not formed in the slide portion, and the slide plate (22) is a mechanism that moves simultaneously with the movement of the ejector to block the flow path. The piping connected to the ejector should be flexible to accommodate the movement of the ejector.

上記穴(21)の開度制御および上記スライドプレー 
ト(22)の位置制御には、風洞ノズル部(計測部)(
3)の側壁圧力と整流筒部(1)の圧力の比をフィード
バックすることによりコントロールする。この比はコン
ピュータにより、圧力を検出し、計算して求める。風洞
の気流状態を安定にするため、整流筒部(+1の圧力(
工1)、エジェクタ(6)に供給される流体(13)の
圧力、エジェクタノズル(7)の位置(エジェクタ取付
部(8)の位置)、エジェクタノズル(7)の穴(21
)の開度の連動制御を行なう。
Opening control of the hole (21) and slide play
To control the position of (22), the wind tunnel nozzle part (measuring part) (
3) is controlled by feeding back the ratio of the side wall pressure and the pressure of the rectifier cylinder (1). This ratio is determined by detecting and calculating the pressure using a computer. In order to stabilize the airflow condition in the wind tunnel, the rectifier tube (+1 pressure (
1), the pressure of the fluid (13) supplied to the ejector (6), the position of the ejector nozzle (7) (the position of the ejector mounting part (8)), the hole (21) of the ejector nozzle (7)
) is used to control the opening degree of the

さて、風洞では、最終的に気流の速度(マンハ数)の大
小か問題となる。このマツハ数は整流筒部(1)の圧力
と風洞ノズル部(計測部)(3)の側壁圧力の比で決ま
ってくる。エジェクタ(6)を使用する目的は、風洞ノ
ズル部(計測部)(3)の圧力を下げることにある。圧
力が下がると整流筒部(1)の圧力は小さくてすむこと
になる。整流筒部(1)の圧力が下がると、風洞ノズル
部(計測部)(3)に入っている供試体に加わる圧力に
よる荷重が小さくてすむ。
Now, in a wind tunnel, the final question is whether the speed of the airflow (Mancha number) is large or small. This Matsuha number is determined by the ratio of the pressure in the rectifying cylinder part (1) and the side wall pressure in the wind tunnel nozzle part (measuring part) (3). The purpose of using the ejector (6) is to lower the pressure in the wind tunnel nozzle section (measuring section) (3). When the pressure decreases, the pressure in the rectifier tube (1) can be reduced. When the pressure in the rectifying cylinder section (1) is reduced, the load due to the pressure applied to the specimen contained in the wind tunnel nozzle section (measuring section) (3) can be reduced.

上記エジェクタの性能は、所望のマツハ数や圧力によっ
て適宜変えることができれば、その分最適のエジェクタ
効率が得られることになる。本実施例では、エジェクタ
ノズル(7)の断面積(穴(21)の面積)すなわちエ
ジェクタの吹出しマツハ数を変え、またエジェクタ出口
の位置変更、すなわち風洞の外形形状との関連により、
このエジェクタ効率を向上させるのである。
If the performance of the ejector can be changed appropriately depending on the desired number and pressure, the optimum ejector efficiency can be obtained accordingly. In this example, the cross-sectional area (area of the hole (21)) of the ejector nozzle (7), that is, the number of blowouts of the ejector, is changed, and the position of the ejector outlet is changed, that is, in relation to the external shape of the wind tunnel.
This improves the ejector efficiency.

上記のように本実施例では、エジェクタの位置、大きさ
(寸度)を流体が流れている間に自動的に調節すること
により、ダクトの流路内の圧力を低圧にする。そして、
このエジェクタは、流路内の流体速度が高速の場合に効
果を出すものであり、流体の始動条件を検出し、エジェ
クタの可動機構にフィードバックをかけて自動調節に入
る。この場合流体の始動が要であり、始動状態がくずれ
た時には、たたらにこれを回復させるものである。
As described above, in this embodiment, the pressure in the flow path of the duct is lowered by automatically adjusting the position and size (dimensions) of the ejector while the fluid is flowing. and,
This ejector is effective when the fluid velocity in the flow path is high, and detects the fluid starting condition and applies feedback to the ejector's movable mechanism to enter automatic adjustment. In this case, starting the fluid is essential, and when the starting condition is lost, it is necessary to quickly restore the starting condition.

ご発明の効@Q 本発明によれば次の効果が得られる。Effect of your invention @Q According to the present invention, the following effects can be obtained.

1) エジェクタ流出気体と風洞−様流(前記−次流)
のミキシングを効率良く制御できる。
1) Ejector outflow gas and wind tunnel-like flow (above - next flow)
Mixing can be controlled efficiently.

2) エジェクタ出口の流体の出ロマノハ数(速度)を
可変とし、ミキシング効率を向上させる。
2) The Romanoha number (velocity) of the fluid at the ejector outlet is made variable to improve mixing efficiency.

3)風洞流体の始動状態が安定化する。3) The starting conditions of the wind tunnel fluid are stabilized.

【図面の簡単な説明】[Brief explanation of drawings]

第1圓は本発明の一実施例を示す縦断面図、第2図は同
しくエジェクタノズル部の拡大閲、第3図は第2図の■
−■断面図、第4図は第2図の■■断面図である。第5
図は従来の超音速風洞の一例を示す縦断面図である。 (1)・・・整流筒部、   (2)・・・第1スロー
ト(喉部)、(3)・・・風洞ノズル部(計測部)、(
4)・・・第2スロート、 (5)・・・エジェクタ外
筒、(6)・・・エジェクタ、  (7)・・・エジェ
クタノズル、(8)・・・エジェクタ取付部。
The first circle is a vertical sectional view showing one embodiment of the present invention, FIG. 2 is an enlarged view of the ejector nozzle portion, and FIG.
-■ Cross-sectional view, FIG. 4 is a ■■ cross-sectional view of FIG. Fifth
The figure is a longitudinal sectional view showing an example of a conventional supersonic wind tunnel. (1)... Rectifying tube part, (2)... First throat (throat part), (3)... Wind tunnel nozzle part (measurement part), (
4)...Second throat, (5)...Ejector outer cylinder, (6)...Ejector, (7)...Ejector nozzle, (8)...Ejector mounting portion.

Claims (1)

【特許請求の範囲】[Claims] 測定部後流の縮流部にエジェクタノズルを備えた高速風
洞において、上記エジェクタノズルの出口位置を風洞流
路の軸方向に移動させるスライド機構と、上記エジェク
タノズルのノズル断面積を変化させる絞り機構を設けた
ことを特徴とする高速風洞。
In a high-speed wind tunnel equipped with an ejector nozzle in a flow contraction section downstream of the measuring section, a slide mechanism that moves the exit position of the ejector nozzle in the axial direction of the wind tunnel flow path, and a throttle mechanism that changes the nozzle cross-sectional area of the ejector nozzle. A high-speed wind tunnel characterized by the installation of
JP3621890A 1990-02-19 1990-02-19 High speed wind tunnel Pending JPH03239941A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3621890A JPH03239941A (en) 1990-02-19 1990-02-19 High speed wind tunnel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3621890A JPH03239941A (en) 1990-02-19 1990-02-19 High speed wind tunnel

Publications (1)

Publication Number Publication Date
JPH03239941A true JPH03239941A (en) 1991-10-25

Family

ID=12463627

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3621890A Pending JPH03239941A (en) 1990-02-19 1990-02-19 High speed wind tunnel

Country Status (1)

Country Link
JP (1) JPH03239941A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374543A (en) * 2014-11-06 2015-02-25 沈阳黎明航空发动机(集团)有限责任公司 Device for studying airflow mixing characteristics
CN104390529A (en) * 2014-12-12 2015-03-04 中国航天空气动力技术研究院 Half-free flight shrapnel dispersion separation wind tunnel testing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374543A (en) * 2014-11-06 2015-02-25 沈阳黎明航空发动机(集团)有限责任公司 Device for studying airflow mixing characteristics
CN104390529A (en) * 2014-12-12 2015-03-04 中国航天空气动力技术研究院 Half-free flight shrapnel dispersion separation wind tunnel testing system

Similar Documents

Publication Publication Date Title
KR100416176B1 (en) Transformation shoulder system and method for boundary layer air conversion
US9932991B2 (en) Active swirl device for turbocharger compressor
US5833139A (en) Single variable flap exhaust nozzle
CA1065621A (en) Cooling system for a thrust vectoring gas turbine engine exhaust system
WO2020134005A1 (en) Throat offset pneumatic vector nozzle having asymmetric rear body profile
JP4658542B2 (en) Method and apparatus for a flade engine nozzle
JP2009145036A (en) Airflow mixing apparatus
US5211057A (en) Nozzle diffuser for use with an open test section of a wind tunnel
JPH03239941A (en) High speed wind tunnel
JP2000097111A (en) Egr device for supercharger engine
JPH074311A (en) Area variable type tapered/divergent nozzle
CN114738118A (en) Hypersonic air inlet channel instability early warning and control mechanism design method
JPH09145534A (en) Supersonic nozzle
JPH03100359A (en) Exhaust nozzle hinge
JPH0324573B2 (en)
CN106382136A (en) Transonic speed movable blade top gap active control device
JPS61175233A (en) Intake device of direct-injection diesel engine
JPS5670111A (en) Flow direction controller
JPS58195012A (en) Suction system of engine
JPH0356782A (en) Flow control valve
JPH09195709A (en) Steam governing valve device
JPH04128515A (en) Intake for supersonic aircraft
CN115672670A (en) Air supply system and control method thereof
JP2002021587A (en) Intake device for internal combustion engine
JPH0351633Y2 (en)