JPS58195012A - Suction system of engine - Google Patents
Suction system of engineInfo
- Publication number
- JPS58195012A JPS58195012A JP57077274A JP7727482A JPS58195012A JP S58195012 A JPS58195012 A JP S58195012A JP 57077274 A JP57077274 A JP 57077274A JP 7727482 A JP7727482 A JP 7727482A JP S58195012 A JPS58195012 A JP S58195012A
- Authority
- JP
- Japan
- Prior art keywords
- load
- valve
- temperature
- opening
- intake passage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002485 combustion reaction Methods 0.000 claims description 15
- 230000007423 decrease Effects 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims 1
- 239000000446 fuel Substances 0.000 abstract description 33
- 238000000889 atomisation Methods 0.000 abstract description 15
- 239000000203 mixture Substances 0.000 abstract description 8
- 230000001737 promoting effect Effects 0.000 abstract description 2
- 230000008020 evaporation Effects 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 238000009834 vaporization Methods 0.000 description 17
- 230000008016 vaporization Effects 0.000 description 17
- 238000013459 approach Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 241000272201 Columbiformes Species 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/04—Modifying induction systems for imparting a rotation to the charge in the cylinder by means within the induction channel, e.g. deflectors
- F02B31/06—Movable means, e.g. butterfly valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B31/00—Modifying induction systems for imparting a rotation to the charge in the cylinder
- F02B31/08—Modifying induction systems for imparting a rotation to the charge in the cylinder having multiple air inlets
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/10242—Devices or means connected to or integrated into air intakes; Air intakes combined with other engine or vehicle parts
- F02M35/10255—Arrangements of valves; Multi-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M35/00—Combustion-air cleaners, air intakes, intake silencers, or induction systems specially adapted for, or arranged on, internal-combustion engines
- F02M35/10—Air intakes; Induction systems
- F02M35/104—Intake manifolds
- F02M35/108—Intake manifolds with primary and secondary intake passages
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B2275/00—Other engines, components or details, not provided for in other groups of this subclass
- F02B2275/20—SOHC [Single overhead camshaft]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
Abstract
Description
【発明の詳細な説明】 この発明はエンジンの吸気装置に関する。[Detailed description of the invention] This invention relates to an engine intake system.
従来、エンジンの吸気装置としては、少なくとも燃焼室
近傍において独立した低負荷用吸気通路と高負荷用吸気
通路とを備え、その高負荷用吸気通路に設定負荷以上で
開作動する開閉弁を備えて、吸入空気量の少ない低負荷
時(・ては低負荷用吸気通路°からのみ空気を供給して
、その流速を早めて、スワールを強化し、燃料の霧化、
気化を促進して、燃焼性能、燃費性能、運転性を向上さ
せる一方、吸入空気量の多い高負荷時には低負荷用吸気
通路および高負荷用吸気通路から空気を供給するように
して、充填効率、出力性能を向上させるよう1(したも
のが提案されている(実開昭54−61118号)。Conventionally, an engine intake system has been equipped with an independent low-load intake passage and a high-load intake passage at least near the combustion chamber, and the high-load intake passage is equipped with an on-off valve that opens and closes when the load exceeds a set load. , At low load with a small amount of intake air (・at low load), air is supplied only from the low load intake passage to increase the flow velocity, strengthen the swirl, and atomize the fuel.
While promoting vaporization to improve combustion performance, fuel efficiency, and drivability, at high loads with a large amount of intake air, air is supplied from the low-load intake passage and the high-load intake passage, improving charging efficiency and 1 has been proposed in order to improve the output performance (Utility Model Application No. 54-61118).
ところで、燃料の霧化、気化の良否は、エンジンの温度
に依存し、エンジン温度が高くなると、燃料は霧化、気
化しやすくなり、エンジン温度が低くなると、燃′F+
は霧化、気化しにくくなる。したがって、エンジン温度
が低いときには、エンジン温度が高いときに比べて、開
閉弁を開き始めるべき設定負荷をエンジン温度の低下に
応じて大きくして、開閉弁を閉じている領域を大きくし
たり、あるいは開閉弁の開度を小さくするように補正制
御して、低負荷用吸気ポートの分担比率を増大させて、
吸入空気の流速を早め、燃料の霧化、気化を良好にする
必要がある。By the way, the quality of atomization and vaporization of fuel depends on the temperature of the engine. As the engine temperature increases, the fuel becomes easier to atomize and vaporize, and as the engine temperature decreases, the fuel 'F+
becomes difficult to atomize and vaporize. Therefore, when the engine temperature is low, compared to when the engine temperature is high, the set load at which the on-off valve should start to open is increased in accordance with the decrease in engine temperature, and the area where the on-off valve is closed is increased, or Correction control is performed to reduce the opening degree of the on-off valve, and the sharing ratio of the low-load intake port is increased.
It is necessary to increase the flow rate of intake air to improve fuel atomization and vaporization.
しかるに、上記従来のエンジンの吸気装置は、エンジン
の温度如何に拘らず、上記開閉弁を負荷のみに応じて開
閉制御しているために、エンジンの低温時に燃料の霧化
性、気化性が悪くなり、特に、開閉弁が開き始めて吸入
空気量が増大する低負荷から中負荷への移行領域におい
て、エンジンの霧化性、気化性が悪くなって、燃焼性、
運転性および燃費性能が悪化するという欠点がある。However, in the conventional engine intake system, the opening/closing valve is controlled to open and close only according to the load, regardless of the engine temperature, so that the atomization and vaporization of the fuel are poor when the engine is low temperature. Especially in the transition region from low to medium load, where the on-off valve begins to open and the amount of intake air increases, the atomization and vaporization properties of the engine deteriorate, resulting in combustibility and
This has the disadvantage that drivability and fuel efficiency deteriorate.
そこで、この発明の目的は、開閉弁の開き始めの時期や
開度をエンジン温度に応じて補正制御することにより、
燃料の霧イヒ、気化を良好にして、燃焼性能を改善して
、トルク変動をなくし、運転性を向上させ、かつ、混合
気ケ薄くすることを可ガ。Therefore, an object of the present invention is to correct and control the opening timing and opening degree of the on-off valve according to the engine temperature.
It improves fuel mist and vaporization, improves combustion performance, eliminates torque fluctuations, improves drivability, and makes it possible to thin the air-fuel mixture.
能にして、燃費性能を向上し得るエンジンの吸気装置を
新規に提供することにある。An object of the present invention is to provide a new intake system for an engine that can improve fuel efficiency.
このため、この発明のエンジンの吸気装置は、高負荷用
吸気通路に設けられて設定負荷以上で開作動する開閉弁
を制御する制御装置に、エンジン温度を検出する温度セ
ンサの出力を人力して、上記制御装置からの出力によっ
て上記開閉弁をエンジン温度の低下に応じて閉方向に補
正制御することにより、エンジン温度の低下に応じて、
低負荷用吸気通路の分担比率を高め、特に、低負荷から
中負荷への領域、中負荷から高負荷への領域において低
負荷用吸気通路の分担比率を高めて、空気の流速を早め
、スワールを強化して、燃料の霧化1気化を促進し、燃
焼性能を向上させて、運転性を向上し得、さらに燃費性
能を向上し得るようにしたことを特徴としている。Therefore, the engine intake system of the present invention manually transmits the output of a temperature sensor that detects engine temperature to a control device that controls an on-off valve that is installed in a high-load intake passage and opens and closes when the load exceeds a set load. , by correcting and controlling the opening/closing valve in the closing direction according to the decrease in engine temperature using the output from the control device, so that according to the decrease in engine temperature,
Increasing the sharing ratio of the low-load intake passage, especially in the range from low to medium load and from medium to high load, increases the air flow velocity and improves swirl. It is characterized by strengthening fuel atomization and vaporization, improving combustion performance, improving drivability, and further improving fuel efficiency.
以下、この発明を図示の実施例により詳細に説明する。Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.
第1図におい1て、1はシリンダ、2はシリンダヘッド
、3は訃:゛ストン、4は燃焼室、5は吸気通路、6は
吸気通路5の上流部に形成したベンチュリ部、7はベン
チュリ部6に設けたメインノズル、8はベンチュリ部6
の下流に設けたスロットルレノ(ルプ、11は上記吸気
通路5を燃焼室4の近傍において低負荷用吸気通路12
と高負荷用吸気通路13とに仕切る仕切り壁、1/jは
上記高負荷用吸気通路13の上流端部において回動軸1
5に固定され、高負荷用吸気通路13を開閉する開閉弁
、16は上記吸気通路5の燃焼室4への開口部を開閉し
て低負荷用吸気通路12および高負荷用吸気通路13を
共に開閉する吸気弁、17は排気通路、18は排気弁で
ある。In Fig. 1, 1 is a cylinder, 2 is a cylinder head, 3 is a cylinder, 4 is a combustion chamber, 5 is an intake passage, 6 is a venturi portion formed at the upstream part of the intake passage 5, and 7 is a venturi. Main nozzle provided in section 6, 8 is venturi section 6
A throttle valve 11 provided downstream of the intake passage 5 connects the intake passage 5 to the low-load intake passage 12 in the vicinity of the combustion chamber 4.
A partition wall 1/j that partitions the high-load intake passage 13 into the rotation shaft 1 at the upstream end of the high-load intake passage 13
5 is fixed to an on-off valve for opening and closing the high-load intake passage 13; and 16 is an on-off valve that opens and closes the opening of the intake passage 5 to the combustion chamber 4 to open and close the low-load intake passage 12 and the high-load intake passage 13. An intake valve opens and closes, 17 is an exhaust passage, and 18 is an exhaust valve.
また、21は上記開閉弁14を作動させるアクチュエー
タ、22は排気通路17の排気圧力を検出する排圧セン
サー、23はシリンダ1に坦成したクォータジャケット
24内に突出して冷却水温を検出する温度センサー、2
5は排圧センサー22と温度センサー23との出力を受
けてアクチュエータ21を後記するように制御する制御
装置である。Further, 21 is an actuator that operates the on-off valve 14, 22 is an exhaust pressure sensor that detects the exhaust pressure of the exhaust passage 17, and 23 is a temperature sensor that protrudes into the quarter jacket 24 formed in the cylinder 1 and detects the cooling water temperature. ,2
Reference numeral 5 denotes a control device that receives outputs from the exhaust pressure sensor 22 and temperature sensor 23 and controls the actuator 21 as described later.
上記アクチュエータ21はダイヤフラム装置27と電磁
弁28とからなる。上記ダイヤフラム装置はケーシング
31内をダイヤフラム32で大気室33と負圧室34と
に区画し、上記ダイヤフラム32に一端を固定した作動
ロッド35を大気室33を貫通させてケーシング31か
ら突出させる一方、負圧室34にバネ36を縮装して、
上記作動ロッド35を負圧室34の負圧に応じてケーシ
ング31から出没させるようにしている。上記作動ロッ
ド35の先端は、ピンあ、レバー39を介して上記開閉
弁14の回動軸15に連結して、作動ロッド35の出没
により、開閉弁14を開閉し得るようにしている。また
上記ダイヤフラム装置27の負圧室34は、通路41を
介してスロットルバルブ8下流の吸気通路5に連通させ
ている。上記通路41の中間からは、電磁弁28の弁体
43に対向する先端開口44を有する分岐通路45を分
岐させている。The actuator 21 includes a diaphragm device 27 and a solenoid valve 28. The diaphragm device divides the interior of the casing 31 into an atmospheric chamber 33 and a negative pressure chamber 34 by a diaphragm 32, and an actuating rod 35 having one end fixed to the diaphragm 32 penetrates the atmospheric chamber 33 and projects from the casing 31. A spring 36 is compressed in the negative pressure chamber 34,
The actuating rod 35 is moved in and out of the casing 31 according to the negative pressure in the negative pressure chamber 34. The tip of the operating rod 35 is connected to the rotating shaft 15 of the on-off valve 14 via a pin and a lever 39, so that the on-off valve 14 can be opened and closed by moving the operating rod 35 in and out. Further, the negative pressure chamber 34 of the diaphragm device 27 is communicated with the intake passage 5 downstream of the throttle valve 8 via a passage 41. A branch passage 45 having a tip opening 44 facing the valve body 43 of the electromagnetic valve 28 is branched from the middle of the passage 41 .
上記電磁弁田は制御装置25からの信号で弁体43を作
動させて、その弁体43と開口44との間の開度を制御
し、上記負圧室34の負圧を制御するようになっている
。々お、上記分岐面路45の中間には絞り46を設けて
、負圧室34の負圧の制御を安定させている。The electromagnetic valve field operates the valve body 43 in response to a signal from the control device 25 to control the degree of opening between the valve body 43 and the opening 44, thereby controlling the negative pressure in the negative pressure chamber 34. It has become. In addition, a throttle 46 is provided in the middle of the branch surface path 45 to stabilize the control of the negative pressure in the negative pressure chamber 34.
一方、上記制御装置25は、第2図に示すように、演算
増巾器51.補正回路52およびエミッタフォロア回路
53を備える。On the other hand, as shown in FIG. 2, the control device 25 includes an operational amplifier 51. A correction circuit 52 and an emitter follower circuit 53 are provided.
上記演算増[1〕器51の非反転入力端子には、排圧セ
ンサ・−22からの信号を入力する一方、その演算増巾
器51の反転入力端子には、陰極をアースした電池55
の陽極を抵抗R+を介して接続すると共に、その演算増
巾器51の出力端子を帰還抵抗ルを介して接続している
。このため、演算増巾器51は、排圧センサー22から
第3図中曲線りで示すような排圧に応じてレベルが高く
なる信号が入力されると。A signal from the exhaust pressure sensor -22 is input to the non-inverting input terminal of the arithmetic amplifier [1] 51, while a signal from the battery 55 whose cathode is grounded is input to the inverting input terminal of the arithmetic amplifier 51.
The anode of the amplifier 51 is connected through a resistor R+, and the output terminal of the operational amplifier 51 is connected through a feedback resistor L. Therefore, when the operational amplifier 51 receives a signal from the exhaust pressure sensor 22 whose level increases in accordance with the exhaust pressure as shown by the curved line in FIG.
第4図中曲線Mに示すような信号を増巾して出力する。A signal as shown by curve M in FIG. 4 is amplified and output.
上記曲線Mで示す出力信号は排圧PIから立上って、曲
線M+に示すようにリニアに増大し、排圧P2になると
、曲線ぬで示すように横軸と平行な値となる。上記排圧
P1つまり曲線Mの立上る点P+は電池55の電位と抵
抗ル、角の比−により定まるものであり、また曲線油は
準算増巾器51の電源電圧となる飽和領域を示すもので
ある。The output signal shown by the curve M rises from the exhaust pressure PI, increases linearly as shown by the curve M+, and when the exhaust pressure reaches P2, becomes a value parallel to the horizontal axis as shown by the curve N. The above exhaust pressure P1, that is, the rising point P+ of the curve M is determined by the potential of the battery 55, the resistance le, and the ratio of the angle -, and the curve oil indicates the saturation region that is the power supply voltage of the semi-amplifier 51. It is something.
一方、上記補正回路52は、≦示しないが関数発、、、
1ユ□あヵ1..ヵ9、□・・餉、。工、い。On the other hand, the correction circuit 52 is based on a function that is not shown, but...
1yu□Aka1. .. 9, □...餉. Engineering, yes.
センサー23から入力される温度に応じて第5図中曲線
Nに示すような係数Nを発生させ、上記演算回路は上記
係数Nと上記演算増巾器52から入力される信号Mとに
乗算等の演算処理を行なって信号を作成して、エミッタ
フォロア回路53に出力する。A coefficient N as shown in curve N in FIG. 5 is generated according to the temperature input from the sensor 23, and the arithmetic circuit multiplies the coefficient N by the signal M input from the arithmetic amplifier 52. The arithmetic processing is performed to create a signal, and the signal is output to the emitter follower circuit 53.
上記関数発生器の作成する係数Nは、第5図に示すよう
に、温度センサー23で検出した温度がo′c以下の場
合には零となり、σ゛〜60℃の間においてリニアに増
大し、60’C以上になると一定値1になる。したがっ
て、温度センサー23の検出した温度が、たとえば30
゛Cである場合には、上記係数Nは05となって、補正
回路52から出力される信号■のレベルは演算増巾器5
1の出力信号Mのレベルの半分となる。As shown in Fig. 5, the coefficient N generated by the function generator becomes zero when the temperature detected by the temperature sensor 23 is below o'c, and increases linearly between σ and 60°C. , becomes a constant value of 1 when the temperature exceeds 60'C. Therefore, the temperature detected by the temperature sensor 23 is, for example, 30
゛C, the coefficient N becomes 05, and the level of the signal ■ output from the correction circuit 52 is
This is half the level of the output signal M of 1.
一方、上記エミッタフォロア回路53は、トランジスタ
61と抵抗62を備え、上記トランジスタ610ペース
に補正回路52の出力を入力し、上記トランジスタ61
のコレクタに電源VCCを接続し、その工雀・
ミッタとアースとの間に上記抵抗62を接続し、さらに
上記−ミッタに門−弁公を接続している。したがって、
上記電磁弁28はトランジスタ61のベース電位に追随
するそのエミッタ電位に応じて作動する。上記電磁弁あ
は入力がハイレベルになるほど、第1図に示す弁体43
を分岐通路45の開口部44に接近させて、開口部44
を絞るように動作するようになっている。したがって、
上記電磁弁28の入力が高くなるにつれて、ダイヤフラ
ム装置27の負圧室34の負圧が大きくなって、ダイヤ
フラム32の作動で作動−ラドあが没入して、開閉弁1
4が開くようになっている。On the other hand, the emitter follower circuit 53 includes a transistor 61 and a resistor 62, inputs the output of the correction circuit 52 to the transistor 610, and inputs the output of the correction circuit 52 to the transistor 610.
The power supply VCC is connected to the collector of the power source VCC, the resistor 62 is connected between the collector and the ground, and the resistor 62 is further connected to the collector. therefore,
The electromagnetic valve 28 operates according to its emitter potential which follows the base potential of the transistor 61. The higher the input level of the solenoid valve, the more the valve body 43 shown in FIG.
approach the opening 44 of the branch passage 45, and open the opening 44.
It is designed to work in a way that narrows down the area. therefore,
As the input to the electromagnetic valve 28 becomes higher, the negative pressure in the negative pressure chamber 34 of the diaphragm device 27 increases, and the diaphragm 32 is activated, causing the valve to retract, causing the opening/closing valve 1
4 is open.
上記構成のエンジンの吸気装置は次のように動作する。The intake system of the engine configured as described above operates as follows.
イマ、エンジンの温度が高くて、温度センサー23の検
出する温度が60°C以上の状態であるとする。Let us now assume that the engine temperature is high and the temperature detected by the temperature sensor 23 is 60°C or higher.
このとき、制御装置25の補正回路52の関数発生器は
温度センサー23の出力に基づいて、第5図に示すよう
に、係数1を発生する。一方、制御装置25の演算増巾
器51は、負荷に対応する排圧センサー22の出力りに
基づいて、第4図に示すような排 ゞ圧に応じた信号M
を作成して出力する。上記補正回路52の演算回路は、
上記演算増巾器51の出力信号Mに上記係数1を乗算し
て、上記出力信号Mをそのままトランジスタ610ベー
スに出力する。このため、電磁弁あは上記出力信号Mに
より駆動される。したがって、第4図に示すように、排
圧がP1〜以下の低負荷状態の場合には、上記出力信号
Mは零となるため、電磁弁28の弁体43は開口′f1
図4から離間したノーマル位置のままとなって、ダイヤ
フラム装置27の負圧室34は開放された開口部44を
介して大気に連通して負圧が小さくなって、作動ロッド
35はバネ36のバネ力により突出して開閉弁14は閉
鎖される。このため、混合気は低負荷用吸気通路12の
みを通って高速で燃焼室4に供給され、強いスワールが
生成され、燃料の霧化、気化が良くなり、燃焼性能、運
転性、燃費性能が良くなる。次いで、排圧が第4図中P
1がらP2%の中負荷状態の場合には、第4図中曲線M
1に示すように電磁弁28へ入力される(8号M1のレ
ベルは排圧の上昇に応じて高くなり、電磁弁28の弁体
43は排圧に応じて開口部44に接近して、その開口部
劇を絞る。At this time, the function generator of the correction circuit 52 of the control device 25 generates a coefficient 1 based on the output of the temperature sensor 23, as shown in FIG. On the other hand, the arithmetic amplifier 51 of the control device 25 generates a signal M corresponding to the exhaust pressure as shown in FIG. 4 based on the output of the exhaust pressure sensor 22 corresponding to the load.
Create and output. The arithmetic circuit of the correction circuit 52 is as follows:
The output signal M of the operational amplifier 51 is multiplied by the coefficient 1, and the output signal M is directly output to the base of the transistor 610. Therefore, the solenoid valve A is driven by the above output signal M. Therefore, as shown in FIG. 4, in a low load state where the exhaust pressure is P1 or less, the output signal M becomes zero, so the valve body 43 of the solenoid valve 28 is opened at the opening 'f1.
4, the negative pressure chamber 34 of the diaphragm device 27 communicates with the atmosphere through the open opening 44, the negative pressure becomes small, and the actuating rod 35 is moved by the spring 36. The spring force protrudes and closes the on-off valve 14. Therefore, the air-fuel mixture is supplied to the combustion chamber 4 at high speed through only the low-load intake passage 12, generating a strong swirl, improving fuel atomization and vaporization, and improving combustion performance, drivability, and fuel efficiency. Get better. Then, the exhaust pressure becomes P in Figure 4.
In the case of a medium load condition of 1% to 2%, the curve M in Fig. 4
1, the level of No. 8 M1 increases as the exhaust pressure increases, and the valve body 43 of the solenoid valve 28 approaches the opening 44 in accordance with the exhaust pressure. Narrow down that opening play.
そして、ダイヤフラム装置627の負圧室34は上記開
口部44の開度が小さくなるほど、負圧が太きくなつて
、作動ロッド35をケーシング31内へ没入させる。し
たがって、上記開閉弁14は上記信号M1によって、排
圧が高くなるほど開度を大きくするように作動させられ
、低負荷用吸気通路12に加えて、高負荷用吸気通路1
3からも混合気が燃焼室4に供給される。したがって、
燃料の霧化、気化が良好な上に、吸気抵抗が小さくて、
充填効率、出力性能が向上する。次いで、排圧が第4図
に示す12〜以上の場合には、電磁弁列に入力される信
号M2はハイレベルの一定値となって、電磁弁あの弁f
*J43は開口部44に密着してそれを閉鎖する。この
ためダイヤフラム装置27の負圧室34の負圧は吸気通
路5の負圧に等しくなって、作動ロッド35はダイヤフ
ラム32の作動で没入して、開閉弁14を全開にする。The negative pressure in the negative pressure chamber 34 of the diaphragm device 627 becomes larger as the degree of opening of the opening 44 becomes smaller, causing the actuating rod 35 to sink into the casing 31. Therefore, the on-off valve 14 is operated by the signal M1 to increase its opening as the exhaust pressure increases, and in addition to the low-load intake passage 12, the high-load intake passage 1
3 is also supplied to the combustion chamber 4. therefore,
In addition to good fuel atomization and vaporization, the intake resistance is small,
Filling efficiency and output performance are improved. Next, when the exhaust pressure is 12 or more as shown in FIG.
*J43 comes into close contact with the opening 44 and closes it. Therefore, the negative pressure in the negative pressure chamber 34 of the diaphragm device 27 becomes equal to the negative pressure in the intake passage 5, and the actuating rod 35 is retracted by the operation of the diaphragm 32 to fully open the on-off valve 14.
したがって、この嵩□負荷時には、低負荷用吸気通路】
2と完全に開放4iた高負荷用吸気通路13四、
とによって、混合気が燃焼室4に供給されるため、充填
効率が向上し、出力性能が向上する。Therefore, this bulk □At the time of load, the intake passage for low load]
2 and the fully open high-load intake passage 134, the air-fuel mixture is supplied to the combustion chamber 4, thereby improving charging efficiency and improving output performance.
次に、エンジンの温度が上述の場合より低くて燃料の霧
化性、気化性が悪い状態で、温度センサー23の検出温
度がO′Cから60°Cの間であるとする。Next, it is assumed that the temperature detected by the temperature sensor 23 is between O'C and 60C in a state where the engine temperature is lower than in the above case and the fuel atomization and vaporization properties are poor.
このとき、制御装置25の補正回路52の関数発生器は
、第5図に示すように1以下で検出温度の低下につれて
リニアに小さくなる係数N+を発生する。At this time, the function generator of the correction circuit 52 of the control device 25 generates a coefficient N+ which is less than 1 and decreases linearly as the detected temperature decreases, as shown in FIG.
そして、上記補正回路52の演算回路は、上記係数N+
と演算増It]器51から出力される第4図中曲線Mに
示す信号とを乗算して、たとえば第4図中の曲線■で示
すようなレベルを有する信号■を作成して、トランジス
タ61のベースに出力する。このため、電磁弁28は、
前述の検出温度が60°C以上の場合の信号Mよりもロ
ーレベルの信号■により駆上記開閉弁】4を下記の如く
エンジン温度の低下に□
応じて閉方向に補正制御する。すなわち、第4図や0、
fオ♀゛□よう1、お、エヵ8.・1い工。イ□、′1
:I
状態の場合には、゛上記信号■は零レベルとなるため、
電磁弁28は前述の検出温度60°C以上の場合と同様
に、ノーマル位置に位置して、開口部44を全開にし、
ダイヤフラム装置27の作動ロッド35を突出させて、
開閉弁14を閉鎖する。このため、このとき混合気は低
負荷用吸気通路12のみを高速で燃焼室4に供給され、
強いスワールが生成され、燃料の霧化、気化が良くなり
、燃焼性能、運転性。Then, the arithmetic circuit of the correction circuit 52 calculates the coefficient N+
By multiplying the signal shown by the curve M in FIG. Output to the base of. Therefore, the solenoid valve 28 is
By means of the signal □ which is lower level than the signal M when the aforementioned detected temperature is 60°C or more, the drive opening/closing valve □ is corrected and controlled in the closing direction according to the decrease in the engine temperature as described below. In other words, Figure 4, 0,
fo♀゛□yo 1, oh, eka 8.・1 step. I□,'1
:In the case of the I state, the above signal ■ is at zero level, so
As in the case where the detected temperature is 60°C or higher, the solenoid valve 28 is located at the normal position and the opening 44 is fully opened.
By protruding the operating rod 35 of the diaphragm device 27,
Close the on-off valve 14. Therefore, at this time, the air-fuel mixture is supplied to the combustion chamber 4 only through the low-load intake passage 12 at high speed.
A strong swirl is generated, improving fuel atomization and vaporization, improving combustion performance and driveability.
燃費性能が良くなる。次いで、排圧が第4図中P1から
P2の中負荷状態の場合には、第4図中曲線v1に示す
ように、電磁弁田へ入力される信号Vlのレベルは排圧
の上昇に応じてリニアに高くなるが、前述の信号M1の
レベルよりも低くなるために、電磁弁あの弁体おは開口
部弱により接近して、その開口部44を前述の検出温度
60 ’C以上の場合よりも、より絞る。このため、ダ
イヤフラム装置27の負圧室34の負圧は前述の場合よ
りも大きくなって作動ロッド35は前述の60 ℃以上
の場合よりもケーシング31内に没入させられる。した
がって、温度センサー23の検出温度がo′cがら60
”0未満の場合には、上記開閉弁14の開度は検出温
度が6゜°C以上の場合よりも小さくなり、しかも検出
温度の低下に応じて小さくなって、高負荷用吸気通路1
3が絞られ、低負荷用吸気通路12を通る混合気の流速
が早められ、スワールが強化され、燃料の霧化、 気化
力、J: くなる。っ捷り、中負荷時にエンジンの温度
の低下に基づく燃料の霧化性、気化性の悪化に対する補
償が行なわれる。次いで、排圧が第4図に示す12〜以
上の高負荷状態の場合には、電磁弁28に入力される信
号■2のレベルは、係数N+ニヨリ、前述の60’C以
上の場合の信号鳩のレベルよりも低くなる。このため、
電磁弁あの弁体おは開口部44を一定量絞り、ダイヤフ
ラム装置27の作動ロッド35はダイヤフラム32の作
動で一定量ケーシング31内に没入させられ、開閉弁1
4は一定開度に絞られる。したがって、排圧がP2%以
上である高負荷状態であっても、温度センサー23の検
出温度が60°C未満の場合には、上記のように高負荷
用吸気通路13が開閉弁14で絞られるため、低負荷用
吸気通路12を通る混合気の流速が早められ、スワール
が強化され、エンジン温度の低下による燃料の霧化性、
気化性の悪化に対する補償が行なわれる。Improves fuel efficiency. Next, when the exhaust pressure is in a medium load state from P1 to P2 in Figure 4, the level of the signal Vl input to the solenoid valve field changes according to the rise in exhaust pressure, as shown by curve v1 in Figure 4. However, since the level of the signal M1 is lower than the level of the signal M1 mentioned above, the valve body of the solenoid valve is brought closer to the opening, and the opening 44 is lowered to the level of the above-mentioned detected temperature 60'C or higher. Narrow it down even more. Therefore, the negative pressure in the negative pressure chamber 34 of the diaphragm device 27 becomes greater than in the case described above, and the actuating rod 35 is recessed into the casing 31 more than in the case of 60° C. or more as described above. Therefore, the temperature detected by the temperature sensor 23 is 60% from o'c.
``If the temperature is less than 0, the opening degree of the on-off valve 14 will be smaller than when the detected temperature is 6°C or higher, and will also become smaller as the detected temperature decreases.
3 is throttled, the flow velocity of the air-fuel mixture passing through the low-load intake passage 12 is accelerated, the swirl is strengthened, and the fuel is atomized and the vaporization power becomes J:. Compensation is made for the deterioration of fuel atomization and vaporization due to a drop in engine temperature during runoff and medium load. Next, when the exhaust pressure is in a high load state of 12 or more as shown in FIG. lower than that of pigeons. For this reason,
The opening 44 of the valve body of the solenoid valve is narrowed by a certain amount, and the operating rod 35 of the diaphragm device 27 is immersed into the casing 31 by a certain amount by the operation of the diaphragm 32, and the opening/closing valve 1 is
4 is narrowed down to a certain opening degree. Therefore, even in a high load state where the exhaust pressure is P2% or more, if the temperature detected by the temperature sensor 23 is less than 60°C, the high load intake passage 13 is throttled by the on-off valve 14 as described above. As a result, the flow velocity of the air-fuel mixture passing through the low-load intake passage 12 is accelerated, the swirl is strengthened, and the atomization of the fuel is improved by lowering the engine temperature.
Compensation is made for the deterioration of vaporization.
次に、エンジンの温度が惨く低くて、温度センサー23
の検出温度が0℃以下であるとする。Next, the engine temperature is extremely low and the temperature sensor 23
It is assumed that the detected temperature is 0°C or lower.
このときは、第5図に示すように、補正回路52の関数
発生器の発生する係数Nは零となって、補正回路52の
出力信号のレベルは常時零レベルとなり、電磁弁28の
弁体43はノーマル位置に位置して開口部44を常時、
完全に開放する。このため、開閉弁14はダイヤフラム
装置27により常時、完全に閉鎖される。したがって、
低負荷用吸気通路12を通る混合気の流速が早められて
、スワールが強化され、エンジン温度が極く低いために
よる燃料の霧化性および気化性の悪さが補償される。At this time, as shown in FIG. 43 is located in the normal position and the opening 44 is always open.
completely open. Therefore, the on-off valve 14 is always completely closed by the diaphragm device 27. therefore,
The flow velocity of the air-fuel mixture passing through the low-load intake passage 12 is increased, the swirl is strengthened, and the poor atomization and vaporization properties of the fuel due to the extremely low engine temperature are compensated for.
このように、中負荷から高負荷の領域においてエンジン
温度の低下に応じて開閉弁14を閉方向に補正制御して
いるので、燃1.料の霧化、気化が良く□・。In this way, since the on-off valve 14 is corrected and controlled in the closing direction in accordance with the decrease in engine temperature in the medium to high load range, the fuel 1. Good atomization and vaporization of the material □・.
なり、燃焼性が改善される・!□。The flammability is improved! □.
(:。(:.
l ff1e * m9’J f u −’ 7 ’、
Is (’) i# T iC応L−11iar) 閉
弁を閉方向に補正制御し、 閉弁の負荷に応じて開き始
める時期はエンジン温度が低下しても変化させないよう
にしているが、開閉弁の開き始めるべき負荷をエンジン
温度の低下に応じて高くするようにしてもよい。また、
上記実施例では、負荷を排圧により検出したが、ベンチ
ュリ負圧、スロットル開度、エアフローセンサー等によ
り検出してもよい。また、上記実施例ではアクチュエー
タは吸気通路し負圧を利用して作動させるようにしてい
るが、排圧を利用して作動させるようにしてもよい。ま
た、制御装置は上記実施例に限るものではなく、種々の
構成が可能なもので、ディジタル回路、アナログ回路2
機械的装置を問わない。l ff1e * m9'J f u -' 7 ',
Is (') i# T iC response L-11iar) The valve closing is corrected and controlled in the closing direction, and the timing at which the valve starts to open according to the valve closing load does not change even if the engine temperature drops, but the opening and closing The load at which the valve starts to open may be increased in accordance with the decrease in engine temperature. Also,
In the above embodiment, the load is detected by exhaust pressure, but it may also be detected by venturi negative pressure, throttle opening, air flow sensor, etc. Further, in the above embodiment, the actuator is provided in an intake passage and is actuated using negative pressure, but it may be actuated using exhaust pressure. Further, the control device is not limited to the above embodiment, and various configurations are possible, including digital circuits, analog circuits, etc.
Regardless of mechanical device.
以上の説明で明らかなように、この発明のエンジンの吸
気装置は、高負荷用吸気通路に設定負荷以上で開作動す
る開閉弁を備えると共に、エンジン温度を検出する温度
センサーの出力を受けて工′:1゜
ンジン温度の低下に応じて上記開閉弁を閉方向に補正制
御する制御装置を備えているので、エンジンの低温時に
、高付加用吸気通路を開閉弁で閉鎖あるいは絞って
荷用吸気通路の分担比率を高めて、空気の流速を早め
て、スワールを強化でき、したがって、燃料の霧化、気
化を促進できて燃焼性を向上でき、運転性を向上でき、
さらに燃費性能を向上できる。As is clear from the above description, the engine intake system of the present invention includes an on-off valve in the high-load intake passage that opens and closes when the load exceeds a set load, and also operates in response to the output of a temperature sensor that detects engine temperature. ': 1° Since it is equipped with a control device that corrects and controls the on-off valve in the closing direction according to a decrease in engine temperature, the high-load intake passage can be closed or throttled with the on-off valve when the engine is at low temperature.
By increasing the sharing ratio of the load intake passage, the air flow speed can be increased and the swirl can be strengthened, which can promote fuel atomization and vaporization, improving combustibility and improving drivability.
Furthermore, fuel efficiency can be improved.
第1図はこの発明の一実施例の断面図、第2図は制御装
置の回路図、第3,4図は夫々排圧−出力特性を示す各
グラフ、第5図は温度−係数特性を示すグラフである。
4・・・燃焼室、12・・・低負荷用吸気通路、13・
・・高負荷用吸気通路、14・・・開閉弁、23・・・
温度センサー、25・・・制御装置。Fig. 1 is a sectional view of an embodiment of the present invention, Fig. 2 is a circuit diagram of a control device, Figs. 3 and 4 are graphs showing exhaust pressure-output characteristics, and Fig. 5 shows temperature-coefficient characteristics. This is a graph showing. 4... Combustion chamber, 12... Intake passage for low load, 13...
...Intake passage for high load, 14...Opening/closing valve, 23...
Temperature sensor, 25...control device.
Claims (1)
吸気通路と高負荷用吸気通路とを備え、該高負荷用吸気
通路に設定負荷以上で開作動する開閉弁を設け、吸入空
気量の少ない低負荷時には低負荷用吸気通路から吸入空
気を供給する一方、吸入空気量の多い高負荷時には低負
荷用吸気通路および高負荷用吸気通路から空気を供給す
るようにしたエンジンにおいて、 エンジン温度゛ヒ検出する温度センサーと、該温度セン
サーの出力を受け、エンジン温度の低下に1、芯じて上
記開閉弁を閉方向に補正制御する制御装置とを設けたこ
とを特徴とするエンジンの吸気装置。(1) At least in the vicinity of the combustion chamber, an independent low-load intake passage and a high-load intake passage are provided, and the high-load intake passage is provided with an on-off valve that opens and closes when the load exceeds a set load. In an engine that supplies intake air from the low-load intake passage when under load, and from the low-load intake passage and high-load intake passage when under high load with a large amount of intake air, engine temperature detection is possible. 1. An intake system for an engine, comprising: a temperature sensor; and a control device which receives the output of the temperature sensor and corrects and controls the on-off valve in the closing direction in response to a decrease in engine temperature.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57077274A JPS5938416B2 (en) | 1982-05-07 | 1982-05-07 | engine intake system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57077274A JPS5938416B2 (en) | 1982-05-07 | 1982-05-07 | engine intake system |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58195012A true JPS58195012A (en) | 1983-11-14 |
JPS5938416B2 JPS5938416B2 (en) | 1984-09-17 |
Family
ID=13629273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57077274A Expired JPS5938416B2 (en) | 1982-05-07 | 1982-05-07 | engine intake system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5938416B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61151037U (en) * | 1985-03-11 | 1986-09-18 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6392903A (en) * | 1986-10-07 | 1988-04-23 | Matsushita Electric Ind Co Ltd | Optical fiber cable |
JPS63180804U (en) * | 1987-05-14 | 1988-11-22 | ||
KR20200008566A (en) * | 2017-04-20 | 2020-01-28 | 실텍트라 게엠베하 | How to reduce the thickness of the solid state layer in which the component is provided |
-
1982
- 1982-05-07 JP JP57077274A patent/JPS5938416B2/en not_active Expired
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61151037U (en) * | 1985-03-11 | 1986-09-18 |
Also Published As
Publication number | Publication date |
---|---|
JPS5938416B2 (en) | 1984-09-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4177777A (en) | Exhaust gas recirculation control system | |
JP3733281B2 (en) | Supercharging pressure control device and supercharging pressure control method for internal combustion engine | |
JP2000002122A (en) | Supercharge control device for internal combustion engine | |
JPH0520566B2 (en) | ||
JPS61169620A (en) | Intake controller for internal-combustion engine | |
JPS6124542B2 (en) | ||
JPS58195012A (en) | Suction system of engine | |
US4187805A (en) | Fuel-air ratio controlled carburetion system | |
US4404941A (en) | Electronic controlled carburetor | |
US4201166A (en) | Air to fuel ratio control system for internal combustion engine | |
JPS6129953Y2 (en) | ||
JP2005344729A (en) | Charging pressure control device for internal combustion engine and its method | |
EP0088393A1 (en) | Fuel controller for internal combustion engine | |
JP2586596B2 (en) | Air-assisted electronically controlled fuel injection device | |
JPS6157455B2 (en) | ||
JPS5525518A (en) | Electronic controlling device for carbureter | |
JPS58119954A (en) | Engine intake humidity control device | |
JPH0118839Y2 (en) | ||
JPH07293257A (en) | Intake device of internal combustion engine | |
JPS58176446A (en) | Air-fuel ratio controlling apparatus used at starting engine | |
JPS6310297B2 (en) | ||
JP2000220485A (en) | Supercharge pressure control device for internal combusion engine with supercharger | |
JPS631457B2 (en) | ||
JPS61160520A (en) | Intake-air control device in internal-combustion engine | |
JPH1144261A (en) | Exhaust recirculation control device for internal combustion engine |