JPH01319131A - Method for applying magnetic coating compound - Google Patents

Method for applying magnetic coating compound

Info

Publication number
JPH01319131A
JPH01319131A JP15030088A JP15030088A JPH01319131A JP H01319131 A JPH01319131 A JP H01319131A JP 15030088 A JP15030088 A JP 15030088A JP 15030088 A JP15030088 A JP 15030088A JP H01319131 A JPH01319131 A JP H01319131A
Authority
JP
Japan
Prior art keywords
magnetic
substrate
paint
disk
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15030088A
Other languages
Japanese (ja)
Inventor
Ryuichi Kaji
梶 隆一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15030088A priority Critical patent/JPH01319131A/en
Publication of JPH01319131A publication Critical patent/JPH01319131A/en
Pending legal-status Critical Current

Links

Landscapes

  • Application Of Or Painting With Fluid Materials (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To apply even the magnetic coating compd. which is degraded in flowability thinly and uniformly on a substrate by impressing >=50Hz vibrations to a substrate disk under rotation. CONSTITUTION:The substrate disk 4 is fixed to a revolving shaft 5 and is rotated at a specified speed by a motor 6 via a transmission mechanism 7. The rotating speed of the disk 4 is increased and the dropping coating compd. is shaken out so that the thin coated film remains on the substrate when the dropping of the prescribed amt. of the coating compd. onto the disk 4 ends. The shaft 5 is connected to a vibration generator 8 and the vibrations of >=50Hz frequency are impressed to the disk 4 under rotation during the entire stage of the application of the magnetic coating compd. or in a part of the stage. The apparent viscosity of the magnetic coating compd. contg. magnetic powder having high coercive force at a high concn. can be lowered by lowering the yield value of said coating compd. in this way and, therefore, the thin and uniform coating of the magnetic coated film is possible.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気ディスク製造工程に係り、特に、磁性塗料
を基板上に塗布するに当たり、薄く、かつ、均一な塗膜
を形成するのに好適な磁性塗料の塗布方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a magnetic disk manufacturing process, and is particularly suitable for forming a thin and uniform coating film when applying magnetic paint onto a substrate. This invention relates to a method for applying magnetic paint.

〔従来の技術〕[Conventional technology]

近年、計算機等の外部磁気記憶装置の大容量化が急速に
進展しており、それに伴って塗布型磁気ディスクの記録
密度を向上することが要求されている。記録密度の向上
とは、磁気ディスクの単位面積当たりの記録ビット数を
増大することであるが、このために、現在までに磁性塗
料用材料、及び。
BACKGROUND ART In recent years, the capacity of external magnetic storage devices such as computers has been rapidly increasing, and there is a demand for increasing the recording density of coated magnetic disks. Improving recording density means increasing the number of recorded bits per unit area of a magnetic disk, and for this purpose, materials for magnetic coatings and.

その調製方法の改良が行われてきた。本発明の対象とす
る塗布型磁気ディスクは磁性粉、これを塗膜中に固定す
るためのバインダ樹脂、溶剤及び、塗膜の強度を向上す
るためのアルミナ等のフィラー粉末を成分とする磁性塗
料を円板状の基板上に薄く塗布し、磁性塗膜を形成した
ものである。このような塗布型磁気ディスクの記録密度
を向上するには磁性塗料、あるいは、塗膜に下記のよう
な特性の向上が要求される。すなわち、磁性粉は。
Improvements have been made in the method of its preparation. The coated magnetic disk that is the object of the present invention is a magnetic paint that contains magnetic powder, a binder resin for fixing it in a coating film, a solvent, and a filler powder such as alumina to improve the strength of the coating film. is applied thinly onto a disk-shaped substrate to form a magnetic coating. In order to improve the recording density of such coated magnetic disks, the magnetic paint or coating film is required to have the following characteristics improved. In other words, magnetic powder.

より保持力の大きいものを用いることが必要となり、塗
膜は、バインダ樹脂に対する磁性粉の割合、即ち、塗膜
における磁性粉含率を上げ、より薄く、より均一に形成
することが必要である。従って、このような塗膜を形成
するために調製される磁性塗料には、より保持力の大き
い磁性粉を、より高濃度に含有することが要求される。
It is necessary to use a material with higher holding power, and the coating film needs to be formed thinner and more uniform by increasing the ratio of magnetic powder to the binder resin, that is, the magnetic powder content in the coating film. . Therefore, a magnetic paint prepared to form such a coating is required to contain a higher concentration of magnetic powder having a higher coercive force.

従来は磁性塗料を基板上に塗布するのにスピン塗布法を
用いるのが一般的である。すなわち、まず、基板上に塗
料を付着させ、その後、これを高速度で回転させ、遠心
力により余分の塗料を基板上からふり切り、基板上に薄
く均一な塗膜を形成するものである。この方法により、
目的とする薄く均一な塗膜が基板上に形成できるかどう
かは、使用する磁性塗料の流動性に大きく影響される。
Conventionally, it has been common to use a spin coating method to apply magnetic paint onto a substrate. That is, first, paint is deposited on the substrate, and then this is rotated at high speed, and the excess paint is shaken off from the substrate by centrifugal force, thereby forming a thin and uniform coating film on the substrate. With this method,
Whether or not the desired thin and uniform coating film can be formed on the substrate is greatly influenced by the fluidity of the magnetic paint used.

この目的をうまく達成するには、一般に、磁性塗料は低
粘性で、できるだけニュートン流体に近い性状をもつこ
とが望ましい。
In order to successfully achieve this objective, it is generally desirable that the magnetic paint has low viscosity and properties as close as possible to Newtonian fluids.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

高記録密度化に対応した磁気ディスクを製造するために
高保持力の磁性粉をより高濃度に含有するような磁性塗
料を調製すると、塗料の粘度は大幅に増大し、また強い
擬塑性になる。このような性状の塗料を従来のスピン塗
布法で塗布すると、塗料の流動性が悪いため、いくら高
速で基板を回転しても基板上を塗料がうまく流れず、こ
のため、形成した!!11WAの膜厚が大きくなってし
まったり、あるいは、波状の起伏をもつ膜が形成され、
均一な塗膜を形成することが回層であった。
When preparing magnetic paint containing a higher concentration of high-coercivity magnetic powder in order to manufacture magnetic disks compatible with higher recording densities, the viscosity of the paint increases significantly and it also becomes strongly pseudoplastic. . When a paint with such properties is applied using the conventional spin coating method, the fluidity of the paint is poor, so no matter how fast the board is rotated, the paint does not flow well on the board. ! 11WA film thickness becomes too large, or a film with wavy undulations is formed.
It was a layer to form a uniform coating film.

本発明の目的は、高保持力の磁性粉を高濃度に含有させ
ることにより流動性の低下した磁性塗料でも基板上に薄
く均一に塗布し、高記録密度化に適した塗膜の塗布方法
を提供することにある。
The purpose of the present invention is to provide a method of coating a coating film suitable for high recording density by coating a magnetic coating thinly and uniformly on a substrate even with a magnetic coating material having reduced fluidity by containing a high concentration of magnetic powder with high coercivity. It is about providing.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、磁性塗料をスピナーにより基板ディスク上
に塗布する工程で、回転する基板ディスクに50ヘルツ
以上の振動を印加することにより達成される。
The above object is achieved by applying vibrations of 50 Hz or more to the rotating substrate disk during the process of applying magnetic paint onto the substrate disk using a spinner.

〔作用〕[Effect]

本発明の磁性塗料の塗布方法を適用した塗布装置の一例
を第1図に示す、調製の終わった磁性塗料はタンク1に
溜められた後、ポンプ2によりノズル3まで送られ、ノ
ズル3より基板ディスク4上に一定速度で一定量が滴下
される。基板ディスク4は回転軸5に回定されており、
モータ6により伝達機構7を介して一定速度で回転して
いる。
An example of a coating apparatus to which the magnetic coating method of the present invention is applied is shown in FIG. A constant amount is dropped onto the disk 4 at a constant speed. The substrate disk 4 is rotated around a rotating shaft 5,
It is rotated by a motor 6 via a transmission mechanism 7 at a constant speed.

基板ディスク4上への所定量の塗料の滴下が終了すると
、基板ディスクの回転数が上げられ、滴下した塗料がふ
り切られ、基板上に薄い塗膜を残す。
When a predetermined amount of paint has been dropped onto the substrate disk 4, the rotation speed of the substrate disk is increased, and the dropped paint is shaken off, leaving a thin coating film on the substrate.

回転軸5は振動発生装置18に連結されており、磁性塗
料塗布操作の全工程中、もしくは、一部の工程で5回転
している基板ディスクに周波数50ヘルツ以上の振動を
印加する。
The rotating shaft 5 is connected to a vibration generator 18, which applies vibrations with a frequency of 50 Hz or more to the substrate disk rotating five times during all or some steps of the magnetic paint application operation.

図中9はスピン塗布装置。9 in the figure is a spin coating device.

〔実施例〕〔Example〕

〈実施例1〉 γ−酸化鉄を主成分とする磁性粉70wt%、フィラー
粉末(アルミナ粒子)3.2wt%、エポキシ樹脂を主
成分とするバインダ樹脂15.2wt%、溶剤11.6
  wt%の割合で混合したものをニーダに充填し、約
四時間混練し、ニーダ混練物を得た。ニーダ混練物11
.6  wt%、溶剤15wt%、及び、直径約Low
のアルミナ製ボール73.4  wt%の割合で円筒状
のアルミナ製容器に充填し、これを毎分60回転で約百
時間回転した後、初期に充填したニーダ混練物の1.8
2倍の重量の溶剤及び19.3 %の重量の硬化剤を追
加し、更に、24時回転混合した。このようにして調製
した磁性塗料を取り出し、目開き2μmの濾紙で濾過し
た。
<Example 1> Magnetic powder mainly composed of γ-iron oxide 70wt%, filler powder (alumina particles) 3.2wt%, binder resin mainly composed of epoxy resin 15.2wt%, solvent 11.6%
The mixture at a wt% ratio was filled into a kneader and kneaded for about 4 hours to obtain a kneaded product. Kneaded mixture 11
.. 6 wt%, solvent 15 wt%, and diameter approximately Low
After filling a cylindrical alumina container with alumina balls at a ratio of 73.4 wt% and rotating this at 60 revolutions per minute for about 100 hours, 1.8 wt% of the initially filled kneaded mixture was filled.
Twice the weight of solvent and 19.3% by weight of curing agent were added and further mixed by rotation for 24 hours. The magnetic paint thus prepared was taken out and filtered through a filter paper with an opening of 2 μm.

得られた磁性塗料の流動特性を回転粘度計により測定し
た結果を第2図のAに示す。この結果から明らかなよう
に、磁性塗料は比較的大きな降伏値を持ち1強い擬塑性
の流動特性を示す。これは、塗料中の磁性粒子が自らの
磁力により、互いに凝集し、塗料内に架橋構造を形成し
ていることを示している。ここに示したような流動特性
は、塗料中の磁性粉の保磁力が大きくなったり、濃度を
高くした場合には更に顕著になる。即ち、降伏値はより
太き(なり、擬塑性はより強くなる。なぜならば、粒子
の保磁力が大きくなるほど、又、粒子濃度が高くなるほ
ど凝集性が増し、架橋構造を形成し易くなるためである
The flow characteristics of the obtained magnetic paint were measured using a rotational viscometer, and the results are shown in A of FIG. As is clear from these results, the magnetic paint has a relatively large yield value and exhibits strong pseudoplastic flow characteristics. This indicates that the magnetic particles in the paint aggregate with each other due to their own magnetic force, forming a crosslinked structure within the paint. The flow characteristics shown here become more pronounced when the coercive force of the magnetic powder in the paint increases or when the concentration of the magnetic powder increases. In other words, the yield value becomes thicker (and the pseudoplasticity becomes stronger). This is because the larger the coercive force of the particles and the higher the particle concentration, the more cohesiveness increases and the easier it is to form a crosslinked structure. be.

次に、回転粘度計の測定部の試料容器に振動発生器を接
続し、試料に振動を印加しながら、その流動特性を測定
した。印加した振動の振幅、及び、周波数は各々0.1
 m及び100ヘルツである。
Next, a vibration generator was connected to the sample container of the measurement section of the rotational viscometer, and the flow characteristics were measured while applying vibration to the sample. The amplitude and frequency of the applied vibration are each 0.1
m and 100 hertz.

このようにして測定した流動曲線を第2図のBに示す。The flow curve thus measured is shown in FIG. 2B.

振動を印加することにより、降伏値は顕著に減少し、塗
料の見かけ粘度も大きく低下していることがわかる。即
ち、振動を印加することにより塗料の流動性は大11に
向上し、流れ易くなっている。特に、降伏値が大幅に低
下していることから、低せん断速度域での流動性の向上
が顕著である。このように振動を印加することにより、
磁性塗料が流れ易くなるのは、前述の磁性粒子の凝集及
びそれによる架橋構造が振動により絶えず破壊されてい
るからと考えることができる。振動の印加を停止すると
、即座に、流動特性は第2図のAに示したものにもどる
。これは、塗料内の磁性粒子が微小なため、塗料自体は
静止していても、その中の粒子はブラウン運動により絶
えず運動し、他の粒子との衝突をくり返しているため、
架橋構造が即座に形成されるためと考えられる。
It can be seen that by applying vibration, the yield value is significantly reduced and the apparent viscosity of the paint is also significantly reduced. That is, by applying vibration, the fluidity of the paint was improved by a factor of 11, making it easier to flow. In particular, since the yield value is significantly reduced, the improvement in fluidity in the low shear rate region is remarkable. By applying vibration in this way,
The reason why the magnetic paint flows easily is thought to be because the above-mentioned aggregation of the magnetic particles and the resulting crosslinked structure are constantly destroyed by vibration. As soon as the application of vibration is stopped, the flow characteristics return to those shown at A in FIG. This is because the magnetic particles in the paint are minute, and even though the paint itself is stationary, the particles within it are constantly moving due to Brownian motion and repeatedly collide with other particles.
This is thought to be because a crosslinked structure is immediately formed.

このように、本実施例から磁性塗料に振動を印加するこ
とにより、塗料の流動性が大きく向上することが明らか
になった。
In this way, it was revealed from this example that by applying vibration to the magnetic paint, the fluidity of the paint was greatly improved.

〈実施例2〉 実施例1で調製した磁性塗料を用い、振動印加に対する
塗料の流動性の変化を更に詳細に検討した。その結果を
第3図に示す、ここで、塗料の粘度として剪断速度31
g”における見かけ粘度を示した。印加する振動の振幅
が大きいほど周波数の低い領域では粘度の低下率が大き
いが、周波数が約50ヘルツ以上になると振幅や周波数
による影響はほとんどなくなり、粘度はほぼ一定となる
<Example 2> Using the magnetic paint prepared in Example 1, changes in fluidity of the paint in response to vibration application were examined in more detail. The results are shown in Figure 3, where the shear rate is 31 as the viscosity of the paint.
The apparent viscosity at g" is shown. The larger the amplitude of the applied vibration, the greater the rate of decrease in viscosity in the low frequency range, but when the frequency exceeds about 50 Hz, the influence of amplitude and frequency almost disappears, and the viscosity is almost constant. It becomes constant.

振動発生器に替え、超音波発振器を粘度計の試料容器に
接続し、同一の磁性塗料の粘度を測定した所、第3図に
示した粘度の定常値と同一の粘度を示すことがわかった
When we measured the viscosity of the same magnetic paint by connecting an ultrasonic oscillator to the sample container of the viscometer instead of the vibration generator, we found that it showed the same viscosity as the steady-state value shown in Figure 3. .

〈実施例3〉 実施例1で調製した磁性塗料を第1図に示した構成の装
置を用いて、アルミ製の基板ディスク上に塗布した。使
用した基板は8’/a’  のアルミ製ディスクである
。まず、基板を約20Orpmの回転数で回転しておき
、基板上に磁性塗料を載せた後、基板を約150Orp
mで回転することにより塗膜を形成した。1500rp
mで回転時に、次の三種類の条件変化を行った。
<Example 3> The magnetic paint prepared in Example 1 was applied onto an aluminum substrate disk using an apparatus having the configuration shown in FIG. The substrate used was an 8'/a' aluminum disk. First, the board is rotated at a rotation speed of about 20 Orpm, and after placing magnetic paint on the board, the board is rotated at a rotation speed of about 150 Orpm.
A coating film was formed by rotating at m. 1500rp
The following three conditions were changed while rotating at m.

即ち、 (1)振動を印加しない (2)振幅0.3m、周波数25ヘルツの振動を基板回
転軸方向に印加 (3)振幅0.3m1周波数70ヘルツの振動を基板回
転軸方向に印加 このようにして形成した塗膜中の磁性粉の配向処理を行
った後、塗膜を乾燥し、バインダ樹脂の熱硬化処理を行
った。これらの塗膜の膜厚、及び、面粗さを測定した結
果を第4図に示す。(1)の条件で成膜したものは目視
観察でも明らかに表面が波状になっており、非常に平坦
性及び均一性が悪いものであった。(2)及び(3)と
印加する振動強度を増大するに伴い形成した塗膜の平滑
性は向上し、膜厚も薄くなっていることがわかる。尚、
(2)及び(3)の条件で形成した塗膜では(1)の条
件で形成したもののように目視amでは波状の表面粗さ
は見られず、−様な塗膜が形成されていた。塗膜の電磁
気特性は塗膜厚さ及び表面粗さと、はぼ、比例関係にあ
り、 (1)、 (2)、 (3)の条件で形成した膜
の順に電磁気特性は向上する。
That is, (1) No vibration is applied. (2) Vibration with an amplitude of 0.3 m and a frequency of 25 hertz is applied in the direction of the substrate rotation axis. (3) Vibration with an amplitude of 0.3 m and a frequency of 70 hertz is applied in the direction of the substrate rotation axis. After the magnetic powder in the coating film formed was subjected to an orientation treatment, the coating film was dried, and the binder resin was subjected to a heat curing treatment. The results of measuring the film thickness and surface roughness of these coating films are shown in FIG. The surface of the film formed under the conditions (1) was clearly wavy even when visually observed, and its flatness and uniformity were extremely poor. It can be seen from (2) and (3) that as the applied vibration intensity increases, the smoothness of the formed coating film improves and the film thickness becomes thinner. still,
In the coating films formed under the conditions (2) and (3), unlike those formed under the conditions (1), no wavy surface roughness was observed by visual observation, and a --like coating film was formed. The electromagnetic properties of a coating film are in a highly proportional relationship with the coating thickness and surface roughness, and the electromagnetic properties of films formed under the conditions (1), (2), and (3) improve in this order.

基板ディスクを高速回転し、塗料を薄膜塗布する工程に
おいて、時間経過とともに基板上の塗料は薄くなり、基
板上の塗料の流れる速度も遅くなる。即ち、基板上の塗
料にかかる剪断速度は小さくなるが、第2図から明らか
なように振動のない条件下では塗料は大きな降伏値を持
つため、塗料の見かけ粘度は薄膜化過程で飛躍的に大き
くなると考えられる。これに対し、振動を印加すること
により、塗料の降伏値はほとんど消滅する程度に小さく
なるため、塗料の薄膜化工程でもその見かけ粘度はそれ
程上昇しないと考えられる。この理由により、振動を印
加しないで塗布した場合には、基板上の塗料が薄くなる
に従い、その見かけ粘度が急激に上昇し、ある程度の厚
さになると流動しなくなってしまうが、振動を印加した
場合には、塗料の流動性の変化が少なく、このため、よ
り薄く塗布できるものであると考えられる。同様の理由
により、振動を印加することで塗膜の表面も平滑化する
と考えられる。
In the process of applying a thin film of paint by rotating a substrate disk at high speed, the paint on the substrate becomes thinner over time, and the flow rate of the paint on the substrate also slows down. In other words, the shear rate applied to the paint on the substrate decreases, but as is clear from Figure 2, the paint has a large yield value under non-vibration conditions, so the apparent viscosity of the paint dramatically increases during the thinning process. It is thought that it will become larger. On the other hand, by applying vibration, the yield value of the paint becomes so small that it almost disappears, so it is thought that the apparent viscosity of the paint does not increase that much even in the process of thinning the paint. For this reason, when coating without applying vibration, as the paint on the substrate becomes thinner, its apparent viscosity increases rapidly, and once it reaches a certain thickness, it stops flowing, but when applying vibration, In some cases, there is little change in the fluidity of the paint, and therefore it is thought that it can be applied more thinly. For the same reason, it is thought that applying vibration also smoothes the surface of the coating film.

第3図の結果からも明らかなように、振動数を一定にし
、振幅を変化させた場合も本実施例と同様の結果を得た
As is clear from the results shown in FIG. 3, results similar to those of this example were obtained when the frequency was kept constant and the amplitude was varied.

本実施例では振動を基板ディスクの回転軸方向に印加し
たが、前述の磁性塗料の振動の印加による見かけ粘度の
低下機構の説明からも明らかなように、この効果は印加
する振動の方向には全く無関係である。従って、実施例
と全く同じ効果は基板ディスクを水平方向に振動しても
得られ、また、基板ディスクを一様に回転するのではな
く、回転自身に振動因子を持たせることによっても、全
く同一の効果が得られ、本実施例は本発明の範囲を何ら
限定するものではない。
In this example, vibration was applied in the direction of the rotation axis of the substrate disk, but as is clear from the above explanation of the mechanism by which the apparent viscosity of the magnetic paint decreases due to the application of vibration, this effect does not change in the direction of the applied vibration. It's completely unrelated. Therefore, the exact same effect as in the example can be obtained by vibrating the substrate disk in the horizontal direction, and the same effect can also be obtained by not rotating the substrate disk uniformly but by giving a vibration factor to the rotation itself. The following effects are obtained, and this example does not limit the scope of the present invention in any way.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高保持力の磁性粉を高濃度に含有する
磁性塗料の降伏値を低下し、その見かけ粘度を低下する
ことができるので、磁性塗膜を薄く、均一に、しかも、
平滑に塗布することができ。
According to the present invention, it is possible to reduce the yield value and the apparent viscosity of a magnetic paint containing a high concentration of high-coercivity magnetic powder, thereby making it possible to form a thin and uniform magnetic paint film.
Can be applied smoothly.

高記録密度の塗布磁気ディスクを容易に形成することが
できる。
Coated magnetic disks with high recording density can be easily formed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の塗布方法を適用した装置の
系統図、第2図は磁性塗料の流動特性図、第3図は振動
印加による磁性塗料の見かけ粘度の変化を示す特性図、
第4@は実施例で調製した塗膜の膜厚及び面粗さと印加
振動周波数との関係を示す図である。 1・・・タンク、2・・・ポンプ、3・・・ノズル、4
・・・基板ディスク、5・・・回転軸、6・・・モータ
、7・・・回転伝第1図 々 第2図 でんCθ!、!  (S−り 第3図 第4図
Fig. 1 is a system diagram of an apparatus to which the coating method of an embodiment of the present invention is applied, Fig. 2 is a flow characteristic diagram of magnetic paint, and Fig. 3 is a characteristic diagram showing changes in apparent viscosity of magnetic paint due to application of vibration. ,
The fourth @ is a diagram showing the relationship between the film thickness and surface roughness of the coating film prepared in the example and the applied vibration frequency. 1...Tank, 2...Pump, 3...Nozzle, 4
... Substrate disk, 5 ... Rotating shaft, 6 ... Motor, 7 ... Rotation transmission Figure 1 and Figure 2 Cθ! ,! (S-ri Figure 3 Figure 4

Claims (1)

【特許請求の範囲】 1、磁性塗料をスピナーにより基板ディスク上に塗布す
る工程において、 回転する前記基板ディスクに50ヘルツ以上の振動を印
加することを特徴とする磁性塗料の塗布方法。
[Scope of Claims] 1. A method for applying magnetic paint, comprising: applying vibrations of 50 hertz or more to the rotating substrate disk in the step of applying the magnetic paint onto the substrate disk using a spinner.
JP15030088A 1988-06-20 1988-06-20 Method for applying magnetic coating compound Pending JPH01319131A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15030088A JPH01319131A (en) 1988-06-20 1988-06-20 Method for applying magnetic coating compound

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15030088A JPH01319131A (en) 1988-06-20 1988-06-20 Method for applying magnetic coating compound

Publications (1)

Publication Number Publication Date
JPH01319131A true JPH01319131A (en) 1989-12-25

Family

ID=15493992

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15030088A Pending JPH01319131A (en) 1988-06-20 1988-06-20 Method for applying magnetic coating compound

Country Status (1)

Country Link
JP (1) JPH01319131A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152966A (en) * 1988-12-05 1990-06-12 Otsuka Pharmaceut Co Ltd 4-hydroxycarbostyril derivative
JPH06163388A (en) * 1992-11-18 1994-06-10 Sekisui Finechem Co Ltd Coating method of resist material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02152966A (en) * 1988-12-05 1990-06-12 Otsuka Pharmaceut Co Ltd 4-hydroxycarbostyril derivative
JPH06163388A (en) * 1992-11-18 1994-06-10 Sekisui Finechem Co Ltd Coating method of resist material

Similar Documents

Publication Publication Date Title
US4229312A (en) Method of manufacturing a paint composite for magnetic films
JPH01319131A (en) Method for applying magnetic coating compound
JPH11310736A (en) Production of magnetic dispersion for magnetic recording medium and magnetic recording medium produced therefrom
JPS61248226A (en) Magnetic recording medium
US5180608A (en) Process for producing a rigid magnetic disk by longitudinally generating standing waves or interference waves in an undried applied magnetic paint
JP2702948B2 (en) Method for producing magnetic paint and magnetic recording medium using the same
EP0386762B1 (en) Magnetic disk and process and apparatus for producing the same
JPS6348612A (en) Magnetic recording medium
JPS6255556B2 (en)
JPS63124221A (en) Production of magnetic coating compound and magnetic recording medium formed by using said compound
JPS6341133B2 (en)
JPS6022416B2 (en) Method for manufacturing magnetic disk recording media
JP3191021B2 (en) Magnetic paint, magnetic layer for encoder and method for forming the same
JPH0735505B2 (en) Abrasive paint
JPH02294928A (en) Magnetic recording medium
JPH0291811A (en) Magnetic recording medium
JPH11149634A (en) Production of magnetic recording medium and coating material
JP2609656B2 (en) Method for producing magnetic paint and magnetic recording medium and magnetic recording / reproducing apparatus using the same
JPH05258281A (en) Magnetic recording medium and magnetic recorder
JPS60136028A (en) Composition for magnetic recording medium
JPH0533444B2 (en)
JPH0233726A (en) Magnetic recording medium and its manufacture
JPH0316023A (en) Magnetic disk and method and apparatus for producing the disk
JP3144364B2 (en) Manufacturing method of magnetic recording medium
JPS6220135A (en) Magnetic disk medium