JPH0291811A - Magnetic recording medium - Google Patents

Magnetic recording medium

Info

Publication number
JPH0291811A
JPH0291811A JP24110188A JP24110188A JPH0291811A JP H0291811 A JPH0291811 A JP H0291811A JP 24110188 A JP24110188 A JP 24110188A JP 24110188 A JP24110188 A JP 24110188A JP H0291811 A JPH0291811 A JP H0291811A
Authority
JP
Japan
Prior art keywords
magnetic
powder
magnetic recording
recording medium
ferromagnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24110188A
Other languages
Japanese (ja)
Inventor
Hajime Fukuya
福家 元
Masayuki Katsumoto
勝本 正之
Hitoshi Inoue
均 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP24110188A priority Critical patent/JPH0291811A/en
Priority to US07/293,177 priority patent/US5180616A/en
Publication of JPH0291811A publication Critical patent/JPH0291811A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To allow the formation of a nearly uniformly coated film having <=0.2mum film thickness and to contrive the decrease of noises and the drastic decrease of electrical defects by applying a magnetic coating compd. prepd. by dispersing fine particles of ferromagnetic powder into a high-polymer binder on a substrate. CONSTITUTION:An epoxy resin, phenolic resin, etc., which are the binder for dispersion of magnetic powder are made into a powdery resin of <=20mum grain size. After this powder is previously sufficiently mechanically mixed with the ferromagnetic powder having specific surface area of >=40m<2>/g BET value, a proper ratio of a solvent is added to the powder to swell the powdery resin. The mixture is then kneaded under high shearing stress and is uniformly kneaded with the ferromagnetic powder by a ball mill. The nearly uniformly coated film having <=0.015mumRa surface roughness before working and <=0.2mum recording film thickness is obtd. if this magnetic coating compd. is applied on the substrate. In addition, the noises are decreased by >=30% and the resolving power is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は磁気記録媒体および磁気記録再生装置および磁
気記録媒体の磁気記録層を形成する磁性塗料の製造方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic recording medium, a magnetic recording/reproducing device, and a method for producing a magnetic paint for forming a magnetic recording layer of a magnetic recording medium.

〔従来の技術〕[Conventional technology]

近年、磁気ディスクなどの磁気記録媒体は、高密度化の
要求に伴なって、強磁性粉体を含む塗膜は薄膜となる方
向にある。すなわち、従来1μm又はそれ以上であった
磁性塗膜の膜厚は、近年0.5μm以下になりつつある
。このような磁気ディスクは強磁性粉体をバインダー、
例えば、エポキシ樹脂、フェノール樹脂並びにビニル樹
脂からなる樹脂組成物に分散した塗料を基板上に塗布し
て塗膜とし、硬化することによって製造することができ
る。(特開昭63−48612号公報)また、磁気ディ
スクの高密度化に伴ない、磁気ディスクと磁気ヘッドの
間の浮動間隔が狭まってきた。それに伴ない磁気ディス
ク塗膜表面はより平滑であることが要求されるようにな
った。前記従来技術により、塗布で0.2μm (加工
前の磁性層の膜厚)の薄膜形成が初めて可能になったが
、塗膜の面粗さが0.03μmRa  と大きかったた
め、0.2μmの塗膜に対し0.1μmも塗膜加工する
ことにより1面粗さ0.01μmRa  、塗膜厚0.
1μmの磁気ディスクを得ていた。
In recent years, with the demand for higher density magnetic recording media such as magnetic disks, coating films containing ferromagnetic powder are becoming thinner. That is, the thickness of a magnetic coating film, which was conventionally 1 μm or more, has recently been reduced to 0.5 μm or less. Such a magnetic disk uses ferromagnetic powder as a binder,
For example, it can be manufactured by applying a coating material dispersed in a resin composition consisting of an epoxy resin, a phenol resin, and a vinyl resin onto a substrate to form a coating film, and then curing the coating film. (Japanese Unexamined Patent Publication No. 63-48612) Furthermore, as the density of magnetic disks increases, the floating distance between the magnetic disk and the magnetic head has become narrower. As a result, the magnetic disk coating surface is required to be smoother. The above-mentioned conventional technology made it possible for the first time to form a thin film of 0.2 μm (thickness of the magnetic layer before processing) by coating, but because the surface roughness of the paint film was as large as 0.03 μmRa, By processing the film by 0.1 μm, the roughness on one side is 0.01 μmRa and the coating thickness is 0.1 μm.
A 1 μm magnetic disk was obtained.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来技術により製造した磁性塗料は、磁性塗料
中の磁性粉の粒径が大きく(比表面積、BET値22y
d/g)、かつ磁性粉の分散が不十分であったため、こ
の磁性塗料では、膜厚(加工前)0.2μm未満の薄膜
形成が電気的欠陥の発生により事実上不可能であり、塗
布された面の加工前の面粗さは0.03μm Ra  
と大きいものであった。
In the magnetic paint manufactured by the above-mentioned conventional technology, the particle size of the magnetic powder in the magnetic paint is large (specific surface area, BET value 22y).
d/g) and the magnetic powder was insufficiently dispersed, it was virtually impossible to form a thin film with a film thickness (before processing) of less than 0.2 μm due to the occurrence of electrical defects with this magnetic paint. The surface roughness of the processed surface before processing is 0.03 μm Ra
It was a big thing.

したがって、塗膜厚0.2μm以下の薄膜の磁気ディス
クを得る際には、実際に塗布して形成した塗膜の約1/
2を削り落とさねばならなかった。
Therefore, when obtaining a thin magnetic disk with a coating thickness of 0.2 μm or less, approximately 1/2 of the coating film actually formed by coating is required.
I had to cut out 2.

しかし、このように塗膜加工量が大きくなると、塗膜加
工時間の増大とスクラッチ傷の多量発生に伴なう電気的
欠陥の増大を招くことになる。磁気ディスクの塗膜は未
加工のまま使用できることが理想であり、塗膜加工を施
すとしても、せいぜい、加工前膜厚の20%以下が望ま
しいと考えられる。
However, when the amount of coating film processing becomes large in this way, the coating film processing time increases and electrical defects due to the occurrence of a large number of scratches occur. Ideally, the coating film on a magnetic disk can be used unprocessed, and even if the coating film is processed, it is considered desirable that the film thickness be at most 20% or less of the film thickness before processing.

本発明の目的と磁性塗料の製造方法を改良することによ
り、塗料中の磁性粉の分散状態を良好にする。その結果
として、磁気ディスク塗布面の加工前の面粗さを小さく
することにより、磁気ディスク媒体のノイズを低減させ
ると共に、塗膜加工量を極力減少させ、スクラッチ傷の
発生に伴なう電気的欠陥を減少させる。また、上述のよ
うな小さな面粗さで、内外周の加工前膜厚0.2μm以
下の均一な磁気ディスク媒体を得ることにある。
The object of the present invention is to improve the dispersion state of magnetic powder in the paint by improving the manufacturing method of magnetic paint. As a result, by reducing the surface roughness of the coated surface of the magnetic disk before processing, it is possible to reduce the noise of the magnetic disk medium, reduce the amount of coating film processing as much as possible, and reduce the electrical damage caused by scratches. Reduce defects. Another object of the present invention is to obtain a magnetic disk medium with a small surface roughness as described above and a uniform thickness of 0.2 μm or less before processing on the inner and outer peripheries.

本発明の他の目的は高S/N、高分解分の磁気記録再生
装置を提供することにある。さらに、本装置の他の目的
は、誤動作が少なく、さらに、ヘッドクラッシュの生じ
難い磁気記録再生装置を提供することにある。
Another object of the present invention is to provide a magnetic recording/reproducing device with high S/N and high resolution. Furthermore, another object of the present device is to provide a magnetic recording/reproducing device that has fewer malfunctions and is less likely to cause head crashes.

〔課題を解決するための手段〕[Means to solve the problem]

上記本発明の目的を達成するために、磁性粉体の分散用
結合剤であるエポキシ樹脂、フェノール樹脂、ビニル樹
脂などを粒径20μm以下の粉末状の樹脂となし、これ
をあらかじめBET値40rrr/g以上の比表面積を
もつ強磁性粉体と機械的に十分に混合した後、適量の溶
媒を添加して上記均一に混合させている粉末状の樹脂を
膨潤させ、高ずり応力下で混練を行なって、樹脂粉末を
ほぼ溶融の状態にして強磁性粉体と均一に混練させ、そ
の後、従来と同様にボールミル混練を行う。以上の工程
により、強磁性粉体が均一に分散したタクトイド構造の
磁性塗料を得られる。
In order to achieve the above object of the present invention, a binder for dispersing magnetic powder such as epoxy resin, phenol resin, vinyl resin, etc. is made into a powdered resin with a particle size of 20 μm or less, and this is prepared in advance with a BET value of 40 rrr/ After mechanically mixing thoroughly with ferromagnetic powder having a specific surface area of 100 g or more, an appropriate amount of solvent is added to swell the uniformly mixed powdered resin and kneaded under high shear stress. The resin powder is brought into a nearly molten state and uniformly kneaded with the ferromagnetic powder, and then kneaded in a ball mill as in the conventional method. Through the above steps, a magnetic paint having a tactoid structure in which ferromagnetic powder is uniformly dispersed can be obtained.

このようにして製造した磁性塗料を用い、非磁性基体に
塗布し、配向することにより磁気ディスクを作製したと
ころ、加工前の面粗さが0.015μIRa以下と非常
に小さく、しかも、5.25 インチのデイクスにおけ
る磁気記録膜厚が0.2μm以下のほぼ均一な磁気ディ
スクを得ることができ、本発明の目的を十分の達成する
ことができた。
When a magnetic disk was manufactured by applying the magnetic paint produced in this way to a non-magnetic substrate and orienting it, the surface roughness before processing was very small, 0.015μIRa or less, and 5.25μIRa or less. It was possible to obtain a substantially uniform magnetic disk having a magnetic recording film thickness of 0.2 μm or less in inch disks, and the object of the present invention was fully achieved.

さらに、本発明によれば、塗膜厚(加工前の膜厚)0.
05μm、塗膜面粗さ(加工前の面粗さ)0.010μ
m Ra  の極薄磁性層も目視欠陥なく形成すること
も可能である。したがって、従来の様に多量の塗膜加工
をすることなく、平滑な薄膜の記録層を有する磁気ディ
スクを得ることが可能になった。
Furthermore, according to the present invention, the coating film thickness (film thickness before processing) is 0.
05μm, coating surface roughness (surface roughness before processing) 0.010μm
It is also possible to form an extremely thin magnetic layer of m Ra without any visible defects. Therefore, it has become possible to obtain a magnetic disk having a smooth thin film recording layer without performing a large amount of coating processing as in the past.

本発明では、加工前の塗膜厚さが0.2μm以下と薄く
、しかも、加工前の塗膜面粗さが0.0+、5μmRa
以下と小さいため、殆んど塗膜加工を必要とせず、塗膜
加工量が従来に比し極端に少ないため、スクラッチが入
り難く、このため誤動作が少なくかつ、S/N、分解能
の優れた磁気記録再生装置を作製し得る。
In the present invention, the coating film thickness before processing is as thin as 0.2 μm or less, and the coating surface roughness before processing is 0.0+, 5 μm Ra.
As it is small, it hardly requires any coating processing, and the amount of coating film processing is extremely small compared to conventional methods, making it difficult to get scratches. A magnetic recording/reproducing device can be produced.

〔作用〕[Effect]

磁性塗料を通常、塗料中の溶剤量が増えると、強磁性粉
体の凝集が進行し、薄膜塗布が不可能になるとともに面
粗さ(平滑性)も劣化する。これは従来技術として前述
した特開昭63−48612号の場合も同様である。こ
の磁性塗料では塗料中の磁性粉が1個1個ランダムに分
散しており、かなり安定な塗料であるにもかかわらず、
加工前膜厚を0.2μmとするのが薄膜塗布の限界であ
る。それ以下の薄膜では、塗膜面に目視欠陥が現われて
しまう。また1本発明では強磁性粉体として比表面積B
 E T 40 m / g以上のものを使用している
が、特開昭63−48612号に記載の磁性塗料製造処
法で上記強磁性粉体を分散させても、加工前膜厚0.5
 μm以下、加工前面粗さ0.03μmRa以下の磁気
ディスク媒体を得ることはできなかった。一方、磁性粉
が塗料中で数十水の磁性粉の束、いわゆるタクトイドを
形成する磁性塗料、例えば、特公昭57−40566号
公報、特開昭63−4422号公報に記載されているご
とく、強磁性粉体をエポキシ樹脂に分散させた塗料では
、塗料中の溶剤量が増えたときの強磁性粉体の凝集の進
行が著しい。
When the amount of solvent in a magnetic paint increases, the agglomeration of the ferromagnetic powder progresses, making it impossible to apply a thin film and also deteriorating the surface roughness (smoothness). This also applies to the case of Japanese Patent Application Laid-Open No. 63-48612 mentioned above as the prior art. In this magnetic paint, the magnetic powder in the paint is randomly dispersed one by one, and although it is a fairly stable paint,
The limit of thin film coating is that the film thickness before processing is 0.2 μm. If the film is thinner than this, visual defects will appear on the coating surface. In addition, in the present invention, the ferromagnetic powder has a specific surface area of B
E
It was not possible to obtain a magnetic disk medium with a roughness of 0.03 μm or less on the processed front surface. On the other hand, magnetic paints in which magnetic powder forms a bundle of several tens of water magnetic powders, so-called tactoids, such as those described in Japanese Patent Publication No. 57-40566 and Japanese Patent Application Laid-Open No. 63-4422, In a paint in which ferromagnetic powder is dispersed in an epoxy resin, agglomeration of the ferromagnetic powder progresses significantly when the amount of solvent in the paint increases.

強磁性粉体を高ずり応力下で混練させるには、通常、少
量の樹脂溶液を添加して混線を行うが。
In order to knead ferromagnetic powder under high shear stress, a small amount of resin solution is usually added to mix the powder.

添加する溶液は強磁性粉体の一部に局所的に吸収されて
しまい、磁性粉はなかなか均一な状態になりにくく、固
体/固体同志の方がはるかに均一に混合され易い。本発
明においては、20μm以下に微粉砕したエポキシ樹脂
などの樹脂組成物とBET40rrF/g以上の比表面
積をもつ強磁性粉体とを、あらかじめ十分に混合するた
めに強磁性粉体と樹脂組成物とは均一な混合状態となる
。そして、その後の溶媒の添加によって樹脂粉子は膨潤
し、それを核として強磁性粉体が吸着し混練されるため
均・−なタクトイド構造の磁性塗料が得られ、その結果
、極めて小さい面粗さの磁性薄膜の形成が可能になるも
のと考えられる。
The solution to be added is locally absorbed by a portion of the ferromagnetic powder, making it difficult for the magnetic powder to become uniform, whereas solid/solid mixtures are much easier to mix uniformly. In the present invention, in order to sufficiently mix in advance a resin composition such as an epoxy resin finely pulverized to 20 μm or less and a ferromagnetic powder having a specific surface area of BET40rrF/g or more, the ferromagnetic powder and the resin composition are mixed in advance. This results in a uniformly mixed state. The resin powder is then swollen by the addition of a solvent, and the ferromagnetic powder is adsorbed and kneaded using it as a core, resulting in a magnetic paint with an even tactoid structure, resulting in extremely small surface roughness. It is believed that this makes it possible to form a thin magnetic film.

本発明において強磁性粉体の分散用に粉末状エポキシ樹
脂を用いているが、エポキシ樹脂粉末の粉度を小さくす
るほど、また、強磁性粉体も比表面積を大きくするほど
より小さく面粗さでの薄膜塗布が可能となる。樹脂粉末
の粉度としては、20μm以下、より好ましくは10μ
m以下、が望ましく1強磁性粉体はBET値40rr?
/g以上、より好ましくはBET値50m/g以上の比
表面積を有していることが望ましい。
In the present invention, a powdered epoxy resin is used for dispersing ferromagnetic powder, but the smaller the fineness of the epoxy resin powder, and the larger the specific surface area of the ferromagnetic powder, the smaller the surface roughness. Thin film coating is possible. The fineness of the resin powder is 20 μm or less, more preferably 10 μm.
m or less, preferably 1 ferromagnetic powder has a BET value of 40rr?
It is desirable to have a specific surface area of 50 m/g or more, more preferably a BET value of 50 m/g or more.

これらの磁性塗料での薄膜塗布の限界はそれぞれ0.9
μm(特公昭57−40566号)、0.45μm(特
開昭63−4422号)で、加工前面粗さは0・030
μmRa  が限界である。
The limit of thin film coating with these magnetic paints is 0.9
μm (Japanese Patent Publication No. 57-40566), 0.45 μm (Japanese Patent Publication No. 63-4422), and the roughness of the processed front surface is 0.030.
μmRa is the limit.

本発明による磁性塗料では、塗料中で磁性粉がタクトイ
ド構造を形成するにもかかわらず、塗料中の溶剤量を増
加させても、強磁性粉体の凝集が進行しないため、上記
のような小さい面粗さでの薄膜塗布が可能となる。また
、本発明による磁性塗料の特異性は、磁気ディスク円板
に磁性塗料をスピン塗布した場合1通常は磁気ディスク
円板の内周側は薄く、外周側は厚く塗布され、膜厚勾配
がつくのに対し、本発明による磁性塗料では、高速スピ
ン塗布を行なうことにより磁気ディスク(5,25イン
チ)の内外周の膜厚差は殆んどなく。
In the magnetic paint according to the present invention, even though the magnetic powder forms a tactoid structure in the paint, the agglomeration of the ferromagnetic powder does not proceed even if the amount of solvent in the paint is increased. Thin film coating is possible with rough surfaces. In addition, the peculiarity of the magnetic paint according to the present invention is that when the magnetic paint is spin-coated onto a magnetic disk disk, 1 the coating is normally thinner on the inner circumferential side of the magnetic disk disk and thicker on the outer circumferential side, creating a film thickness gradient. On the other hand, with the magnetic paint according to the present invention, there is almost no difference in film thickness between the inner and outer peripheries of a magnetic disk (5.25 inches) due to high-speed spin coating.

内周部から外周部にかけて、加工前膜厚で、例えば0.
05μmの均一薄膜の形成が、加工前面粗さ0.01μ
mRa  の高い平滑性のもとに可能である。これによ
り、磁気ディスクの高分解能化、低ノイズ化が可能であ
り、塗膜加工時間の大幅短縮も可能である。
From the inner circumference to the outer circumference, the film thickness before processing is, for example, 0.
Formation of a uniform thin film of 0.05 μm, processing surface roughness of 0.01 μm
This is possible due to the high smoothness of mRa. This makes it possible to increase the resolution of the magnetic disk and reduce noise, and it is also possible to significantly shorten the coating processing time.

このような超薄膜の磁気ディスクで最も問題となるのは
塗膜の信頼性である。本発明は連続媒体ではなく、塗布
型の媒体であるため、塗膜のなかに補強材を添加したり
、塗膜を多孔質にし、そのなかに液状の潤滑剤を含浸さ
せたりするなどの塗膜信頼性を維持するための種々の手
段を構することができる。そのなかでも、特に有効な方
法は、補強材として粒径が加工前膜厚以下の単結晶アル
ミナ微粒子あるいはダイヤモンド微粒子等を添加する方
法である。その他の方法として、実施例にも述べである
ように、二層の塗膜、例えば、下地層として、高分子結
合剤中に少量の補強材を分散させた樹脂層を塗布し、そ
の上層として本発明の極薄磁性層を形成することも可能
である。
The most important problem with such ultra-thin magnetic disks is the reliability of the coating. Since the present invention is not a continuous medium but a coated medium, various coating methods such as adding reinforcing materials to the coating film, making the coating film porous, and impregnating it with a liquid lubricant, etc. Various measures can be taken to maintain membrane reliability. Among these, a particularly effective method is to add single-crystal alumina fine particles, diamond fine particles, etc. whose particle size is less than the film thickness before processing as a reinforcing material. Another method, as described in the examples, is to apply a two-layer coating, for example, as a base layer, a resin layer with a small amount of reinforcing material dispersed in a polymeric binder, and as an upper layer. It is also possible to form ultrathin magnetic layers according to the invention.

〔実施例〕〔Example〕

以下に本発明の一実施例を挙げさらに詳細に説明する。 An example of the present invention will be described below in more detail.

(実施例1) 板状のエポキシ樹脂をジェットミルにて粉砕し、粒径約
8,0μmのエポキシ樹脂粉末を得た。上記粉末状エポ
キシ樹脂27.5重量部と強磁性粉体(BET値40r
ri’/gの比表面積をもつCO被着酸化鉄粉(He7
700e)) 、100重量部および単結晶アルミナ5
重量部を十分混合した後、シクロへキサノン10重量部
を添加して、ニーダ混練機中でさらに混合を行なった。
(Example 1) A plate-shaped epoxy resin was pulverized using a jet mill to obtain epoxy resin powder with a particle size of about 8.0 μm. 27.5 parts by weight of the above powdered epoxy resin and ferromagnetic powder (BET value 40r)
CO-adhered iron oxide powder (He7) with a specific surface area of ri'/g
700e)), 100 parts by weight and single crystal alumina 5
After thoroughly mixing the parts by weight, 10 parts by weight of cyclohexanone was added and further mixing was carried out in a kneader kneader.

その後、さらに、シクロへキサノン5重量部を添加して
高ずり応力下で混線を行なった。
Thereafter, 5 parts by weight of cyclohexanone was further added and crosstalk was performed under high shear stress.

上記混線物をボールミルポットに入れ、シクロヘキサノ
ンとイソホロンからなる混合溶媒160重量部を加え、
3日間ボールミル混練を行ない、強磁性粉体を分散させ
た。つぎに、フェノール樹脂27.5重量部とビニル樹
脂6重量部をシクロヘキサノン・イソホロン・ジオキサ
ンからなる混合溶媒体800重量部に溶解した溶液を加
えて、磁気ディスク用の磁性塗料を調製した。つぎに、
あらかじめ、表面を清浄にした5、25インチのアルミ
ニウム基板上に上記塗料をスピン塗布し、周知の方法に
より磁場配向を行なった。塗布した磁気ディスクを21
0℃で焼付けた後、塗膜厚、面粗さを測定した。
Put the above mixture into a ball mill pot, add 160 parts by weight of a mixed solvent consisting of cyclohexanone and isophorone,
Ball mill kneading was performed for 3 days to disperse the ferromagnetic powder. Next, a solution of 27.5 parts by weight of phenol resin and 6 parts by weight of vinyl resin dissolved in 800 parts by weight of a mixed solvent consisting of cyclohexanone, isophorone, and dioxane was added to prepare a magnetic paint for a magnetic disk. next,
The above coating material was spin-coated onto a 5.25-inch aluminum substrate whose surface had been cleaned in advance, and magnetic field orientation was performed using a well-known method. The coated magnetic disk is 21
After baking at 0°C, coating film thickness and surface roughness were measured.

得られた塗布ディスクの加工前の膜厚はR38mで0.
20μm、R60+n+t+でもQ、20μmであった
。また、加工前の面粗さは0.014 μm Ra円周
方向のBr/8m値は0.85であった。なお、塗膜面
にはまったく目視欠陥は認められなかった。
The film thickness of the obtained coating disc before processing was R38m and 0.
Even with R60+n+t+, Q was 20 μm. Moreover, the surface roughness before processing was 0.014 μm, and the Br/8m value in the Ra circumferential direction was 0.85. Note that no visual defects were observed on the coating surface.

(実施例2) 強磁性粉体(BET値45rrr/gの比表面積をもつ
CO被着酸化鉄粉(He7700e))100重量部と
単結晶アルミナ3重量部および粒径約3.0μmのエポ
キシ樹脂微粉末27.5重量部を十分混合した後、シク
ロヘキサノン10重量部を添加して、ニーダ混練機中で
さらに混合を行なった。その後、シクロへキサノン5重
量部を添加して高ずり応力下で混線を行なった。
(Example 2) 100 parts by weight of ferromagnetic powder (CO-coated iron oxide powder (He7700e) with a specific surface area of BET value 45 rrr/g), 3 parts by weight of single crystal alumina, and epoxy resin with a particle size of about 3.0 μm. After thoroughly mixing 27.5 parts by weight of fine powder, 10 parts by weight of cyclohexanone was added and further mixing was carried out in a kneader kneader. Thereafter, 5 parts by weight of cyclohexanone was added and crosstalk was performed under high shear stress.

上記混線物をボールミルポットに入れ、シクロヘキサノ
ン・イソホロンからなる混合溶媒160重量部を加え、
3日間ボールミル混練を行ない強磁性粉体を分散させた
。つぎに、フェノール樹脂12.5重量部とビニル樹脂
6重量部をシクロヘキサノン・イソホロン・ジオキサン
からなる混合溶媒990重量部に溶解した溶液を加えて
、磁気ディスク用の磁性塗料を調製した。つぎに、あら
かじめ表面を清浄にした5、25 インチのアルミニウ
ム基板上に上記塗料をスピン塗布し、周知の方法により
磁場配向を行ない、焼付けた後、塗膜厚と面粗さを測定
した。得られた塗布ディスクの加工前の膜厚はR38+
m、R60mmとも0゜10μmであった。また、加工
前の面粗さは0.012μIRa、円周方向のB r 
/ B m値は0.84 であった。なお、塗膜面には
まったく目視欠陥は認められなかった。
Put the above mixture into a ball mill pot, add 160 parts by weight of a mixed solvent consisting of cyclohexanone and isophorone,
Ball mill kneading was performed for 3 days to disperse the ferromagnetic powder. Next, a solution of 12.5 parts by weight of phenol resin and 6 parts by weight of vinyl resin dissolved in 990 parts by weight of a mixed solvent consisting of cyclohexanone, isophorone, and dioxane was added to prepare a magnetic paint for a magnetic disk. Next, the above paint was spin-coated onto a 5.25-inch aluminum substrate whose surface had been previously cleaned, magnetic field orientation was performed using a well-known method, and after baking, the film thickness and surface roughness were measured. The film thickness of the obtained coating disc before processing is R38+
m and R60mm were both 0°10 μm. In addition, the surface roughness before processing is 0.012 μIRa, and B r in the circumferential direction.
/Bm value was 0.84. Note that no visual defects were observed on the coating surface.

(実施例3) 強磁性粉体(BET値50rrr/gの比表面積をもつ
Co被着酸化鉄粉(He 7700e) ) 100重
量部と単結晶アルミナ3重量部および粒径2.0μmの
エポキシ樹脂微粉末35重量部を十分混合した後、シク
ロヘキサノン10重量部を添加して、ニーダ混練機中で
高ずり応力下で混線を行なった。
(Example 3) 100 parts by weight of ferromagnetic powder (Co-coated iron oxide powder (He 7700e) with a specific surface area of BET value 50 rrr/g), 3 parts by weight of single crystal alumina, and epoxy resin with a particle size of 2.0 μm After thoroughly mixing 35 parts by weight of fine powder, 10 parts by weight of cyclohexanone was added, and cross-mixing was performed under high shear stress in a kneader kneader.

上記混線物をボールミルポットに入れ、シクロヘキサノ
ン・イソホロンからなる混合溶媒130重量部を加え、
3日間ボールミル混練を行ない強磁性粉体を分散させた
。つぎに、フェノール樹脂15重量部とビニル樹脂3重
量部をシクロヘキサノン・イソホロン・ジオキサンから
なる混合溶媒14oO重量部に溶解した溶液を加えて、
磁気ディスク用の磁性塗料を調製した。つぎに、あらか
じめ表面を清浄にした5、25 インチのアルミニウム
基板上に上記塗料をスピン塗布し、周知の方法により磁
場配向を行ない、焼付けた後、塗膜厚と面粗さを測定し
た。得られた塗布ディスクの加工前の膜厚はR38m、
R60mmとも0.07μm。
Put the above mixture into a ball mill pot, add 130 parts by weight of a mixed solvent consisting of cyclohexanone and isophorone,
Ball mill kneading was performed for 3 days to disperse the ferromagnetic powder. Next, a solution of 15 parts by weight of phenol resin and 3 parts by weight of vinyl resin dissolved in 14 parts by weight of a mixed solvent consisting of cyclohexanone, isophorone, and dioxane was added.
A magnetic paint for magnetic disks was prepared. Next, the above paint was spin-coated onto a 5.25-inch aluminum substrate whose surface had been previously cleaned, magnetic field orientation was performed using a well-known method, and after baking, the film thickness and surface roughness were measured. The film thickness of the obtained coating disc before processing was R38m,
Both R60mm and 0.07μm.

加工前の面粗さは0.011μmRaであった。また、
B r / B m値は0.86であった。なお、塗膜
面にはまったく目視欠陥は認められなかった。
The surface roughness before processing was 0.011 μmRa. Also,
The B r /B m value was 0.86. Note that no visual defects were observed on the coating surface.

(実施例4) 強磁性粉体(BET値55rrr/gの比表面積をもつ
Co被着酸化鉄粉(Hc77006))100重量部と
微量のダイヤモンド微粒子および粒径約2.0μmのエ
ポキシ樹脂微粉末40重量部を十分混合した後、シクロ
ヘキサノン10重量部を添加して、高ずり応力下で混線
を行なった。
(Example 4) 100 parts by weight of ferromagnetic powder (Co-coated iron oxide powder (Hc77006) with a specific surface area of BET value 55 rrr/g), a trace amount of diamond fine particles, and epoxy resin fine powder with a particle size of about 2.0 μm After thoroughly mixing 40 parts by weight, 10 parts by weight of cyclohexanone was added and cross-talk was performed under high shear stress.

上記混線物をボールミルボットに入れ、シクロヘキサノ
ン・イソホロンからなる混合溶媒130重量部を加え、
3日間ボールミル混練を行ない強磁性粉体を分散させた
。つぎに、フェノール樹脂20重量部とビニル樹脂6重
量部をシクロヘキサノン・イソホロン・ジオキサンから
なる混合溶媒1850重量部に溶解した溶液を加えて、
磁気ディスク用の磁性塗料を調製した。つぎに、あらか
じめ表面を清浄にした5、25 インチのアルミニウム
基板上に上記塗料をスピン塗布し、周知の方法により磁
場配向を行ない、焼付けた後、塗膜厚と面粗さを測定し
た。得られた塗布ディスクの加工前の膜厚はR38ny
a、R60mw*とも0.05μm、加工前の面粗さは
0.010μmRaであった。また、円周方向のB r
 / B m値は0.85であった。
Put the above mixture into a ball millbot, add 130 parts by weight of a mixed solvent consisting of cyclohexanone and isophorone,
Ball mill kneading was performed for 3 days to disperse the ferromagnetic powder. Next, a solution of 20 parts by weight of phenolic resin and 6 parts by weight of vinyl resin dissolved in 1850 parts by weight of a mixed solvent consisting of cyclohexanone, isophorone, and dioxane was added.
A magnetic paint for magnetic disks was prepared. Next, the above paint was spin-coated onto a 5.25-inch aluminum substrate whose surface had been previously cleaned, magnetic field orientation was performed using a well-known method, and after baking, the film thickness and surface roughness were measured. The film thickness of the obtained coating disc before processing is R38ny
a and R60mw* were both 0.05 μm, and the surface roughness before processing was 0.010 μmRa. Also, B r in the circumferential direction
/Bm value was 0.85.

なお、塗膜面にはまったく目視欠陥は認められなかった
Note that no visual defects were observed on the coating surface.

以上のように、本発明により初めて面粗さの小さい平滑
な極薄磁性塗膜の形成が可能となった。
As described above, the present invention has made it possible for the first time to form a smooth, ultra-thin magnetic coating film with low surface roughness.

この技術は実施例に記載した如く、単に非磁性基板上に
単層の磁性塗膜を形成するだけではなく、非磁性基板上
に少なくとも二層以上の多層塗膜を形成する場合も極め
て容易である。
As described in the examples, this technology is extremely easy to use not only to form a single layer of magnetic coating on a non-magnetic substrate, but also to form a multilayer coating of at least two or more layers on a non-magnetic substrate. be.

また、スパッタ、蒸着、メツキ等の連続媒体は優れた電
磁変換特性を有しているにもかかわらず、信頼性の点で
塗布媒体に劣っている。!!1布媒体では塗膜中に補強
材、潤滑剤等を含有することが可能なのに対し、連続媒
体ではそれが不可能なことがその主な理由とされている
。そこで、上記連続媒体の表面上に微量のダイヤモンド
微粒子等の補強材を含有した本発明の極薄磁性層(連続
媒体と保持力は合わせておく)を形成させることにより
、連続媒体の信頼性を塗布媒体のレベルまで引きあげる
ことも可能である。
Furthermore, although continuous media such as sputtering, vapor deposition, and plating have excellent electromagnetic conversion characteristics, they are inferior to coating media in terms of reliability. ! ! The main reason for this is that while it is possible to contain reinforcing materials, lubricants, etc. in the coating film with a single cloth medium, this is not possible with a continuous medium. Therefore, by forming the ultra-thin magnetic layer of the present invention (having the same coercive force as the continuous medium) containing a small amount of reinforcing material such as diamond particles on the surface of the continuous medium, the reliability of the continuous medium can be improved. It is also possible to bring it up to the level of the application medium.

以上の本発明の実施例において用いた強磁性粉体の分散
用高分子結合剤として、エポキシ樹脂フェノール樹脂、
ビニル樹脂を用いているが、その他一般に使用されてい
る塩化ビニル−酢酸ビニル共重合体、塩化ビニル−酢酸
ビニル−ビニルアコール共重合体、アクリロニトリル−
アクリル酸−2−ヒドロキシエチルメタクリレート共重
合体などのビニル系樹脂、アクリロニトリルーブタジエ
ン共重合体などのゴム系樹脂、ニトロセルロース、アセ
チルセルロースなどの繊維素系樹脂、フェノキシなどの
エポキシ系樹脂、ウレタン、ウレタンプレポリマーなど
のウレタン系樹脂など、強磁性粉体の結合性のよい通常
の有機高分子化合物を用いることができる。なお1本発
明における強磁性粉体の分散用高分子結合剤として用い
るビニル樹脂としては、ポリビニルブチラール、ポリビ
ニルホルマール、ポリビニルアセテートなどを挙げるこ
とができ、この中で特にポリビニルブチラールを用いる
ことがより好ましい。
As the polymer binder for dispersing ferromagnetic powder used in the above examples of the present invention, epoxy resin phenol resin,
Vinyl resin is used, but other commonly used vinyl chloride-vinyl acetate copolymers, vinyl chloride-vinyl acetate-vinyl alcohol copolymers, acrylonitrile-
Vinyl resins such as acrylic acid-2-hydroxyethyl methacrylate copolymer, rubber resins such as acrylonitrile-butadiene copolymer, cellulose resins such as nitrocellulose and acetylcellulose, epoxy resins such as phenoxy, urethane, Ordinary organic polymer compounds that have good binding properties for ferromagnetic powder can be used, such as urethane resins such as urethane prepolymers. Note that the vinyl resin used as the polymeric binder for dispersing ferromagnetic powder in the present invention includes polyvinyl butyral, polyvinyl formal, polyvinyl acetate, etc. Among these, it is particularly preferable to use polyvinyl butyral. .

また、強磁性粉体としては、本実施例では、CO被着酸
化鉄粉を用いているが、その他にも、BET値40rr
r/g以上の比表面積を有する酸化鉄粉、メタル粉、バ
リウムフェライト粉炭化鉄粉等を用いることができる。
In addition, as the ferromagnetic powder, CO-coated iron oxide powder is used in this example, but other materials with a BET value of 40rr are also used.
Iron oxide powder, metal powder, barium ferrite powder, iron carbide powder, etc. having a specific surface area of r/g or more can be used.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したごとく本発明の方法によって製造し
た磁性塗料は、強磁性粉体が塗料中に均一に分散された
タクトイド構造の磁性塗料を得ることができる。これを
磁気記録媒体、例えば5.25インチのアルミニウム基
板を用いた磁気ディスクに適用すると、加工前の表面粗
さが0.015μmRa以下と非常に小さい面粗さとな
り、また磁気ディスクの内外周とも0.2μm以下の極
めて薄く、かつ均一な膜厚の薄膜を塗布により容易に形
成させることが可能である。このため、塗膜加工を殆ん
ど必要としないため、塗膜加工時のスクラッチ傷などに
よる電気的欠陥を大幅に低減させる効果がある。また、
ディスクノイズに関しても、約30%以上の低減が期待
できると共に、分解能の向上も期待できる。
As described above in detail, the magnetic paint produced by the method of the present invention has a tactoid structure in which ferromagnetic powder is uniformly dispersed in the paint. When this is applied to a magnetic recording medium, for example, a magnetic disk using a 5.25-inch aluminum substrate, the surface roughness before processing is as low as 0.015 μmRa or less, and the inner and outer circumferences of the magnetic disk are It is possible to easily form a thin film having an extremely thin and uniform thickness of 0.2 μm or less by coating. For this reason, there is almost no need for coating processing, which has the effect of significantly reducing electrical defects caused by scratches and the like during coating processing. Also,
Disk noise can be expected to be reduced by about 30% or more, and an improvement in resolution can also be expected.

なお、本発明の実施にあたり、使用したニーダ−混線機
は混合容量IQ、動力2.2  KW、4)Pのもので
、強磁性粉体を800g投入し、ブレード回転数3Qr
pmで混線を実施した。この場合少なくとも10 I)
dynes/ a!以上のすり応力下で混線を行なって
いる。本発明においては、この様に106dynes/
 ci以上のずり応力下で混線を行なうことが肝要であ
る。
In carrying out the present invention, the kneader mixer used had a mixing capacity of IQ, a power of 2.2 KW, and 4) P, 800 g of ferromagnetic powder was charged, and the blade rotation speed was 3 Qr.
Crosstalk was carried out at pm. In this case at least 10 I)
dynes/a! Crosstalk occurs under the above-mentioned shear stress. In the present invention, in this way, 106 dynes/
It is important to perform the crosstalk under a shear stress of ci or more.

Claims (1)

【特許請求の範囲】 1、高分子結合剤中に強磁性粉体微粒子もしくは補強材
微粒子を含む強磁性粉体微粒子を分散せしめた磁性塗料
を非磁性基板上に塗布することにより磁気記録層を形成
した磁気記録媒体において、該磁気記録層の膜厚が0.
2μm以下のほぼ均一な塗膜であることを特徴とする磁
気記録媒体。 2、非磁性基体上に形成された加工前の磁性塗膜の膜厚
が0.2μm以下のほぼ均一な塗膜であることを特徴と
する特許請求の範囲第1項記載の磁気記録媒体。 3、非磁性基体上に形成された加工前の磁性塗膜の膜厚
が0.3μm以下であり、かつ加工前の磁性塗膜の面粗
さが0.015μmRa以下であることを特徴とする特
許請求の範囲第1項記載の磁気記録媒体。 4、非磁性基板上に少なくとも二層の塗膜もしくは磁気
記録層を有する磁気記録媒体において、該塗膜もしくは
磁気記録層の少なくとも一層は強磁性粉体微粒子もしく
は補強材微粒子を含む強磁性体微粒子を高分子結合剤中
に分散せしめた塗膜であることを特徴とする特許請求の
範囲第1項ないし第3項記載の磁気記録媒体。 5、上記磁気記録媒体は磁気ディスクである特許請求の
範囲第1項〜第4項記載の磁気記録媒体。 6、特許請求の範囲第1項〜第5項に記載の磁気記録媒
体とこれに記録再生を行なう磁気ヘッドを有する磁気記
録再生装置。 7、特許請求の範囲第1項ないし第3項記載の磁気記録
媒体の磁気記録膜形成用の塗料組成物である磁性塗料の
製造方法において、磁気記録膜を構成する比表面積BE
T値40m^2/g以上の強磁性粉体微粒子と、該強磁
性粉体の分散結合剤である樹脂組成物とを混合させる際
に、上記樹脂組成物を固体状態において20μm以下の
微粉末となし、上記強磁性体微粒子もしくは補強材微粒
子を含む強磁性体微粒子と、上記微粉末とした樹脂組成
物とを、機械的に十分混合させた後、高ずり応力下で混
練させる工程を含むことを特徴とする磁性塗料の製造方
法。 8、上記樹脂組成物は、エポキシ樹脂、フェノール樹脂
、ビニル樹脂のうちの少なくとも一種を含むことを特徴
とする特許請求の範囲第7項に記載の磁性塗料の製造方
法。 9、上記強磁性体微粒子は酸化鉄粉、Co被着酸化鉄粉
、メタル粉、バリウムフェライト粉、炭化鉄粉のうちの
少なくとも一種である特許請求の範囲第7項に記載の磁
性塗料の製造方法。 10、上記強磁性体微粒子は比表面積BET値40m^
2/g以上の酸化鉄粉、Co被着酸化鉄粉、メタル粉、
バリウムフェライト粉、炭化鉄粉のうちの少なくとも一
種である特許請求の範囲1〜3項に記載の磁気記録媒体
[Claims] 1. A magnetic recording layer is formed by applying a magnetic paint in which ferromagnetic powder particles containing ferromagnetic powder particles or reinforcing material particles are dispersed in a polymeric binder onto a non-magnetic substrate. In the formed magnetic recording medium, the film thickness of the magnetic recording layer is 0.
A magnetic recording medium characterized by having a substantially uniform coating film of 2 μm or less. 2. The magnetic recording medium according to claim 1, wherein the magnetic coating film formed on the non-magnetic substrate before processing is a substantially uniform coating film having a thickness of 0.2 μm or less. 3. The thickness of the magnetic coating film formed on the non-magnetic substrate before processing is 0.3 μm or less, and the surface roughness of the magnetic coating film before processing is 0.015 μmRa or less. A magnetic recording medium according to claim 1. 4. In a magnetic recording medium having at least two coating films or magnetic recording layers on a non-magnetic substrate, at least one layer of the coating film or magnetic recording layer comprises ferromagnetic fine particles containing ferromagnetic powder fine particles or reinforcing material fine particles. A magnetic recording medium according to any one of claims 1 to 3, characterized in that the magnetic recording medium is a coating film comprising a polymeric binder dispersed in a polymeric binder. 5. The magnetic recording medium according to claims 1 to 4, wherein the magnetic recording medium is a magnetic disk. 6. A magnetic recording and reproducing apparatus comprising a magnetic recording medium according to claims 1 to 5 and a magnetic head for performing recording and reproducing on the magnetic recording medium. 7. In the method for producing a magnetic paint, which is a paint composition for forming a magnetic recording film of a magnetic recording medium according to claims 1 to 3, the specific surface area BE constituting the magnetic recording film is
When mixing ferromagnetic powder fine particles with a T value of 40 m^2/g or more and a resin composition that is a dispersion binder for the ferromagnetic powder, the resin composition is mixed into a fine powder of 20 μm or less in a solid state. The method includes the step of sufficiently mechanically mixing the ferromagnetic particles or the ferromagnetic particles including the reinforcing material particles and the resin composition made into a fine powder, and then kneading the mixture under high shear stress. A method for producing magnetic paint, characterized by: 8. The method for producing a magnetic paint according to claim 7, wherein the resin composition contains at least one of an epoxy resin, a phenol resin, and a vinyl resin. 9. Production of a magnetic paint according to claim 7, wherein the ferromagnetic fine particles are at least one of iron oxide powder, Co-coated iron oxide powder, metal powder, barium ferrite powder, and iron carbide powder. Method. 10. The above ferromagnetic fine particles have a specific surface area BET value of 40 m^
2/g or more iron oxide powder, Co-adhered iron oxide powder, metal powder,
The magnetic recording medium according to any one of claims 1 to 3, which is at least one of barium ferrite powder and iron carbide powder.
JP24110188A 1986-06-23 1988-09-28 Magnetic recording medium Pending JPH0291811A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP24110188A JPH0291811A (en) 1988-09-28 1988-09-28 Magnetic recording medium
US07/293,177 US5180616A (en) 1986-06-23 1989-01-03 Hard disk magnetic recording medium comprising magnetic powder and a binder and having a specified magnetic layer thickness and surface roughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24110188A JPH0291811A (en) 1988-09-28 1988-09-28 Magnetic recording medium

Publications (1)

Publication Number Publication Date
JPH0291811A true JPH0291811A (en) 1990-03-30

Family

ID=17069303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24110188A Pending JPH0291811A (en) 1986-06-23 1988-09-28 Magnetic recording medium

Country Status (1)

Country Link
JP (1) JPH0291811A (en)

Similar Documents

Publication Publication Date Title
JPH0291811A (en) Magnetic recording medium
JPH0419815A (en) Multi-frequency superposed magnetic recording system
JPH0630151B2 (en) Method of manufacturing magnetic recording medium
US5180616A (en) Hard disk magnetic recording medium comprising magnetic powder and a binder and having a specified magnetic layer thickness and surface roughness
JPS6348612A (en) Magnetic recording medium
US4567063A (en) Process for producing magnetic recording media
JP2609656B2 (en) Method for producing magnetic paint and magnetic recording medium and magnetic recording / reproducing apparatus using the same
JPH0762900B2 (en) Ferromagnetic metal powder for magnetic recording media
JPS634422A (en) Production of magnetic coating compound and magnetic recording medium using said compound
JPS6040528A (en) Magnetic disk and its production
JPS62154229A (en) Magnetic recording medium
JPH0417111A (en) Coating type magnetic recording medium, magnetic recording/reproducing device, and production of magnetic coating material
JPS63124221A (en) Production of magnetic coating compound and magnetic recording medium formed by using said compound
JPH04163717A (en) Manufacture of magnetic paint and magnetic recording medium using this paint
JP2943909B2 (en) Magnetic recording media
JP2702948B2 (en) Method for producing magnetic paint and magnetic recording medium using the same
JPS6366726A (en) Production of magnetic recording medium
JPH04195913A (en) Magnetic recording medium and its manufacturing method
JPS6250888B2 (en)
KR960003297B1 (en) Magnetic recording medium &amp; the producing method
JPS59223935A (en) Magnetic recording medium
JPH0366732B2 (en)
JPH02301016A (en) Magnetic disk medium
JPH06236543A (en) High-recording-density magnetic recording medium
JPH0363926A (en) Magnetic recording medium and its production